Generalized *k*- Chromatic polynomials and root multiplicities of BKM Lie superalgebras

(Joint work with Dr. G. Arunkumar)

Dr. Shushma Rani ALGEBRAIC AND COMBINATORIAL METHODS IN REPRESENTATION THEORY ACMRT 2023, ICTS

13 November - 24 November 2023

Harish Chandra Research Institute (HRI), Email : shushmarani@hri.res.in

- Chromatic polynomials
- + Generalized ${\bf k}$ Chromatic polynomials
- BKM Lie superalgebras
- Denominator identity of BKM Lie superalgebras
- Quasi Dynkin diagram
- Relationship between Chromatic polynomial of Quasi Dynkin diagram and root multiplicities of free roots

Chromatic polynomials

- Let *I* be any countable set and *G* be a graph with vertex set $V = \{\alpha_i : i \in I\}$ and edge set E(G).
- Let $\{1, 2, \dots, q\}$ be a set of q-distinct colors and $\mathcal{P}(\{1, 2, \dots, q\})$ denotes its power set.

Definition

The number of ways a Graph *G* can be properly colored using *q* colors is a polynomial in variable *q*, called **the Chromatic polynomial** of the graph *G*, denoted by $\chi(G, q)$.

Consider the following graph

Consider the following graph

Using two colors: green and red, it can be properly colored using the following 2 ways.

Consider the following graph

Using two colors: green and red, it can be properly colored using the following 2 ways.

The Chromatic polynomial of the above graph is $\chi(G,q) = q(q-1)^3$.

Generalized k-Chromatic polynomials

For a tuple $\mathbf{k} = (k_i : i \in I)$ of non-negative integers, we define $\operatorname{supp}(\mathbf{k}) = \{i \in I : k_i \neq 0\}.$

Definition

Let $\mathbf{k} = (k_i : i \in I)$ s.t. $|\operatorname{supp}(\mathbf{k})| < \infty$. A map $\tau : V \longrightarrow \mathcal{P}(\{1, 2, \dots, q\})$ is said to be **proper vertex k-multicoloring** of a graph *G* if the following conditions are satisfied:

- $|\tau(\alpha_i)| = k_i$ for all $i \in I$,
- $\tau(\alpha_i) \cap \tau(\alpha_j) = \phi$ if $(\alpha_i, \alpha_j) \in E(G)$.

Definition

The number of ways in which a graph *G* can be proper **k**-multicolored using *q* colors is a polynomial in *q* called **the generalized k-Chromatic polynomial**, denoted by $\pi_{\mathbf{k}}^{G}(q)$.

Let $\mathbf{k} = (2, 1, 3, 2, 1, 2)$ and G be the following supergraph:

Let $\mathbf{k} = (2, 1, 3, 2, 1, 2)$ and G be the following supergraph:

• α_1 node can be colored in $\binom{q}{2}$ -ways

Let $\mathbf{k} = (2, 1, 3, 2, 1, 2)$ and G be the following supergraph:

- α_1 node can be colored in $\binom{q}{2}$ -ways
- α_2 node can be colored in $\binom{q-2}{1}$ -ways

Let $\mathbf{k} = (2, 1, 3, 2, 1, 2)$ and G be the following supergraph:

- α_1 node can be colored in $\binom{q}{2}$ -ways
- α_2 node can be colored in $\binom{q-2}{1}$ -ways
- $\alpha_3, \alpha_4, \alpha_5$ and α_6 nodes can be colored in $\binom{q-1}{3}, \binom{q-1}{2}, \binom{q-2}{1}$ and $\binom{q-3}{2}$ ways respectively.

$$\pi_{\mathbf{k}}^{\mathsf{G}}(q) = \binom{q}{2} \binom{q-2}{1} \binom{q-1}{3} \binom{q-1}{2} \binom{q-2}{1} \binom{q-3}{2}.$$

Let $P_{\ell}(\mathbf{k},G)$ be the set of all ordered ℓ -tuples (P_1,P_2,\ldots,P_ℓ) such that

- (i) each P_j is a non-empty independent subset of V, i.e., no two vertices have an edge between them; and
- (ii) for all $j \in I$, α_j occurs exactly k_j times in the disjoint union $P_1 \sqcup \ldots \sqcup P_\ell$.

