Generalized k - Chromatic polynomials and root multiplicities of BKM Lie superalgebras
(Joint work with Dr. G. Arunkumar)

Dr. Shushma Rani
ALGEBRAIC AND COMBINATORIAL METHODS IN REPRESENTATION THEORY
ACMRT 2023, ICTS
13 November - 24 November 2023
Harish Chandra Research Institute (HRI),
Email : shushmarani@hri.res.in

Outline of the talk

- Chromatic polynomials
- Generalized k Chromatic polynomials
- BKM Lie superalgebras
- Denominator identity of BKM Lie superalgebras
- Quasi Dynkin diagram
- Relationship between Chromatic polynomial of Quasi Dynkin diagram and root multiplicities of free roots

Chromatic polynomials

Preliminaries

- Let I be any countable set and G be a graph with vertex set $V=\left\{\alpha_{i}: i \in I\right\}$ and edge set $E(G)$.
- Let $\{1,2, \cdots, q\}$ be a set of q-distinct colors and $\mathcal{P}(\{1,2, \cdots, q\})$ denotes its power set.

Definition

The number of ways a Graph G can be properly colored using q colors is a polynomial in variable q, called the Chromatic polynomial of the graph G, denoted by $\chi(G, q)$.

Example

Consider the following graph

Example

Consider the following graph

Using two colors: green and red, it can be properly colored using the following 2 ways.

Example

Consider the following graph

Using two colors: green and red, it can be properly colored using the following 2 ways.

The Chromatic polynomial of the above graph is $\chi(G, q)=q(q-1)^{3}$.

Generalized k-Chromatic polynomials

Preliminaries

For a tuple $\mathbf{k}=\left(k_{i}: i \in I\right)$ of non-negative integers, we define $\operatorname{supp}(\mathbf{k})=\left\{i \in I: k_{i} \neq 0\right\}$.

Definition

Let $\mathbf{k}=\left(k_{i}: i \in I\right)$ s.t. $|\operatorname{supp}(\mathbf{k})|<\infty$. A map $\tau: V \longrightarrow \mathcal{P}(\{1,2, \cdots, q\})$ is said to be proper vertex \mathbf{k}-multicoloring of a graph G if the following conditions are satisfied:

- $\left|\tau\left(\alpha_{i}\right)\right|=k_{i}$ for all $i \in I$,
- $\tau\left(\alpha_{i}\right) \cap \tau\left(\alpha_{j}\right)=\phi$ if $\left(\alpha_{i}, \alpha_{j}\right) \in E(G)$.

Definition

The number of ways in which a graph G can be proper
\mathbf{k}-multicolored using q colors is a polynomial in q called the generalized \mathbf{k}-Chromatic polynomial, denoted by $\pi_{\mathbf{k}}^{G}(q)$.

Example

Let $\mathbf{k}=(2,1,3,2,1,2)$ and G be the following supergraph:

Example

Let $\mathbf{k}=(2,1,3,2,1,2)$ and G be the following supergraph:

- α_{1} node can be colored in $\binom{9}{2}$-ways

Example

Let $\mathbf{k}=(2,1,3,2,1,2)$ and G be the following supergraph:

- α_{1} node can be colored in $\binom{9}{2}$-ways
- α_{2} node can be colored in $\binom{a-2}{1}$-ways

Example

Let $\mathbf{k}=(2,1,3,2,1,2)$ and G be the following supergraph:

- α_{1} node can be colored in $\binom{9}{2}$-ways
- α_{2} node can be colored in $\binom{q-2}{1}$-ways
- $\alpha_{3}, \alpha_{4}, \alpha_{5}$ and α_{6} nodes can be colored in $\binom{q-1}{3},\binom{q-1}{2},\binom{q-2}{1}$ and $\binom{q-3}{2}$ ways respectively.

$$
\pi_{\mathbf{k}}^{G}(q)=\binom{q}{2}\binom{q-2}{1}\binom{q-1}{3}\binom{q-1}{2}\binom{q-2}{1}\binom{q-3}{2}
$$

Generalised k- Chromatic polynomial

Let $P_{\ell}(\mathbf{k}, G)$ be the set of all ordered ℓ-tuples $\left(P_{1}, P_{2}, \ldots, P_{\ell}\right)$ such that
(i) each P_{j} is a non-empty independent subset of V, i.e., no two vertices have an edge between them; and
(ii) for all $j \in I, \alpha_{j}$ occurs exactly k_{j} times in the disjoint union $P_{1} \sqcup \ldots \sqcup P_{\ell}$.

