Fourier analysis and number theory

Emanuel Carneiro

ICTP - International Centre for Theoretical Physics Trieste, Italy

Modern Trends in Harmonic Analysis, July 2023

Prelude

- Harmonic analysis is concerned with understanding oscillation.

Prelude

- Harmonic analysis is concerned with understanding oscillation.
- Relations to many other fields such as: approximation theory, number theory, complex analysis, probability, PDEs, ...

Prelude

- Harmonic analysis is concerned with understanding oscillation.
- Relations to many other fields such as: approximation theory, number theory, complex analysis, probability, PDEs, ...
- I am particularly interested in studying extremal phenomena.

Conference Board of the Mathematical Sciences

Regional Conference Series in Mathematies
Number 84

> Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis

Hugh L. Montgomery

Amertican Mathematical Society
with sappett from the
Nastionas Sclence Foundation

Comarightell Material

Basic plan

- This is a conversation in analysis and number theory.

Basic plan

- This is a conversation in analysis and number theory.
- We shall discuss three problems in number theory
- Prime gaps;
- Least quadratic non-residue;
- Least prime in an arithmetic progression;
and some related Fourier optimization problems.

Basic plan

- This is a conversation in analysis and number theory.
- We shall discuss three problems in number theory
- Prime gaps;
- Least quadratic non-residue;
- Least prime in an arithmetic progression;
and some related Fourier optimization problems.
- Try to keep the focus on the big picture (on how we arrive at the Fourier optimization wonderland).

Fourier optimization framework

- Step I. Design "a" Fourier optimization problem connected to the number theory problem (proof of concept).

Fourier optimization framework

- Step I. Design "a" Fourier optimization problem connected to the number theory problem (proof of concept).
- Step II. Solve the Fourier optimization problem (or at least try to find a good approximation for the solution).

Fourier optimization framework

- Step I. Design "a" Fourier optimization problem connected to the number theory problem (proof of concept).
- Step II. Solve the Fourier optimization problem (or at least try to find a good approximation for the solution).
- Step III. Evolve towards designing what should be "the correct" Fourier optimization problem. Return to Step II.

Part of the history

Examples of applications of Fourier analysis in number theory include:

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.
- Sphere packings.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.
- Sphere packings.
- Sign Fourier uncertainty.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.
- Sphere packings.
- Sign Fourier uncertainty.
- Bounds for the Riemann zeta-function on the critical strip.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.
- Sphere packings.
- Sign Fourier uncertainty.
- Bounds for the Riemann zeta-function on the critical strip.
- Bounds for Montgomery's pair correlation conjecture.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.
- Sphere packings.
- Sign Fourier uncertainty.
- Bounds for the Riemann zeta-function on the critical strip.
- Bounds for Montgomery's pair correlation conjecture.
- Bounds for low-lying zeros and vanishing of L-functions.

Part of the history

Examples of applications of Fourier analysis in number theory include:

- Erdös-Turán discrepancy inequalities.
- Hilbert-type inequalities / large-sieve inequalities.
- Sphere packings.
- Sign Fourier uncertainty.
- Bounds for the Riemann zeta-function on the critical strip.
- Bounds for Montgomery's pair correlation conjecture.
- Bounds for low-lying zeros and vanishing of L-functions.
- and so on...

Part I - Prime gaps

Why is this going to be useful?

Tonight...

Why is this going to be useful?

Tonight...

Our hero

Why is this going to be useful?

Tonight...

Matt

Why is this going to be useful?

Tonight...

Mistery girl

Matt

Why is this going to be useful?

Tonight...

Mistery girl

Matt

Matt: How about I buy you a beer?

Why is this going to be useful?

Tonight...

Matt: How about I buy you a beer?

Why is this going to be useful?

Tonight...

Matt: How about I buy you a beer?
Girl: Sure, but only if you can prove to me that under RH there is always a prime in the interval $\left[x, x+\frac{93}{100} \sqrt{x} \log x\right]$, for x large.

Why is this going to be useful?

Tonight...

Matt: How about I buy you a beer?
Girl: Sure, but only if you can prove to me that under RH there is always a prime in the interval $\left[x, x+\frac{93}{100} \sqrt{x} \log x\right]$, for x large.

Matt: I guess it is my lucky day!