Then

$$\pi_{\mathbf{k}}^{G}(q) = \sum_{\ell \ge 0} |P_{\ell}(\mathbf{k}, G)| \binom{q}{\ell}.$$

Borcherds Kac Moody Lie superalgebras

Let *I* be a countable (possibly infinite) set. Fix a set $\Psi \subseteq I$. A real matrix $(A = (a_{ij})_{i,j \in I}, \Psi)$ is said to be a **BKM supermatrix** if the following conditions are satisfied: For $i, j \in I$ we have

1.
$$a_{ii} = 2 \text{ or } a_{ii} \leq 0.$$

2.
$$a_{ij} \leq 0$$
 if $i \neq j$.

3.
$$a_{ij} = 0$$
 if and only if $a_{ji} = 0$.

4.
$$a_{ij} \in \mathbb{Z}$$
 if $a_{ii} = 2$.

5.
$$a_{ij} \in 2\mathbb{Z}$$
 if $a_{ii} = 2$ and $i \in \Psi$.

Let *I* be a countable (possibly infinite) set. Fix a set $\Psi \subseteq I$. A real matrix $(A = (a_{ij})_{i,j \in I}, \Psi)$ is said to be a **BKM supermatrix** if the following conditions are satisfied: For $i, j \in I$ we have

- 1. $a_{ii} = 2 \text{ or } a_{ii} \leq 0.$
- 2. $a_{ij} \leq 0$ if $i \neq j$.
- 3. $a_{ij} = 0$ if and only if $a_{ji} = 0$.
- 4. $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$.
- 5. $a_{ij} \in 2\mathbb{Z}$ if $a_{ii} = 2$ and $i \in \Psi$. We are interested in symmetrizable BKM supermatrix.
- 6. A is symmetrizable, i.e., *DA* is symmetric for some diagonal matrix $D = \text{diag}(d_1, \dots, d_n)$ with positive entries.

•
$$I^{re} = \{i \in I : a_{ii} = 2\}, I^{im} = I \setminus I^{re}$$

•
$$\Psi^{re} = \Psi \cap I^{re}$$

$$\cdot \ \Psi_0 = \{i \in \Psi : a_{ii} = 0\}$$

The **BKM Lie superalgebra** associated with (A, Ψ) is the Lie superalgebra $\mathfrak{L}(A, \Psi)$ generated by $e_i, f_i, h_i, i \in I$ with the following defining relations:

The **BKM Lie superalgebra** associated with (A, Ψ) is the Lie superalgebra $\mathfrak{L}(A, \Psi)$ generated by $e_i, f_i, h_i, i \in I$ with the following defining relations:

1.
$$[h_i, h_j] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$ for $i, j \in I$,
2. $[h_i, e_j] = a_{ij}e_j$, $[h_i, f_j] = -a_{ij}f_j$ for $i, j \in I$,
3. $\deg h_i = 0, i \in I$,
4. $\deg e_i = 0 = \deg f_i$ if $i \notin \Psi$; $\deg e_i = 1 = \deg f_i$ if $i \in \Psi$
5. $(\operatorname{ad} e_i)^{1-a_{ij}}e_j = 0 = (\operatorname{ad} f_i)^{1-a_{ij}}f_j$ if $i \in I^{re}$ and $i \neq j$,
6. $(\operatorname{ad} e_i)^{1-\frac{a_{ij}}{2}}e_j = 0 = (\operatorname{ad} f_i)^{1-\frac{a_{ij}}{2}}f_j$ if $i \in \Psi^{re}$ and $i \neq j$,
7. $(\operatorname{ad} e_i)^{1-\frac{a_{ij}}{2}}e_j = 0 = (\operatorname{ad} f_i)^{1-\frac{a_{ij}}{2}}f_j$ if $i \in \Psi_0$ and $i = j$,

The **BKM Lie superalgebra** associated with (A, Ψ) is the Lie superalgebra $\mathfrak{L}(A, \Psi)$ generated by $e_i, f_i, h_i, i \in I$ with the following defining relations:

1.
$$[h_i, h_j] = 0$$
, $[e_i, f_j] = \delta_{ij}h_i$ for $i, j \in I$,
2. $[h_i, e_j] = a_{ij}e_j$, $[h_i, f_j] = -a_{ij}f_j$ for $i, j \in I$,
3. $\deg h_i = 0, i \in I$,
4. $\deg e_i = 0 = \deg f_i$ if $i \notin \Psi$; $\deg e_i = 1 = \deg f_i$ if $i \in \Psi$
5. $(\operatorname{ad} e_i)^{1-a_{ij}}e_j = 0 = (\operatorname{ad} f_i)^{1-a_{ij}}f_j$ if $i \in I^{re}$ and $i \neq j$,
6. $(\operatorname{ad} e_i)^{1-\frac{a_{ij}}{2}}e_j = 0 = (\operatorname{ad} f_i)^{1-\frac{a_{ij}}{2}}f_j$ if $i \in \Psi^{re}$ and $i \neq j$,
7. $(\operatorname{ad} e_i)^{1-\frac{a_{ij}}{2}}e_j = 0 = (\operatorname{ad} f_i)^{1-\frac{a_{ij}}{2}}f_j$ if $i \in \Psi_0$ and $i = j$,
8. $[e_i, e_j] = 0 = [f_i, f_j]$ if $a_{ij} = 0$.

• \mathfrak{L} = Free Lie superalgebra generated by $\{e_i, f_i, h_i : i \in I\}$.

• \mathfrak{L} = Free Lie superalgebra generated by $\{e_i, f_i, h_i : i \in I\}$.

 $\cdot \ \widehat{\mathfrak{L}}^{=} \ \underline{\mathfrak{L}}_{\text{Chevalley relations}}, \ \ \widehat{\mathfrak{L}} := \eta^{+} \ \oplus \ \mathfrak{h} \ \oplus \ \eta^{-}.$

- \mathfrak{L} = Free Lie superalgebra generated by $\{e_i, f_i, h_i : i \in I\}$.
- $\cdot \ \widehat{\mathfrak{L}}^{=} \ \underline{\mathfrak{L}}_{\text{Chevalley relations}}, \ \ \widehat{\mathfrak{L}} := \eta^{+} \ \oplus \ \mathfrak{h} \ \oplus \ \eta^{-}.$
- $\widetilde{\mathfrak{L}} = \frac{\widehat{\mathfrak{L}}}{\langle [e_i, e_j], [f_i, f_j]: a_{ij} = 0 \rangle}$, $\widetilde{\mathfrak{L}} = \widetilde{\eta^+} \oplus \mathfrak{h} \oplus \widetilde{\eta^-}$, where $\widetilde{\eta^{\pm}}$ are free partially commutative Lie superalgebras.

- \mathfrak{L} = Free Lie superalgebra generated by $\{e_i, f_i, h_i : i \in I\}$.
- $\cdot \ \widehat{\mathfrak{L}}^{\scriptscriptstyle =} \ \underline{\mathfrak{L}}_{\rm Chevalley \ relations}, \ \ \widehat{\mathfrak{L}}:=\eta^+ \ \oplus \ \mathfrak{h} \ \oplus \ \eta^-.$
- $\widetilde{\mathfrak{L}} = \frac{\widehat{\mathfrak{L}}}{\langle [e_i, e_j], [f_i, f_j]: a_{ij} = 0 \rangle}$, $\widetilde{\mathfrak{L}} = \widetilde{\eta^+} \oplus \mathfrak{h} \oplus \widetilde{\eta^-}$, where $\widetilde{\eta^\pm}$ are free partially commutative Lie superalgebras.

•
$$\mathfrak{L}(\mathsf{A},\Psi) = rac{\widetilde{\mathfrak{L}}}{|\mathsf{Serre relations}|}$$

- \mathfrak{L} = Free Lie superalgebra generated by $\{e_i, f_i, h_i : i \in I\}$.
- $\cdot \ \widehat{\mathfrak{L}}^{=} \ \underline{\mathfrak{L}}_{\text{Chevalley relations}}, \ \ \widehat{\mathfrak{L}} := \eta^{+} \ \oplus \ \mathfrak{h} \ \oplus \ \eta^{-}.$
- $\widetilde{\mathfrak{L}} = \frac{\widehat{\mathfrak{L}}}{\langle [e_i, e_j], [f_i, f_j]: a_{ij} = 0 \rangle}$, $\widetilde{\mathfrak{L}} = \widetilde{\eta^+} \oplus \mathfrak{h} \oplus \widetilde{\eta^-}$, where $\widetilde{\eta^{\pm}}$ are free partially commutative Lie superalgebras.

•
$$\mathfrak{L}(A, \Psi) = \frac{\widetilde{\mathfrak{L}}}{|\mathsf{Serre relations}|}$$

• Our interest is in root spaces independent of Serre relations. We call such root spaces as **free root spaces**.

Notations

• Δ := Set of roots, $\Pi := \{\alpha_i : i \in I\}$ = Set of simple roots.