Then

$$
\pi_{\mathbf{k}}^{G}(q)=\sum_{\ell \geq 0}\left|P_{\ell}(\mathbf{k}, G)\right|\binom{q}{\ell}
$$

Borcherds Kac Moody Lie superalgebras

BKM supermatrix

Let I be a countable (possibly infinite) set. Fix a set $\Psi \subseteq I$. A real matrix $\left(A=\left(a_{i j}\right)_{i, j \in 1}, \Psi\right)$ is said to be a BKM supermatrix if the following conditions are satisfied: For $i, j \in I$ we have

1. $a_{i i}=2$ or $a_{i i} \leq 0$.
2. $a_{i j} \leq 0$ if $i \neq j$.
3. $a_{i j}=0$ if and only if $a_{j i}=0$.
4. $a_{i j} \in \mathbb{Z}$ if $a_{i i}=2$.
5. $a_{i j} \in 2 \mathbb{Z}$ if $a_{i i}=2$ and $i \in \Psi$.

BKM supermatrix

Let I be a countable (possibly infinite) set. Fix a set $\Psi \subseteq I$. A real matrix $\left(A=\left(a_{i j}\right)_{i, j \in 1}, \Psi\right)$ is said to be a BKM supermatrix if the following conditions are satisfied: For $i, j \in I$ we have

1. $a_{i i}=2$ or $a_{i i} \leq 0$.
2. $a_{i j} \leq 0$ if $i \neq j$.
3. $a_{i j}=0$ if and only if $a_{j i}=0$.
4. $a_{i j} \in \mathbb{Z}$ if $a_{i i}=2$.
5. $a_{i j} \in 2 \mathbb{Z}$ if $a_{i i}=2$ and $i \in \Psi$.

We are interested in symmetrizable BKM supermatrix.
6. A is symmetrizable, i.e., $D A$ is symmetric for some diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with positive entries.

Notations

- $\left.\right|^{\text {re }}=\left\{i \in I: a_{i i}=2\right\}, I^{i m}=I \backslash l^{r e}$
- $\Psi^{r e}=\Psi \cap I^{r e}$
- $\Psi_{0}=\left\{i \in \Psi: a_{i i}=0\right\}$

Definition

The BKM Lie superalgebra associated with (A, Ψ) is the Lie superalgebra $\mathfrak{L}(A, \Psi)$ generated by $e_{i}, f_{i}, h_{i}, i \in I$ with the following defining relations:

1. $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$ for $i, j \in I$,
2. $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$ for $i, j \in I$,
3. $\operatorname{deg} h_{i}=0, i \in I$,
4. $\operatorname{deg} e_{i}=0=\operatorname{deg} f_{i}$ if $i \notin \Psi ; \operatorname{deg} e_{i}=1=\operatorname{deg} f_{i}$ if $i \in \Psi$

Definition

The BKM Lie superalgebra associated with (A, Ψ) is the Lie superalgebra $\mathfrak{L}(A, \Psi)$ generated by $e_{i}, f_{i}, h_{i}, i \in I$ with the following defining relations:

1. $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$ for $i, j \in I$,
2. $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$ for $i, j \in I$,
3. $\operatorname{deg} h_{i}=0, i \in I$,
4. $\operatorname{deg} e_{i}=0=\operatorname{deg} f_{i}$ if $i \notin \Psi ; \operatorname{deg} e_{i}=1=\operatorname{deg} f_{i}$ if $i \in \Psi$
5. $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}} e_{j}=0=\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}} f_{j}$ if $i \in I^{r e}$ and $i \neq j$,
6. $\left(\text { ad } e_{i}\right)^{1-\frac{a_{i j}}{2}} e_{j}=0=\left(a d f_{i}\right)^{1-\frac{a_{i j}}{2}} f_{j}$ if $i \in \Psi^{r e}$ and $i \neq j$,
7. $\left(\text { ad } e_{i}\right)^{1-\frac{a_{i j}}{2}} e_{j}=0=\left(\operatorname{ad} f_{i}\right)^{1-\frac{a_{i j}}{2}} f_{j}$ if $i \in \Psi_{0}$ and $i=j$,