A classical problem

(1) For $f: \mathbb{R} \rightarrow \mathbb{R}$, our normalization for Fourier transform is

$$
\widehat{f}(t)=\int_{\mathbb{R}} e^{-2 \pi i x t} f(x) \mathrm{d} x
$$

A classical problem

(1) For $f: \mathbb{R} \rightarrow \mathbb{R}$, our normalization for Fourier transform is

$$
\widehat{f}(t)=\int_{\mathbb{R}} e^{-2 \pi i x t} f(x) \mathrm{d} x
$$

(2) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative function, with $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?

A classical problem

(1) For $f: \mathbb{R} \rightarrow \mathbb{R}$, our normalization for Fourier transform is

$$
\widehat{f}(t)=\int_{\mathbb{R}} e^{-2 \pi i x t} f(x) \mathrm{d} x
$$

(2) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative function, with $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?
(3) Answer $=1$.

$$
F(x)=(\sin (\pi x) /(\pi x))^{2}
$$

A classical problem

(1) For $f: \mathbb{R} \rightarrow \mathbb{R}$, our normalization for Fourier transform is

$$
\widehat{f}(t)=\int_{\mathbb{R}} e^{-2 \pi i x t} f(x) \mathrm{d} x
$$

(2) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative function, with $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?
(3) Answer $=1$.
$F(x)=(\sin (\pi x) /(\pi x))^{2}$

An 'innocent’ variant

(1) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be such that $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?

An 'innocent’ variant

(1) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be such that $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?
(2) $H(x)=\frac{\cos (2 \pi x)}{1-16 x^{2}}$ yields $\|H\|_{L^{1}(\mathbb{R})}=0.9259 \ldots$

An 'innocent’ variant

(1) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be such that $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?
(2) $H(x)=\frac{\cos (2 \pi x)}{1-16 x^{2}}$ yields $\|H\|_{L^{1}(\mathbb{R})}=0.9259 \ldots$

(0) Best up-to-date (Hörmander and Bernhardsson '93) $0.9243360302 \ldots<C<0.9243360304 \ldots$

An 'innocent’ variant

(1) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be such that $F(0)=1$ and $\operatorname{supp}(\widehat{F}) \subset[-1,1]$. What is the minimal value of $\|F\|_{L^{1}(\mathbb{R})}$?
(2) $H(x)=\frac{\cos (2 \pi x)}{1-16 x^{2}}$ yields $\|H\|_{L^{1}(\mathbb{R})}=0.9259 \ldots$

(0) Best up-to-date (Hörmander and Bernhardsson '93)
$0.9243360302 \ldots<C<0.9243360304 \ldots$
(9) There exists a unique extremizer.

Prime gaps

(1) Bertrand's postulate (1845): is there always a prime in the interval $[x, 2 x]$?

Prime gaps

(1) Bertrand's postulate (1845): is there always a prime in the interval $[x, 2 x]$?
(2) Chebyshev (1852): Yes. There is always a prime in $\left[x, x+\frac{x}{\log x}\right]$ for x large.

Prime gaps

(1) Bertrand's postulate (1845): is there always a prime in the interval $[x, 2 x]$?
(2) Chebyshev (1852): Yes. There is always a prime in $\left[x, x+\frac{x}{\log x}\right]$ for x large.
(3) Hoheisel (1930): There is always a prime in $\left[x, x+x^{\theta}\right]$ for some $0<\theta<1$, and x large.

Prime gaps

(1) Bertrand's postulate (1845): is there always a prime in the interval $[x, 2 x]$?
(2) Chebyshev (1852): Yes. There is always a prime in $\left[x, x+\frac{x}{\log x}\right]$ for x large.
(3) Hoheisel (1930): There is always a prime in $\left[x, x+x^{\theta}\right]$ for some $0<\theta<1$, and x large.
(9) Baker - Harman - Pintz (2001): There is always a prime in [$\left.x, x+x^{0.525}\right]$ for x large.

Prime gaps on RH

Cramér's bounds (1920)

$$
p_{n+1}-p_{n}=O\left(\sqrt{p_{n}} \log p_{n}\right)
$$

i.e. every interval $[x, x+c \sqrt{x} \log x]$, for some $c>0$, contains a prime when x is large.

Prime gaps on RH

Cramér's bounds (1920)

(1)

$$
p_{n+1}-p_{n}=O\left(\sqrt{p_{n}} \log p_{n}\right)
$$

i.e. every interval $[x, x+c \sqrt{x} \log x]$, for some $c>0$, contains a prime when x is large.
(2) Historic progress:

- Goldston '83: $c=4$.
- Ramaré and Saouter '03: $c=8 / 5$
- Dudek '15: $c=1+o(1)$.

