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Outline of the talk

• Chromatic polynomials
• Generalized k Chromatic polynomials
• BKM Lie superalgebras
• Denominator identity of BKM Lie superalgebras
• Quasi Dynkin diagram
• Relationship between Chromatic polynomial of Quasi Dynkin
diagram and root multiplicities of free roots
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Chromatic polynomials



Preliminaries

• Let I be any countable set and G be a graph with vertex set
V = {αi : i ∈ I} and edge set E(G).

• Let {1, 2, · · · ,q} be a set of q-distinct colors and P({1, 2, · · · ,q})
denotes its power set.

Definition
The number of ways a Graph G can be properly colored using q
colors is a polynomial in variable q, called the Chromatic polynomial
of the graph G, denoted by χ(G,q).
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Example

Consider the following graph

α1 α2

α3

α4

Using two colors: green and red, it can be properly colored using the
following 2 ways.

α1 α2

α3

α4 α1 α2

α3

α4

The Chromatic polynomial of the above graph is χ(G,q) = q(q− 1)3.
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Generalized k-Chromatic
polynomials



Preliminaries

For a tuple k = (ki : i ∈ I) of non-negative integers, we define
supp(k) = {i ∈ I : ki ̸= 0}.

Definition
Let k = (ki : i ∈ I) s.t. | supp(k)| < ∞. A map τ : V −→ P({1, 2, · · · ,q})
is said to be proper vertex k-multicoloring of a graph G if the
following conditions are satisfied:

• |τ(αi)| = ki for all i ∈ I,
• τ(αi) ∩ τ(αj) = ϕ if (αi, αj) ∈ E(G).

Definition
The number of ways in which a graph G can be proper
k-multicolored using q colors is a polynomial in q called the
generalized k-Chromatic polynomial, denoted by πGk(q).
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Example

Let k = (2, 1, 3, 2, 1, 2) and G be the following supergraph:

α1 α2

α3

α4

α6

α5

• α1 node can be colored in
(q
2

)
-ways

• α2 node can be colored in
(q−2

1

)
-ways

• α3,α4, α5 and α6 nodes can be colored in
(q−1

3

)
,
(q−1

2

)
,
(q−2

1

)
and

(q−3
2

)
ways respectively.

πGk(q) =
(
q
2

)(
q− 2

1

)(
q− 1

3

)(
q− 1

2

)(
q− 2

1

)(
q− 3

2

)
.
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Generalised k- Chromatic polynomial

Let Pℓ(k,G) be the set of all ordered ℓ-tuples (P1,P2, . . . ,Pℓ) such
that

(i) each Pj is a non-empty independent subset of V, i.e., no two
vertices have an edge between them; and

(ii) for all j ∈ I, αj occurs exactly kj times in the disjoint union
P1 ⊔ . . . ⊔ Pℓ.

Then
πGk(q) =

∑
ℓ≥0

|Pℓ(k,G)|
(
q
ℓ

)
.

6/23



Borcherds Kac Moody Lie
superalgebras



BKM supermatrix

Let I be a countable (possibly infinite) set. Fix a set Ψ ⊆ I. A real
matrix (A = (aij)i,j∈I,Ψ) is said to be a BKM supermatrix if the
following conditions are satisfied: For i, j ∈ I we have

1. aii = 2 or aii ≤ 0.
2. aij ≤ 0 if i ̸= j.
3. aij = 0 if and only if aji = 0.
4. aij ∈ Z if aii = 2.
5. aij ∈ 2Z if aii = 2 and i ∈ Ψ.

We are interested in symmetrizable BKM supermatrix.
6. A is symmetrizable, i.e., DA is symmetric for some diagonal
matrix D = diag(d1, . . . ,dn) with positive entries.
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Notations

• Ire = {i ∈ I : aii = 2}, Iim = I \ Ire

• Ψre = Ψ ∩ Ire

• Ψ0 = {i ∈ Ψ : aii = 0}
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Definition

The BKM Lie superalgebra associated with (A,Ψ) is the Lie
superalgebra L(A,Ψ) generated by ei, fi,hi, i ∈ I with the following
defining relations:

1. [hi,hj] = 0, [ei, fj] = δijhi for i, j ∈ I,
2. [hi, ej] = aijej, [hi, fj] = −aijfj for i, j ∈ I,
3. deghi = 0, i ∈ I,
4. deg ei = 0 = deg fi if i /∈ Ψ; deg ei = 1 = deg fi if i ∈ Ψ

5. (ad ei)1−aijej = 0 = (ad fi)1−aij fj if i ∈ Ire and i ̸= j,

6. (ad ei)1−
aij
2 ej = 0 = (ad fi)1−

aij
2 fj if i ∈ Ψre and i ̸= j,

7. (ad ei)1−
aij
2 ej = 0 = (ad fi)1−

aij
2 fj if i ∈ Ψ0 and i = j,

8. [ei, ej] = 0 = [fi, fj] if aij = 0.
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Idea

• L= Free Lie superalgebra generated by {ei, fi,hi : i ∈ I}.