Definition

The BKM Lie superalgebra associated with (A, Ψ) is the Lie superalgebra $\mathfrak{L}(A, \Psi)$ generated by $e_{i}, f_{i}, h_{i}, i \in I$ with the following defining relations:

1. $\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$ for $i, j \in I$,
2. $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$ for $i, j \in I$,
3. $\operatorname{deg} h_{i}=0, i \in I$,
4. $\operatorname{deg} e_{i}=0=\operatorname{deg} f_{i}$ if $i \notin \Psi ; \operatorname{deg} e_{i}=1=\operatorname{deg} f_{i}$ if $i \in \Psi$
5. $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}} e_{j}=0=\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}} f_{j}$ if $i \in I^{r e}$ and $i \neq j$,
6. $\left(\text { ad } e_{i}\right)^{1-\frac{a_{i j}}{2}} e_{j}=0=\left(a d f_{i}\right)^{1-\frac{a_{i j}}{2}} f_{j}$ if $i \in \Psi^{r e}$ and $i \neq j$,
7. $\left(\operatorname{ad} e_{i}\right)^{1-\frac{a_{i j}}{2}} e_{j}=0=\left(\operatorname{ad} f_{i}\right)^{1-\frac{a_{i j}}{2}} f_{j}$ if $i \in \Psi_{0}$ and $i=j$,
8. $\left[e_{i}, e_{j}\right]=0=\left[f_{i}, f_{j}\right]$ if $a_{i j}=0$.

Idea

- $\mathfrak{L}=$ Free Lie superalgebra generated by $\left\{e_{i}, f_{i}, h_{i}: i \in I\right\}$.

Idea

- $\mathfrak{L}=$ Free Lie superalgebra generated by $\left\{e_{i}, f_{i}, h_{i}: i \in I\right\}$.
- $\widehat{\mathfrak{L}}=\frac{\mathfrak{L}}{\text { Chevalley relations }}, \quad \widehat{\mathfrak{L}}:=\eta^{+} \oplus \mathfrak{h} \oplus \eta^{-}$.

Idea

- $\mathfrak{L}=$ Free Lie superalgebra generated by $\left\{e_{i}, f_{i}, h_{i}: i \in I\right\}$.
- $\widehat{\mathfrak{L}}=\frac{\mathfrak{L}}{\text { Chevalley relations }}, \widehat{\mathfrak{L}}:=\eta^{+} \oplus \mathfrak{h} \oplus \eta^{-}$.
$\cdot \widetilde{\mathfrak{L}}=\frac{\widehat{\mathfrak{L}}}{\left\langle\left[e_{i}, e_{i}\right],\left[\tilde{i}_{i}, f_{j}\right]: a_{j i}=0>\right.}, \widetilde{\mathfrak{L}}=\widetilde{\eta^{+}} \oplus \mathfrak{h} \oplus \widetilde{\eta^{-}}$, where $\widetilde{\eta^{ \pm}}$are free partially commutative Lie superalgebras.