Prime gaps on RH

Cramér's bounds (1920)

(1)

$$
p_{n+1}-p_{n}=O\left(\sqrt{p_{n}} \log p_{n}\right)
$$

i.e. every interval $[x, x+c \sqrt{x} \log x]$, for some $c>0$, contains a prime when x is large.
(2) Historic progress:

- Goldston '83: c=4.
- Ramaré and Saouter '03: $c=8 / 5$
- Dudek'15: $c=1+o(1)$.
(3) Non-asymptotic version: Dudek, Grenié, Molteni '16: for $x \geq 4$,

$$
[x, x+c \sqrt{x} \log x]
$$

contains a prime. Here $c=1+\frac{4}{\log x}$.

- Ramaré and Saouter '03 ($c=8 / 5$)

Our team

- M. Milinovich (Mississippi) and K. Soundararajan (Stanford)

Improved estimates

joint with M. Milinovich and K. Soundararajan '19
Theorem (Asymptotic version)
Assume RH. For x large, every interval

$$
\left[x, x+\frac{21}{25} \sqrt{x} \log x\right]
$$

contains a prime.

Improved estimates

joint with M. Milinovich and K. Soundararajan '19
Theorem (Asymptotic version)
Assume RH. For x large, every interval

$$
\left[x, x+\frac{21}{25} \sqrt{x} \log x\right]
$$

contains a prime.

Theorem (Non-asymptotic version)
Assume RH. For $x \geq 4$, every interval

$$
\left[x, x+\frac{22}{25} \sqrt{x} \log x\right]
$$

contains a prime.

Strategy

(1) Explicit formula connecting zeros of $\zeta(s)$ and primes.
(2) Fourier optimization problems.
(3) Brun-Titchmarsh inequality.

Original manuscript - I
 gor... gr:...
(bol.... ho cabe...iue, 1859, No.... $*$)

 erve.... Esl..t.... haloyelfob....r we.endent

lingere $Z \rightarrow$ goendhat, even hitex.eng iall.w.....ergn \rightarrow...n. RA .owkict.

 $\pi \frac{1}{1-\frac{1}{\mu^{*}}}=\Sigma \frac{1}{n n^{*}}$,

 biven e, w.ad d...td.... L.h.......ession, elo. y

Riemann's 1859 manuscript
(Source: American Institute of Mathematics).

Original manuscript - II

(Source: American Institute of Mathematics).
"Man findet nun in der That etwa so viel reele Wurzeln innerhalb dieser Grenzen, und es is sehr wahrscheinlich, dass alle Wurzeln reele sind."
"One now finds indeed approximately this number of real roots within these limits, and it is very probable that all roots are real."

Original manuscript - III

> Bericht
zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuls. Akademie der Wissenschaften

> zu Berlin
im Monat November 1859.

```
Vorsitzender Selretar: Hr. Encke.
```

3. Nov, Gesammtsitzung der Akademie.

Hr. Steiner las đber einige allgemeine Bestimmungsarten der Curven und Flichea aweiter Ordnung und daraus rolgenden Sizzen.

Hierauf trug Hr. Kummer folgende von Hrn. Riemann, Correspondenten der Alademie, mittelst eines an den Sekretar Hra. Encke gerichteten Schreibens vom 19. October d. J. eingesande Mitheilung $n^{\text {über }}$ die Anzahl der Primzablen unter einer gegebencen Gröfse" vor:

Meinen Dank für die Auszeichnung, weldhe mir die Alademie durch die Aufnalime unter ilire Correspondenten hat zu Theit werden tassen, glanbe ich am besten dadurch zo erkennen an geben, dafs ich von der biedurch erhaltenen Erlaubnifs baldigat Gebraucb macbe durch Mittheilung einer Untersuchang tber die HJufigkeit der Primzahlen; ein Gegenstand, welcher derch das Interesse, welches Gauss und Diricblet demselben Eingere Zeit geschenkt haben, einer solchen Mittheilung vielleicht nicht $g^{\text {ann }}$ unwerth erscheist.