•
$$Q := \bigoplus_{i \in I} \mathbb{Z} \alpha_i, \ Q_+ := \bigoplus_{i \in I} \mathbb{Z}_+ \alpha_i.$$

+ $I = I_0 \sqcup I_1$ where $I_1 = \Psi, I_0 = I \setminus \Psi$

Notations

• Δ := Set of roots, $\Pi := \{\alpha_i : i \in I\}$ = Set of simple roots.

•
$$Q := \bigoplus_{i \in I} \mathbb{Z} \alpha_i, \ Q_+ := \bigoplus_{i \in I} \mathbb{Z}_+ \alpha_i.$$

+ $I = I_0 \sqcup I_1$ where $I_1 = \Psi, I_0 = I \setminus \Psi$

Definition

Let
$$\alpha = \sum_{i \in I} k_i \alpha_i \in Q_+$$
,

- weight of α is defined as $\mathbf{k} = (k_i : i \in I)$.
- α is said to be **free** if $k_i \leq 1$ for $i \in I^{re} \sqcup \Psi_0$.

Denominator identity of BKM Lie superalgebras

Let Ω be the set of all $\gamma \in {\it Q}_+$ such that

1. $\gamma = \sum_{j=1}^{r} \alpha_{i_j} + \sum_{k=1}^{s} l_{i_k} \beta_{i_k}$ where the α_{i_j} (resp. β_{i_k}) are distinct even (resp. odd) imaginary simple roots,

2.
$$(\alpha_{i_j}, \alpha_{i_k}) = (\beta_{i_j}, \beta_{i_k}) = 0$$
 for $j \neq k$; $(\alpha_{i_j}, \beta_{i_k}) = 0$ for all j, k ;

3. if
$$l_{i_k} \geq 2$$
, then $(\beta_{i_k}, \beta_{i_k}) = 0$.

The following **denominator identity of BKM superalgebras** is proved in ¹[Wak01, Section 2.5]:

$$U := \sum_{\mathsf{W} \in \mathsf{W}} \sum_{\gamma \in \Omega} \epsilon(\mathsf{W}) \epsilon(\gamma) e^{\mathsf{W}(\rho - \gamma) - \rho} = \frac{\prod_{\alpha \in \Delta^0_+} (1 - e^{-\alpha})^{\operatorname{mult}(\alpha)}}{\prod_{\alpha \in \Delta^1_+} (1 + e^{-\alpha})^{\operatorname{mult}(\alpha)}}$$

where $\operatorname{mult}(\alpha) = \dim \mathfrak{g}_{\alpha}, \epsilon(w) = (-1)^{l(w)} \text{ and } \epsilon(\gamma) = (-1)^{\operatorname{ht} \gamma}.$

¹Minoru Wakimoto; Infinite-dimensional Lie algebras. *American Mathematical Society, Providence, RI*, Translations of Mathematical Monographs, 195, 2001.

Quasi Dynkin diagram

Let (G,Ψ) be a graph with

- $V = \{\alpha_i : i \in I\}$ be a \mathbb{Z}_2 -graded vertex set and
- $E(G) = \{(\alpha_i, \alpha_j) : a_{ij} \neq 0, i, j \in I\}$ be an edge set,

then the resulting super-graph is called Quasi Dynkin diagram of \mathfrak{L} where $\Psi \subset I$ parametrizes the odd vertices of G.

Go to slide

Let $I = \{1, 2, 3, 4, 5, 6\}, \Psi = \{3, 5\}$. Consider the BKM supermatrix

$$\cdot A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & -3 & -4 & -1 & 0 & 0 \\ 0 & -4 & -4 & 0 & 0 & -1 \\ 0 & -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & -2 & 0 \\ 0 & 0 & -1 & 0 & 0 & -3 \end{bmatrix}$$

• The quasi-Dynkin diagram G of \mathfrak{L} is as follows:

• Let $\alpha = 3\alpha_3 + 3\alpha_6 \in \Delta^1_+$, i.e. $\mathbf{k} = (0, 0, 3, 0, 0, 3)$ then $\pi^{\mathsf{G}}_{\mathbf{k}}(q) = \binom{q}{3}\binom{q-3}{3}$.

Fix a tuple $\mathbf{k} = (k_i)_{i \in I}$ such that $k_i \leq 1$ for $i \in I^{re} \cup \Psi_0$ and $|\operatorname{supp}(\mathbf{k})| < \infty$. Set $\eta(\mathbf{k}) = \sum k_i \alpha_i$.