Idea

- $\mathfrak{L}=$ Free Lie superalgebra generated by $\left\{e_{i}, f_{i}, h_{i}: i \in I\right\}$.
- $\widehat{\mathfrak{L}}=\frac{\mathfrak{L}}{\text { Chevalley relations }}, \widehat{\mathfrak{L}}:=\eta^{+} \oplus \mathfrak{h} \oplus \eta^{-}$.
$\cdot \widetilde{\mathfrak{L}}=\frac{\widehat{\mathfrak{L}}}{\left\langle\left[e_{i}, e_{i}\right],\left[\tilde{F}_{i}, f_{j}\right]: a_{j i}=0>\right.}, \widetilde{\mathfrak{L}}=\widetilde{\eta^{+}} \oplus \mathfrak{h} \oplus \widetilde{\eta^{-}}$, where $\widetilde{\eta^{ \pm}}$are free partially commutative Lie superalgebras.
- $\mathfrak{L}(A, \Psi)=\frac{\tilde{\mathfrak{L}}}{\text { Serre relations }}$

Idea

- $\mathfrak{L}=$ Free Lie superalgebra generated by $\left\{e_{i}, f_{i}, h_{i}: i \in I\right\}$.
- $\widehat{\mathfrak{L}}=\frac{\mathfrak{L}}{\text { Chevalley relations }}, \widehat{\mathfrak{L}}:=\eta^{+} \oplus \mathfrak{h} \oplus \eta^{-}$.
- $\widetilde{\mathfrak{L}}=\frac{\widehat{\mathfrak{L}}}{\left\langle\left[e_{i}, e_{i}\right],\left[\tilde{i}_{i}, f_{j}\right]: a_{i j}=0>\right.}, \widetilde{\mathfrak{L}}=\widetilde{\eta^{+}} \oplus \mathfrak{h} \oplus \widetilde{\eta^{-}}$, where $\widetilde{\eta^{ \pm}}$are free partially commutative Lie superalgebras.
- $\mathfrak{L}(A, \Psi)=\frac{\tilde{\mathfrak{L}}}{\text { Serre relations }}$
- Our interest is in root spaces independent of Serre relations. We call such root spaces as free root spaces.

Notations

- $\Delta:=$ Set of roots, $\Pi:=\left\{\alpha_{i}: i \in I\right\}=$ Set of simple roots.
- $Q:=\bigoplus_{i \in I} \mathbb{Z} \alpha_{i}, \quad Q_{+}:=\bigoplus_{i \in I} \mathbb{Z}_{+} \alpha_{i}$.
- $I=I_{0} \sqcup I_{1}$ where $I_{1}=\Psi, I_{0}=\ \backslash \Psi$

Notations

- $\Delta:=$ Set of roots, $\Pi:=\left\{\alpha_{i}: i \in I\right\}=$ Set of simple roots.
- $Q:=\bigoplus_{i \in I} \mathbb{Z} \alpha_{i}, \quad Q_{+}:=\bigoplus_{i \in I} \mathbb{Z}_{+} \alpha_{i}$.
$\cdot I=I_{0} \sqcup I_{1}$ where $I_{1}=\Psi, I_{0}=\ \backslash \Psi$

Definition

Let $\alpha=\sum_{i \in I} k_{i} \alpha_{i} \in Q_{+}$,

- weight of α is defined as $\mathbf{k}=\left(k_{i}: i \in I\right)$.
- α is said to be free if $k_{i} \leq 1$ for $i \in I^{r e} \sqcup \Psi_{0}$.

Denominator identity of BKM Lie superalgebras

Denominator identity

Let Ω be the set of all $\gamma \in Q_{+}$such that

1. $\gamma=\sum_{j=1}^{r} \alpha_{i_{j}}+\sum_{k=1}^{s} l_{i_{k}} \beta_{i_{k}}$ where the $\alpha_{i_{j}}$ (resp. $\beta_{i_{k}}$) are distinct even (resp. odd) imaginary simple roots,
2. $\left(\alpha_{i_{j}}, \alpha_{i_{k}}\right)=\left(\beta_{i_{j}}, \beta_{i_{k}}\right)=0$ for $j \neq k ;\left(\alpha_{i_{j}}, \beta_{i_{k}}\right)=0$ for all j, k;
3. if $l_{i_{k}} \geq 2$, then $\left(\beta_{i_{k}}, \beta_{i_{k}}\right)=0$.