Bei dieser Untersuchung diente mir als Ausgangrpankt die von Euler gemachte Bemerkung, dafs das Prodect

$$
\mathrm{n} \frac{1}{1-\frac{1}{\rho^{\prime}}}=\mathbf{\Sigma} \frac{1}{n^{n}}
$$

[1859.]

For $\operatorname{Re}(s)>1:$

$$
\begin{aligned}
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}} & =\left(1+\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\ldots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{3^{2 s}}+\ldots\right) \ldots \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{aligned}
$$

For $\operatorname{Re}(s)>1:$

$$
\begin{aligned}
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}} & =\left(1+\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\ldots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{3^{2 s}}+\ldots\right) \ldots \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{aligned}
$$

Then $\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}$, with $\Lambda(n)=\log p$, if $n=p^{k}, p$ prime.

For $\operatorname{Re}(s)>1:$

$$
\begin{aligned}
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}} & =\left(1+\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\ldots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{3^{2 s}}+\ldots\right) \ldots \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{aligned}
$$

Then $\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}$, with $\Lambda(n)=\log p$, if $n=p^{k}, p$ prime.
Let $\xi(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$. Then $\xi(s)=\xi(1-s)$.

For $\operatorname{Re}(s)>1$:

$$
\begin{aligned}
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}} & =\left(1+\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\ldots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{3^{2 s}}+\ldots\right) \ldots \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{aligned}
$$

Then $\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}$, with $\Lambda(n)=\log p$, if $n=p^{k}, p$ prime.
Let $\xi(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$. Then $\xi(s)=\xi(1-s)$.

Explicit formulas

- $\xi(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$. Then $\xi(s)=\xi(1-s)$.
- Now let h be a good function and note that

$$
\sum_{\rho ; \zeta(\rho)=0} h\left(\frac{\rho-\frac{1}{2}}{i}\right)=\frac{1}{2 \pi i} \int_{\mathcal{C}} h\left(\frac{s-\frac{1}{2}}{i}\right) \frac{\xi^{\prime}(s)}{\xi(s)} d s
$$

Explicit formula

Lemma (Guinand-Weil Explicit Formula)

Let $h(s)$ be analytic in the strip $|\operatorname{Im}(s)| \leq 1 / 2+\varepsilon$ for some $\varepsilon>0$, and such that $|h(s)| \ll(1+|s|)^{-(1+\delta)}$ when $|\operatorname{Re}(s)| \rightarrow \infty$.

$$
\begin{aligned}
\sum_{\rho} h(\gamma)=h\left(\frac{1}{2 i}\right)+ & h\left(-\frac{1}{2 i}\right)-\frac{1}{2 \pi} \widehat{h}(0) \log \pi \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u) \operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right) \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{h}\left(\frac{\log n}{2 \pi}\right)+\widehat{h}\left(\frac{-\log n}{2 \pi}\right)\right)
\end{aligned}
$$

where $\rho=\frac{1}{2}+i \gamma$ are the non-trivial zeros of $\zeta(s)$ and $\Lambda(n)$ is defined to be $\log p$ if $n=p^{k}, p$ a prime and $k \geq 1$, and zero otherwise.

Explicit formula

Lemma (Guinand-Weil Explicit Formula)

Let $h(s)$ be analytic in the strip $|\operatorname{Im}(s)| \leq 1 / 2+\varepsilon$ for some $\varepsilon>0$, and such that $|h(s)| \ll(1+|s|)^{-(1+\delta)}$ when $|\operatorname{Re}(s)| \rightarrow \infty$.

$$
\begin{aligned}
\sum_{\rho} h(\gamma)=h\left(\frac{1}{2 i}\right)+ & h\left(-\frac{1}{2 i}\right)-\frac{1}{2 \pi} \widehat{h}(0) \log \pi \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u) \operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right) \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{h}\left(\frac{\log n}{2 \pi}\right)+\widehat{h}\left(\frac{-\log n}{2 \pi}\right)\right),
\end{aligned}
$$

where $\rho=\frac{1}{2}+i \gamma$ are the non-trivial zeros of $\zeta(s)$ and $\wedge(n)$ is defined to be $\log p$ if $n=p^{k}, p$ a prime and $k \geq 1$, and zero otherwise.

Idea: to use this with $\widehat{h}\left(\pm \frac{\log .}{2 \pi}\right)$ localized in an interval without primes.