• L̂= L
Chevalley relations , L̂ := η+ ⊕ h ⊕ η−.

• L̃ = L̂
<[ei,ej],[fi,fj]:aij=0> , L̃ = η̃+ ⊕ h ⊕ η̃−, where η̃± are free

partially commutative Lie superalgebras.
• L(A,Ψ) = L̃

Serre relations

• Our interest is in root spaces independent of Serre relations. We
call such root spaces as free root spaces.
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Notations

• ∆:= Set of roots, Π := {αi : i ∈ I}= Set of simple roots.
• Q :=

⊕
i∈I

Zαi, Q+ :=
⊕
i∈I

Z+αi.

• I = I0 ⊔ I1 where I1 = Ψ, I0 = I \Ψ

Definition

Let α =
∑

i∈I kiαi ∈ Q+,

• weight of α is defined as k = (ki : i ∈ I).
• α is said to be free if ki ≤ 1 for i ∈ Ire ⊔Ψ0.
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Denominator identity of BKM Lie
superalgebras



Denominator identity

Let Ω be the set of all γ ∈ Q+ such that

1. γ =
∑r

j=1 αij +
∑s

k=1 likβik where the αij (resp. βik ) are distinct
even (resp. odd) imaginary simple roots,

2. (αij , αik) = (βij , βik) = 0 for j ̸= k; (αij , βik) = 0 for all j, k;
3. if lik ≥ 2, then (βik , βik) = 0.

The following denominator identity of BKM superalgebras is proved
in 1[Wak01, Section 2.5]:

U :=
∑
w∈W

∑
γ∈Ω

ϵ(w)ϵ(γ)ew(ρ−γ)−ρ =

∏
α∈∆0

+
(1− e−α)mult(α)∏

α∈∆1
+
(1 + e−α)mult(α)

where mult(α) = dim gα, ϵ(w) = (−1)l(w) and ϵ(γ) = (−1)ht γ .
1Minoru Wakimoto; Infinite-dimensional Lie algebras. American Mathematical Society,
Providence, RI, Translations of Mathematical Monographs, 195, 2001.
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Quasi Dynkin diagram



Quasi Dynkin diagram

Let (G,Ψ) be a graph with

• V = {αi : i ∈ I} be a Z2-graded vertex set and
• E(G) = {(αi, αj) : aij ̸= 0, i, j ∈ I} be an edge set,

then the resulting super-graph is called Quasi Dynkin diagram of L
where Ψ ⊂ I parametrizes the odd vertices of G.
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Example

Go to slide

Let I = {1, 2, 3, 4, 5, 6},Ψ = {3, 5}. Consider the BKM supermatrix

• A =



2 −1 0 0 0 0

−1 −3 −4 −1 0 0

0 −4 −4 0 0 −1

0 −1 0 2 −1 0

0 0 0 −1 −2 0

0 0 −1 0 0 −3

 .

• The quasi-Dynkin diagram G of L is as follows:

α1 α2

α3

α4

α6

α5

• Let α = 3α3 + 3α6 ∈ ∆1
+, i.e. k = (0, 0, 3, 0, 0, 3) then πGk(q) =

(q
3

)(q−3
3

)
.
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Bond Lattice

Fix a tuple k = (ki)i∈I such that ki ≤ 1 for i ∈ Ire ∪Ψ0 and
| supp(k)| < ∞. Set η(k) =

∑
kiαi.

Definition
Let LG(k) be the weighted bond lattice of G, which is the set of
J = {J1, . . . , Jℓ} satisfying the following properties:

1. J is a multiset, i.e., Ji = Jj for some i ̸= j.
2. each Ji is a multiset, and the subgraph spanned by the
underlying set of Ji is a connected subgraph of G for each
1 ≤ i ≤ ℓ.

3. For all i ∈ I, αi occurs exactly ki times in the total disjoint union
J1 ⊔ . . . ⊔ Jℓ.
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Isomorphism of bond lattices

For J ∈ LG(k),

• D(Ji,J) = multiplicity of Ji in J,
• β(Ji) =

∑
α∈Ji

α and dimLβ(Ji) := mult(β(Ji)),

• J0 = {Ji ∈ J : β(Ji) ∈ ∆0
+} and J1 = J \ J0.