The following denominator identity of BKM superalgebras is proved in ${ }^{1}$ [Wak01, Section 2.5]:

$$
U:=\sum_{w \in W} \sum_{\gamma \in \Omega} \epsilon(w) \epsilon(\gamma) e^{w(\rho-\gamma)-\rho}=\frac{\prod_{\alpha \in \Delta_{+}^{0}}\left(1-e^{-\alpha}\right)^{\operatorname{mult}(\alpha)}}{\prod_{\alpha \in \Delta_{+}^{1}}\left(1+e^{-\alpha}\right)^{\operatorname{mult}(\alpha)}}
$$

where mult $(\alpha)=\operatorname{dim} \mathfrak{g}_{\alpha}, \epsilon(w)=(-1)^{l(w)}$ and $\epsilon(\gamma)=(-1)^{\mathrm{ht} \gamma}$.

[^0] Providence, RI, Translations of Mathematical Monographs, 195, 2001.

Quasi Dynkin diagram

Quasi Dynkin diagram

Let (G, Ψ) be a graph with

- $V=\left\{\alpha_{i}: i \in I\right\}$ be a \mathbb{Z}_{2}-graded vertex set and
- $E(G)=\left\{\left(\alpha_{i}, \alpha_{j}\right): a_{i j} \neq 0, i, j \in I\right\}$ be an edge set,
then the resulting super-graph is called Quasi Dynkin diagram of \mathfrak{L} where $\Psi \subset$ I parametrizes the odd vertices of G.

Example

Go to slide

Let $I=\{1,2,3,4,5,6\}, \Psi=\{3,5\}$. Consider the BKM supermatrix

- $A=\left[\begin{array}{cccccc}2 & -1 & 0 & 0 & 0 & 0 \\ -1 & -3 & -4 & -1 & 0 & 0 \\ 0 & -4 & -4 & 0 & 0 & -1 \\ 0 & -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & -2 & 0 \\ 0 & 0 & -1 & 0 & 0 & -3\end{array}\right]$.
- The quasi-Dynkin diagram G of \mathfrak{L} is as follows:

- Let $\alpha=3 \alpha_{3}+3 \alpha_{6} \in \Delta_{+}^{1}$, i.e. $\mathbf{k}=(0,0,3,0,0,3)$ then $\pi_{\mathbf{k}}^{G}(q)=\binom{q}{3}\binom{q-3}{3}$.

Bond Lattice

Fix a tuple $\mathbf{k}=\left(k_{i}\right)_{i \in I}$ such that $k_{i} \leq 1$ for $i \in I^{r e} \cup \Psi_{0}$ and $|\operatorname{supp}(\mathbf{k})|<\infty$. Set $\eta(\mathbf{k})=\sum k_{i} \alpha_{i}$.

Definition

Let $L_{G}(\mathbf{k})$ be the weighted bond lattice of G, which is the set of $\mathbf{J}=\left\{J_{1}, \ldots, J_{\ell}\right\}$ satisfying the following properties:

1. \mathbf{J} is a multiset, i.e., $J_{i}=J_{j}$ for some $i \neq j$.
2. each J_{i} is a multiset, and the subgraph spanned by the underlying set of J_{i} is a connected subgraph of G for each $1 \leq i \leq \ell$.
3. For all $i \in I, \alpha_{i}$ occurs exactly k_{i} times in the total disjoint union $J_{1} \sqcup \ldots \sqcup J_{\ell}$.

Isomorphism of bond lattices

For $\mathbf{J} \in L_{G}(\mathbf{k})$,

- $D\left(J_{i}, \mathbf{J}\right)=$ multiplicity of J_{i} in \mathbf{J},
- $\beta\left(J_{i}\right)=\sum_{\alpha \in J_{i}} \alpha$ and $\operatorname{dim} \mathfrak{L}_{\beta\left(J_{i}\right)}:=\operatorname{mult}\left(\beta\left(J_{i}\right)\right)$,
- $\mathbf{J}_{0}=\left\{J_{i} \in \mathbf{J}: \beta\left(J_{i}\right) \in \Delta_{+}^{0}\right\}$ and $\mathbf{J}_{1}=\mathbf{J} \backslash \mathbf{J}_{0}$.