Setup

For this let f be a smooth function such that $\operatorname{supp}(\widehat{f}) \subset[-1,1]$, let $0<\Delta \leq 1$, let $1<a$, and set

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Setup

For this let f be a smooth function such that $\operatorname{supp}(\widehat{f}) \subset[-1,1]$, let $0<\Delta \leq 1$, let $1<a$, and set

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Assume that for a certain $c>0$ there is an infinite sequence of $x \rightarrow \infty$ such that $[x, x+c \sqrt{x} \log x]$ contains no primes. Choose

$$
[x, x+c \sqrt{x} \log x]=\left[a e^{-2 \pi \Delta}, a e^{2 \pi \Delta}\right]
$$

Setup

For this let f be a smooth function such that $\operatorname{supp}(\widehat{f}) \subset[-1,1]$, let $0<\Delta \leq 1$, let $1<a$, and set

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Assume that for a certain $c>0$ there is an infinite sequence of $x \rightarrow \infty$ such that $[x, x+c \sqrt{x} \log x]$ contains no primes. Choose

$$
[x, x+c \sqrt{x} \log x]=\left[a e^{-2 \pi \Delta}, a e^{2 \pi \Delta}\right]
$$

Then

$$
4 \pi \Delta=\log \left(1+c \frac{\log x}{\sqrt{x}}\right)=c \frac{\log x}{\sqrt{x}}+O\left(\frac{\log ^{2} x}{x}\right)
$$

and

$$
a=x\left(1+c \frac{\log x}{\sqrt{x}}\right)^{1 / 2}=x+O(\sqrt{x} \log x)
$$

Setup

For this let f be a smooth function such that $\operatorname{supp}(\widehat{f}) \subset[-1,1]$, let $0<\Delta \leq 1$, let $1<a$, and set

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Assume that for a certain $c>0$ there is an infinite sequence of $x \rightarrow \infty$ such that $[x, x+c \sqrt{x} \log x]$ contains no primes. Choose

$$
[x, x+c \sqrt{x} \log x]=\left[a e^{-2 \pi \Delta}, a e^{2 \pi \Delta}\right]
$$

Then

$$
4 \pi \Delta=\log \left(1+c \frac{\log x}{\sqrt{x}}\right)=c \frac{\log x}{\sqrt{x}}+O\left(\frac{\log ^{2} x}{x}\right)
$$

and

$$
a=x\left(1+c \frac{\log x}{\sqrt{x}}\right)^{1 / 2}=x+O(\sqrt{x} \log x)
$$

Idea: Perform an asymptotic analysis as $x \rightarrow \infty$.

Setup II

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Then

$$
\begin{aligned}
\sum_{\rho} h(\gamma)=h\left(\frac{1}{2 i}\right)+ & h\left(-\frac{1}{2 i}\right)-\frac{1}{2 \pi} \widehat{h}(0) \log \pi \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u) \operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right) \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\sqrt{n}}\left(\hat{h}\left(\frac{\log n}{2 \pi}\right)+\widehat{h}\left(\frac{-\log n}{2 \pi}\right)\right)
\end{aligned}
$$

Setup II

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Then

$$
\begin{aligned}
\sum_{\rho} g(\gamma) a^{i \gamma}=g\left(\frac{1}{2 i}\right) a^{1 / 2} & +g\left(-\frac{1}{2 i}\right) a^{-1 / 2}-\frac{1}{2 \pi} \widehat{g}\left(-\frac{\log a}{2 \pi}\right) \log \pi \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(u) a^{i u} \operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right) \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{g}\left(\frac{\log (n / a)}{2 \pi}\right)+\widehat{g}\left(\frac{-\log n a}{2 \pi}\right)\right)
\end{aligned}
$$

Setup II

$$
g(z)=\Delta f(\Delta z) \quad ; \quad h(z)=g(z) a^{i z}
$$

Then

$$
\begin{aligned}
\sum_{\rho} g(\gamma) a^{i \gamma}=g\left(\frac{1}{2 i}\right) a^{1 / 2} & +g\left(-\frac{1}{2 i}\right) a^{-1 / 2}-\frac{1}{2 \pi} \widehat{g}\left(-\frac{\log a}{2 \pi}\right) \log \pi \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(u) a^{i u} \operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right) \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{g}\left(\frac{\log (n / a)}{2 \pi}\right)+\widehat{g}\left(\frac{-\log n a}{2 \pi}\right)\right)
\end{aligned}
$$