Definition

Let $L_G(\mathbf{k})$ be the **weighted bond lattice** of *G*, which is the set of $\mathbf{J} = \{J_1, \dots, J_\ell\}$ satisfying the following properties:

- 1. J is a multiset, i.e., $J_i = J_j$ for some $i \neq j$.
- each J_i is a multiset, and the subgraph spanned by the underlying set of J_i is a connected subgraph of G for each 1 ≤ i ≤ ℓ.
- 3. For all $i \in I$, α_i occurs exactly k_i times in the total disjoint union $J_1 \sqcup \ldots \sqcup J_\ell$.

For $\mathbf{J} \in L_G(\mathbf{k})$,

- $D(J_i, \mathbf{J}) =$ multiplicity of J_i in \mathbf{J} ,
- $\beta(J_i) = \sum_{\alpha \in J_i} \alpha$ and dim $\mathfrak{L}_{\beta(J_i)} := \operatorname{mult}(\beta(J_i))$,
- $\mathbf{J}_0 = \{J_i \in \mathbf{J} : \beta(J_i) \in \Delta^0_+\} \text{ and } \mathbf{J}_1 = \mathbf{J} \setminus \mathbf{J}_0.$

Lemma (²[AKV18])

Let \mathcal{R} be the collection of multisets $\gamma = \{\beta_1, \dots, \beta_r\}$ such that each $\beta_i \in \Delta_+$ and $\beta_1 + \ldots + \beta_r = \eta(\mathbf{k})$. The map $\phi : L_G(\mathbf{k}) \longrightarrow \mathcal{R}$ defined by

$$\{J_1,\ldots,J_\ell\}\mapsto\{\beta(J_1),\ldots,\beta(J_\ell)\}$$

is a bijection.

²G. Arunkumar, and Deniz Kus and R. Venkatesh; Root multiplicities for Borcherds algebras and graph coloring. *J. Algebra*, 499: 538-569, 2018.

Relationship between Chromatic polynomials and root multiplicities

Theorem (³[VV15])

Let G be the simple graph of Kac Moody Lie algebra g. Assume $\mathbf{k} = (k_i)$; $k_i = 1$ for finitely many *i* and 0 otherwise; $\ell = |\operatorname{supp}(\mathbf{k})|$. Then

$$\chi(G,q) = \sum_{\mathbf{J} \in L_G} (-1)^{\ell - |\mathbf{J}|} \operatorname{mult}(\beta(\mathbf{J}))q^{|\mathbf{J}|}$$

where L_G is the bond lattice of weight \mathbf{k} of the graph G.

³R. Venkatesh and S Viswanath; Chromatic polynomials of graphs from Kac Moody Lie algebras. *J. Algebraic Combin.*, 41(4): 1133-1142, 2015.

Theorem (⁴[AKV18])

Let G be the quasi Dynkin diagram of a **Borcherds Lie algebra** \mathfrak{g} . Assume $\mathbf{k} = (k_i : i \in I) \in \mathbb{Z}_+^I$ is such that $k_i \leq 1$ for $i \in I^{re}$. Then

$$\pi_{\mathbf{k}}^{G}(q) = (-1)^{\operatorname{ht}(\eta(\mathbf{k}))} \sum_{\mathbf{J} \in L_{G}(\mathbf{k})} (-1)^{|\mathbf{J}|} \prod_{J \in \mathbf{J}} \begin{pmatrix} q \; \operatorname{mult}(\beta(J)) \\ D(J, \mathbf{J}) \end{pmatrix}$$

where $L_G(\mathbf{k})$ is the bond lattice of weight \mathbf{k} of the graph G.

⁴G. Arunkumar, and Deniz Kus and R. Venkatesh; Root multiplicities for Borcherds algebras and graph coloring. *J. Algebra*, 499: 538-569, 2018.