Lemma (2[AKV18])
Let \mathcal{R} be the collection of multisets $\gamma=\left\{\beta_{1}, \ldots, \beta_{\mathrm{r}}\right\}$ such that each $\beta_{i} \in \Delta_{+}$and $\beta_{1}+\ldots+\beta_{r}=\eta(\mathbf{k})$. The map $\phi: L_{G}(\mathbf{k}) \longrightarrow \mathcal{R}$ defined by

$$
\left\{J_{1}, \ldots, J_{\ell}\right\} \mapsto\left\{\beta\left(J_{1}\right), \ldots, \beta\left(J_{\ell}\right)\right\}
$$

is a bijection.
${ }^{2}$ G. Arunkumar, and Deniz Kus and R. Venkatesh; Root multiplicities for Borcherds algebras and graph coloring. J. Algebra, 499: 538-569, 2018.

Relationship between Chromatic polynomials and root multiplicities

Relation between root multiplicities and Chromatic polynomials

Theorem (${ }^{3}$ [VV15])
Let G be the simple graph of Kac Moody Lie algebra \mathfrak{g}. Assume $\mathbf{k}=\left(k_{i}\right) ; k_{i}=1$ for finitely many i and 0 otherwise; $\ell=|\operatorname{supp}(\mathbf{k})|$. Then

$$
\chi(G, q)=\sum_{\mathbf{J} \in L_{G}}(-1)^{\ell-|\mathbf{J}|} \operatorname{mult}(\beta(\mathbf{J})) q^{|\mathbf{J}|}
$$

where L_{G} is the bond lattice of weight \mathbf{k} of the graph G.

[^1]
Relation between root multiplicities and generalized k Chromatic polynomials

Theorem (4[AKV18])
Let G be the quasi Dynkin diagram of a Borcherds Lie algebra \mathfrak{g}. Assume $\mathbf{k}=\left(k_{i}: i \in I\right) \in \mathbb{Z}_{+}^{\prime}$ is such that $k_{i} \leq 1$ for $i \in I^{r e}$. Then

$$
\pi_{\mathbf{k}}^{G}(q)=(-1)^{\mathrm{ht}(\eta(\mathbf{k}))} \sum_{\mathbf{J} \in L_{G}(\mathbf{k})}(-1)^{|\mathbf{J}|} \prod_{J \in \mathbf{J}}\binom{q \operatorname{mult}(\beta(J))}{D(J, \mathbf{J})}
$$

where $L_{G}(\mathbf{k})$ is the bond lattice of weight \mathbf{k} of the graph G.

[^2]
Relation between root multiplicities and generalized k Chromatic polynomials

The following result is one of the main results from ${ }^{5}$ [RA21]
Theorem (_, G.Arunkumar)
Let G be the quasi Dynkin diagram of a BKM superalgebra \mathfrak{L}. Assume $\mathbf{k}=\left(k_{i}: i \in I\right) \in \mathbb{Z}_{+}^{\prime}$ is such that $k_{i} \leq 1$ for $i \in I^{r e} \cup \Psi_{0}$. Then
$\pi_{\mathbf{k}}^{G}(q)=(-1)^{\mathrm{ht}(\eta(\mathbf{k}))} \sum_{\mathbf{J} \in \mathrm{L}_{\sigma}(\mathbf{k})}(-1)^{|\mathbf{J}|+\left|\mathbf{J}_{1}\right|} \prod_{J \in \mathbf{J}_{0}}\binom{q \operatorname{mult}(\beta(J))}{D(J, \mathbf{J})} \prod_{J \in \mathbf{J}_{1}}\binom{-q \operatorname{mult}(\beta(J))}{D(J, \mathbf{J})}$
where $L_{G}(\mathbf{k})$ is the bond lattice of weight \mathbf{k} of the graph G.