Main competition

Matters are reduced to

$$
\left|g\left(\frac{1}{2 i}\right) a^{1 / 2}+g\left(-\frac{1}{2 i}\right) a^{-1 / 2}\right| \leq \sum_{\gamma}|g(\gamma)|+O(1)
$$

Main competition

Matters are reduced to

$$
\left|g\left(\frac{1}{2 i}\right) a^{1 / 2}+g\left(-\frac{1}{2 i}\right) a^{-1 / 2}\right| \leq \sum_{\gamma}|g(\gamma)|+O(1)
$$

Observe that

$$
\begin{aligned}
g\left(\frac{1}{2 i}\right) & =\Delta f\left(\frac{\Delta}{2 i}\right)=\Delta \int_{-1}^{1} e^{\pi t \Delta} \widehat{f}(t) \mathrm{d} t \\
& =\Delta \int_{-1}^{1} \widehat{f}(t) \mathrm{d} t+\Delta \int_{-1}^{1}\left(e^{\pi t \Delta}-1\right) \widehat{f}(t) \mathrm{d} t \\
& =\Delta f(0)+O\left(\Delta^{2}\right)
\end{aligned}
$$

Main competition

Matters are reduced to

$$
\left|g\left(\frac{1}{2 i}\right) a^{1 / 2}+g\left(-\frac{1}{2 i}\right) a^{-1 / 2}\right| \leq \sum_{\gamma}|g(\gamma)|+O(1) .
$$

Observe that

$$
\begin{aligned}
g\left(\frac{1}{2 i}\right) & =\Delta f\left(\frac{\Delta}{2 i}\right)=\Delta \int_{-1}^{1} e^{\pi t \Delta} \widehat{f}(t) \mathrm{d} t \\
& =\Delta \int_{-1}^{1} \widehat{f}(t) \mathrm{d} t+\Delta \int_{-1}^{1}\left(e^{\pi t \Delta}-1\right) \widehat{f}(t) \mathrm{d} t \\
& =\Delta f(0)+O\left(\Delta^{2}\right) .
\end{aligned}
$$

We may similarly estimate $g\left(-\frac{1}{2 i}\right)$ and, hence, the (LHS) above is

$$
g\left(\frac{1}{2 i}\right) a^{1 / 2}+g\left(-\frac{1}{2 i}\right) a^{-1 / 2}=\Delta f(0)\left(a^{1 / 2}+a^{-1 / 2}\right)+O\left(\Delta^{2} a^{1 / 2}\right) .
$$

Sum over zeros

Let $N(x)$ denote the number of zeros with $0<\gamma \leq x$. Using the fact that $N(x)=\frac{x}{2 \pi} \log \frac{x}{2 \pi}-\frac{x}{2 \pi}+O(\log x)$, we evaluate the sum $\sum_{\gamma}|g(\gamma)|$ using summation by parts to get

Sum over zeros

Let $N(x)$ denote the number of zeros with $0<\gamma \leq x$. Using the fact that $N(x)=\frac{x}{2 \pi} \log \frac{x}{2 \pi}-\frac{x}{2 \pi}+O(\log x)$, we evaluate the sum $\sum_{\gamma}|g(\gamma)|$ using summation by parts to get

$$
\sum_{\gamma}|g(\gamma)|=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|g(x)| \log ^{+} \frac{|x|}{2 \pi} \mathrm{~d} x+O\left(\|g\|_{\infty}+\left\|g^{\prime}(x) \log ^{+}|x|\right\|_{1}\right)
$$

where $\log ^{+} x=\max \{\log x, 0\}$ for $x>0$.

Sum over zeros

Let $N(x)$ denote the number of zeros with $0<\gamma \leq x$. Using the fact that $N(x)=\frac{x}{2 \pi} \log \frac{x}{2 \pi}-\frac{x}{2 \pi}+O(\log x)$, we evaluate the sum $\sum_{\gamma}|g(\gamma)|$ using summation by parts to get

$$
\sum_{\gamma}|g(\gamma)|=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|g(x)| \log ^{+} \frac{|x|}{2 \pi} \mathrm{~d} x+O\left(\|g\|_{\infty}+\left\|g^{\prime}(x) \log ^{+}|x|\right\|_{1}\right)
$$

where $\log ^{+} x=\max \{\log x, 0\}$ for $x>0$.
Recalling that $g(x)=\Delta f(\Delta x)$,

$$
\begin{aligned}
\sum_{\gamma}|g(\gamma)| & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(y)| \log ^{+}|y / 2 \pi \Delta| \mathrm{d} y+O(1) \\
& =\frac{\log (1 / 2 \pi \Delta)}{2 \pi}\|f\|_{1}+O(1)
\end{aligned}
$$