The following result is one of the main results from ⁵[RA21]

Theorem (_, G.Arunkumar)

Let *G* be the quasi Dynkin diagram of a **BKM superalgebra** \mathfrak{L} . Assume $\mathbf{k} = (k_i : i \in I) \in \mathbb{Z}_+^l$ is such that $k_i \leq 1$ for $i \in I^{re} \cup \Psi_0$. Then

$$\pi_{\mathbf{k}}^{G}(q) = (-1)^{\operatorname{ht}(\eta(\mathbf{k}))} \sum_{\mathbf{J} \in L_{G}(\mathbf{k})} (-1)^{|\mathbf{J}| + |\mathbf{J}_{1}|} \prod_{J \in \mathbf{J}_{0}} \begin{pmatrix} q \operatorname{mult}(\beta(J)) \\ D(J, \mathbf{J}) \end{pmatrix} \prod_{J \in \mathbf{J}_{1}} \begin{pmatrix} -q \operatorname{mult}(\beta(J)) \\ D(J, \mathbf{J}) \end{pmatrix}$$

where $L_G(\mathbf{k})$ is the bond lattice of weight \mathbf{k} of the graph G.

⁵Shushma Rani and G. Arunkumar; A study on free roots of Borcherds-Kac-Moody Lie Superalgebras. *arXiv e-prints*, arXiv:2103.12332, March 2021.

Corollary

Let $\eta(\mathbf{k}) = \sum_{i \in I} k_i \alpha_i \in \Delta^+$ such that $k_i \leq 1$ for all $i \in I^{re} \sqcup \Psi_0$. Then

$$\operatorname{mult}(\eta(\mathbf{k})) = \begin{cases} \sum_{\ell \mid \mathbf{k}} \frac{\mu(\ell)}{\ell} \mid \pi_{\mathbf{k}/\ell}^{\mathsf{G}}(q)[q]|, & \text{if } \eta(\mathbf{k}) \in \Delta_{+}^{0} \\ \sum_{\ell \mid \mathbf{k}} \frac{(-1)^{\ell+1}\mu(\ell)}{\ell} \mid \pi_{\mathbf{k}/\ell}^{\mathsf{G}}(q)[q]|, & \text{if } \eta(\mathbf{k}) \in \Delta_{+}^{1} \end{cases}$$

where $|\pi_{\mathbf{k}}^{G}(q)[q]|$ denotes the absolute value of the coefficient of q in $\pi_{\mathbf{k}}^{G}(q)$ and μ is the Möbius function. If k_{i} 's are relatively prime (in particular if for some $i \in I$, $k_{i} = 1$), we have,

 $\operatorname{mult}(\eta(\mathbf{k})) = |\pi_{\mathbf{k}}^{\mathsf{G}}(q)[q]| \quad \text{for any } \eta(\mathbf{k}) \in \Delta_+.$

Example of main result

Example

Consider the BKM superalgebra \mathfrak{L} and the root space $\eta(\mathbf{k}) = 3\alpha_3 + 3\alpha_6 \in \Delta^1_+$ from Example 14. The **k**-chromatic polynomial of the quasi Dynkin diagram *G* of \mathfrak{L} is equal to

$$\pi_{\mathbf{k}}^{\mathsf{G}}(q) = \binom{q}{3} \binom{q-3}{3} = \frac{1}{3!3!}q(q-1)(q-2)(q-3)(q-4)(q-5).$$

$$\begin{split} \operatorname{mult}(\eta(\mathbf{k})) &= \sum_{\ell \mid \mathbf{k}} \frac{(-1)^{\ell+1} \mu(\ell)}{\ell} \mid \pi^{G}_{\mathbf{k}/\ell}(q)[q] \mid \\ &= |\pi^{G}_{\mathbf{k}}(q)[q]| + \frac{\mu(3)}{3} |\pi^{G}_{\mathbf{k}'}(q)[q]| \text{ where } \mathbf{k}' = (0, 0, 1, 0, 0, 1) \\ &= \frac{10}{3} - \frac{1}{3} = 3 \end{split}$$

Refererences

- G. Arunkumar, Deniz Kus, and R. Venkatesh.
 Root multiplicities for Borcherds algebras and graph coloring.
 J. Algebra, 499:538–569, 2018.
- Shushma Rani and G. Arunkumar.
 A study on free roots of Borcherds-Kac-Moody Lie
 Superalgebras.

arXiv e-prints, page arXiv:2103.12332, March 2021.

R. Venkatesh and Sankaran Viswanath.
 Chromatic polynomials of graphs from Kac-Moody algebras.
 J. Algebraic Combin., 41(4):1133–1142, 2015.

Minoru Wakimoto.

Infinite-dimensional Lie algebras, volume 195 of Translations of Mathematical Monographs.

American Mathematical Society, Providence, RI, 2001. Translated from the 1999 Japanese original by Kenji Iohara, Iwanami Series in Modern Mathematics.

Thank You!