[^3]
Root multiplicities

Corollary

Let $\eta(\mathbf{k})=\sum_{i \in I} k_{i} \alpha_{i} \in \Delta^{+}$such that $k_{i} \leq 1$ for all $i \in I^{r e} \sqcup \Psi_{0}$. Then

$$
\operatorname{mult}(\eta(\mathbf{k}))= \begin{cases}\sum_{\ell \mid \mathbf{k}} \frac{\mu(\ell)}{\ell}\left|\pi_{\mathbf{k} / \ell}^{G}(q)[q]\right|, & \text { if } \eta(\mathbf{k}) \in \Delta_{+}^{0} \\ \sum_{\ell \mid \mathbf{k}} \frac{(-1)^{\ell+1} \mu(\ell)}{\ell}\left|\pi_{\mathbf{k} / \ell}^{G}(q)[q]\right|, & \text { if } \eta(\mathbf{k}) \in \Delta_{+}^{1}\end{cases}
$$

where $\left|\pi_{\mathbf{k}}^{G}(q)[q]\right|$ denotes the absolute value of the coefficient of q in $\pi_{\mathbf{k}}^{G}(q)$ and μ is the Möbius function. If k_{i} 's are relatively prime (in particular if for some $i \in I, k_{i}=1$), we have,

$$
\operatorname{mult}(\eta(\mathbf{k}))=\left|\pi_{\mathbf{k}}^{G}(q)[q]\right| \quad \text { for any } \eta(\mathbf{k}) \in \Delta_{+} .
$$

Example of main result

Example

Consider the BKM superalgebra \mathfrak{L} and the root space $\eta(\mathbf{k})=3 \alpha_{3}+3 \alpha_{6} \in \Delta_{+}^{1}$ from Example 14. The \mathbf{k}-chromatic polynomial of the quasi Dynkin diagram G of \mathfrak{L} is equal to

$$
\begin{aligned}
& \pi_{\mathbf{k}}^{G}(q)=\binom{q}{3}\binom{q-3}{3}=\frac{1}{3!3!} q(q-1)(q-2)(q-3)(q-4)(q-5) . \\
& \operatorname{mult}(\eta(\mathbf{k}))=\sum_{\ell \mid \mathbf{k}} \frac{(-1)^{\ell+1} \mu(\ell)}{\ell}\left|\pi_{\mathbf{k} / \ell}^{G}(q)[q]\right| \\
&=\left|\pi_{\mathbf{k}}^{G}(q)[q]\right|+\frac{\mu(3)}{3}\left|\pi_{\mathbf{k}^{\prime}}^{G}(q)[q]\right| \text { where } \mathbf{k}^{\prime}=(0,0,1,0,0,1) \\
&=\frac{10}{3}-\frac{1}{3}=3
\end{aligned}
$$

Refererences

围 G．Arunkumar，Deniz Kus，and R．Venkatesh．
Root multiplicities for Borcherds algebras and graph coloring．
J．Algebra，499：538－569， 2018.
雷 Shushma Rani and G．Arunkumar．
A study on free roots of Borcherds－Kac－Moody Lie Superalgebras．
arXiv e－prints，page arXiv：2103．12332，March 2021.
围
R．Venkatesh and Sankaran Viswanath．
Chromatic polynomials of graphs from Kac－Moody algebras．
J．Algebraic Combin．，41（4）：1133－1142， 2015.
國 Minoru Wakimoto．
Infinite－dimensional Lie algebras，volume 195 of Translations of Mathematical Monographs．
American Mathematical Society，Providence，RI， 2001.
Translated from the 1999 Japanese original by Kenji Iohara，Iwanami
Series in Modern Mathematics．

Thank You!

[^0]: ${ }^{1}$ Minoru Wakimoto; Infinite-dimensional Lie algebras. American Mathematical Society,

[^1]: ${ }^{3}$ R. Venkatesh and S Viswanath; Chromatic polynomials of graphs from Kac Moody Lie algebras. J. Algebraic Combin., 41(4): 1133-1142, 2015.

[^2]: ${ }^{4}$ G. Arunkumar, and Deniz Kus and R. Venkatesh; Root multiplicities for Borcherds algebras and graph coloring. J. Algebra, 499: 538-569, 2018.

[^3]: ${ }^{5}$ Shushma Rani and G. Arunkumar; A study on free roots of Borcherds-Kac-Moody Lie Superalgebras. arXiv e-prints, arXiv:2103.12332, March 2021.