Lemma (2[AKV18])
Let R be the collection of multisets γ = {β1, . . . , βr} such that each
βi ∈ ∆+ and β1 + . . .+ βr = η(k). The map ϕ : LG(k) −→ R defined by

{J1, . . . , Jℓ} 7→ {β(J1), . . . , β(Jℓ)}

is a bijection.
2G. Arunkumar, and Deniz Kus and R. Venkatesh; Root multiplicities for Borcherds al-
gebras and graph coloring. J. Algebra, 499: 538-569, 2018.
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Relationship between Chromatic
polynomials and root
multiplicities



Relation between root multiplicities and Chromatic polynomi-
als

Theorem (3[VV15])
Let G be the simple graph of Kac Moody Lie algebra g. Assume
k = (ki); ki = 1 for finitely many i and 0 otherwise; ℓ = | supp(k)|.
Then

χ(G,q) =
∑
J∈LG

(−1)ℓ−|J| mult(β(J))q|J|

where LG is the bond lattice of weight k of the graph G.

3R. Venkatesh and S Viswanath; Chromatic polynomials of graphs from Kac Moody Lie
algebras. J. Algebraic Combin., 41(4): 1133-1142, 2015.
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Relation between rootmultiplicities and generalizedk Chromatic
polynomials

Theorem (4[AKV18])
Let G be the quasi Dynkin diagram of a Borcherds Lie algebra g.
Assume k = (ki : i ∈ I) ∈ ZI+ is such that ki ≤ 1 for i ∈ Ire. Then

πGk(q) = (−1)ht(η(k))
∑

J∈LG(k)

(−1)|J|
∏
J∈J

(
q mult(β(J))
D(J,J)

)

where LG(k) is the bond lattice of weight k of the graph G.

4G. Arunkumar, and Deniz Kus and R. Venkatesh; Root multiplicities for Borcherds al-
gebras and graph coloring. J. Algebra, 499: 538-569, 2018.
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Relation between rootmultiplicities and generalizedk Chromatic
polynomials

The following result is one of the main results from 5[RA21]

Theorem (_, G.Arunkumar)
Let G be the quasi Dynkin diagram of a BKM superalgebra L. Assume
k = (ki : i ∈ I) ∈ ZI+ is such that ki ≤ 1 for i ∈ Ire ∪Ψ0. Then

πGk(q) = (−1)ht(η(k))
∑

J∈LG(k)

(−1)|J|+|J1|
∏
J∈J0

(
q mult(β(J))
D(J,J)

) ∏
J∈J1

(
−q mult(β(J))

D(J,J)

)

where LG(k) is the bond lattice of weight k of the graph G.

5Shushma Rani and G. Arunkumar; A study on free roots of Borcherds-Kac-Moody Lie
Superalgebras. arXiv e-prints, arXiv:2103.12332, March 2021.
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Root multiplicities

Corollary

Let η(k) =
∑

i∈I kiαi ∈ ∆+ such that ki ≤ 1 for all i ∈ Ire ⊔Ψ0. Then

mult(η(k)) =


∑
ℓ|k

µ(ℓ)
ℓ |πGk/ℓ(q)[q]|, if η(k) ∈ ∆0

+∑
ℓ|k

(−1)ℓ+1µ(ℓ)
ℓ |πGk/ℓ(q)[q]|, if η(k) ∈ ∆1

+

where |πGk(q)[q]| denotes the absolute value of the coefficient of q in
πGk(q) and µ is the Möbius function. If ki’s are relatively prime (in
particular if for some i ∈ I, ki = 1), we have,

mult(η(k)) = |πGk(q)[q]| for any η(k) ∈ ∆+.
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Example of main result

Example

Consider the BKM superalgebra L and the root space
η(k) = 3α3 + 3α6 ∈ ∆1

+ from Example 14. The k-chromatic
polynomial of the quasi Dynkin diagram G of L is equal to

πGk(q) =
(
q
3

)(
q− 3

3

)
=

1

3!3!
q(q− 1)(q− 2)(q− 3)(q− 4)(q− 5).

mult(η(k)) =
∑
ℓ|k

(−1)ℓ+1µ(ℓ)

ℓ
|πGk/ℓ(q)[q]|

= |πGk(q)[q]|+
µ(3)

3
|πGk′(q)[q]| where k′ = (0, 0, 1, 0, 0, 1)

=
10

3
− 1

3
= 3
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Thank You!
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