Conclusion

We get

$$
\Delta f(0) a^{1 / 2}+O\left(\Delta^{2} a^{1 / 2}\right) \leq \frac{\log (1 / 2 \pi \Delta)}{2 \pi}\|f\|_{1}+O(1)
$$

Conclusion

We get

$$
\Delta f(0) a^{1 / 2}+O\left(\Delta^{2} a^{1 / 2}\right) \leq \frac{\log (1 / 2 \pi \Delta)}{2 \pi}\|f\|_{1}+O(1)
$$

Since $4 \pi \Delta=c \frac{\log x}{\sqrt{x}}+O\left(\frac{\log ^{2} x}{x}\right)$ and $a=x+O(\sqrt{x} \log x)$,

Conclusion

We get

$$
\Delta f(0) a^{1 / 2}+O\left(\Delta^{2} a^{1 / 2}\right) \leq \frac{\log (1 / 2 \pi \Delta)}{2 \pi}\|f\|_{1}+O(1)
$$

Since $4 \pi \Delta=c \frac{\log x}{\sqrt{x}}+O\left(\frac{\log ^{2} x}{x}\right)$ and $a=x+O(\sqrt{x} \log x)$,

$$
\frac{c f(0)}{4 \pi} \log x \leq \frac{\|f\|_{1}}{4 \pi} \log x+O(1)
$$

along this sequence of $x \rightarrow \infty$. This is only possible if

Conclusion

We get

$$
\Delta f(0) a^{1 / 2}+O\left(\Delta^{2} a^{1 / 2}\right) \leq \frac{\log (1 / 2 \pi \Delta)}{2 \pi}\|f\|_{1}+O(1)
$$

Since $4 \pi \Delta=c \frac{\log x}{\sqrt{x}}+O\left(\frac{\log ^{2} x}{x}\right)$ and $a=x+O(\sqrt{x} \log x)$,

$$
\frac{c f(0)}{4 \pi} \log x \leq \frac{\|f\|_{1}}{4 \pi} \log x+O(1)
$$

along this sequence of $x \rightarrow \infty$. This is only possible if

$$
c \leq \frac{\|f\|_{1}}{f(0)} \leq 0.9259 \ldots
$$

as we wanted to show.

This leads to...

(- If $\operatorname{supp}(\hat{F}) \subset[-1,1]$ we would have

$$
c \leq \frac{\|F\|_{1}}{F(0)} .
$$

This leads to...

(1) If $\operatorname{supp}(\widehat{F}) \subset[-1,1]$ we would have

$$
c \leq \frac{\|F\|_{1}}{F(0)}
$$

(2) One can actually do better by (over)estimating in $[-1,1]^{c}$:

$$
c \leq \frac{\|F\|_{1}}{\left(F(0)-\mathbf{B} \int_{[-1,1]^{c}}(\widehat{F}(t))_{+} \mathrm{d} t\right)}
$$

(3) Here \mathbf{B} is the Brun-Titchmarsh constant in our desired scale

$$
\mathbf{B}:=\limsup _{x \rightarrow \infty} \frac{\pi(x+\sqrt{x})-\pi(x)}{\sqrt{x} / \log x} .
$$

This leads to...

(1) If $\operatorname{supp}(\widehat{F}) \subset[-1,1]$ we would have

$$
c \leq \frac{\|F\|_{1}}{F(0)}
$$

(2) One can actually do better by (over)estimating in $[-1,1]^{c}$:

$$
c \leq \frac{\|F\|_{1}}{\left(F(0)-\mathbf{B} \int_{[-1,1]^{c}}(\widehat{F}(t))_{+} \mathrm{d} t\right)}
$$

(3) Here \mathbf{B} is the Brun-Titchmarsh constant in our desired scale

$$
\mathbf{B}:=\limsup _{x \rightarrow \infty} \frac{\pi(x+\sqrt{x})-\pi(x)}{\sqrt{x} / \log x} .
$$

(4) By the PNT (on the left) and work of Iwaniec (on the right):

$$
1 \leq \mathbf{B} \leq \frac{36}{11} .
$$

