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Prelude

Harmonic analysis is concerned with understanding oscillation.

Relations to many other fields such as: approximation theory,
number theory, complex analysis, probability, PDEs, ...

I am particularly interested in studying extremal phenomena.
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Basic plan

This is a conversation in analysis and number theory.

We shall discuss three problems in number theory
I Prime gaps;
I Least quadratic non-residue;
I Least prime in an arithmetic progression;

and some related Fourier optimization problems.

Try to keep the focus on the big picture (on how we arrive at the
Fourier optimization wonderland).
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Fourier optimization framework

Step I. Design “a" Fourier optimization problem connected to the
number theory problem (proof of concept).

Step II. Solve the Fourier optimization problem (or at least try to
find a good approximation for the solution).

Step III. Evolve towards designing what should be “the correct"
Fourier optimization problem. Return to Step II.
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Part of the history

Examples of applications of Fourier analysis in number theory include:

Erdös-Turán discrepancy inequalities.
Hilbert-type inequalities / large-sieve inequalities.
Sphere packings.
Sign Fourier uncertainty.
Bounds for the Riemann zeta-function on the critical strip.
Bounds for Montgomery’s pair correlation conjecture.
Bounds for low-lying zeros and vanishing of L-functions.
and so on...
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Part I - Prime gaps
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Why is this going to be useful?
Tonight...

Our hero
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Why is this going to be useful?
Tonight...

Matt
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Why is this going to be useful?
Tonight...

Mistery girl
Matt
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Why is this going to be useful?
Tonight...

Mistery girl
Matt

Matt: How about I buy you a beer?
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Why is this going to be useful?
Tonight...

Matt: How about I buy you a beer?

Girl: Sure, but only if you can prove to me that under RH there is
always a prime in the interval [x , x + 93

100
√

x log x ], for x large.

Matt: I guess it is my lucky day!
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A classical problem
1 For f : R→ R, our normalization for Fourier transform is

f̂ (t) =

∫
R

e−2πixt f (x) dx .

2 Let F : R→ R be a non-negative function, with F (0) = 1 and
supp(F̂ ) ⊂ [−1,1]. What is the minimal value of ‖F‖L1(R)?

3 Answer =1.
F (x) = (sin(πx)/(πx))2

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0
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An ‘innocent’ variant
1 Let F : R→ R be such that F (0) = 1 and supp(F̂ ) ⊂ [−1,1]. What

is the minimal value of ‖F‖L1(R)?

2 H(x) = cos(2πx)
1−16x2 yields ‖H‖L1(R) = 0.9259...

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

3 Best up-to-date (Hörmander and Bernhardsson ’93)

0.9243360302 . . . < C < 0.9243360304 . . .

4 There exists a unique extremizer.
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Prime gaps

1 Bertrand’s postulate (1845): is there always a prime in the interval
[x ,2x ]?

2 Chebyshev (1852): Yes. There is always a prime in [x , x + x
log x ] for

x large.

3 Hoheisel (1930): There is always a prime in [x , x + xθ] for some
0 < θ < 1, and x large.

4 Baker - Harman - Pintz (2001): There is always a prime in
[x , x + x0.525] for x large.
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Prime gaps on RH
Cramér’s bounds (1920)

1

pn+1 − pn = O(
√

pn log pn),

i.e. every interval [x , x + c
√

x log x ], for some c > 0, contains a
prime when x is large.

2 Historic progress:
I Goldston ’83: c = 4.
I Ramaré and Saouter ’03: c = 8/5
I Dudek ’15: c = 1 + o(1).

3 Non-asymptotic version: Dudek, Grenié, Molteni ’16: for x ≥ 4,

[x , x + c
√

x log x ]

contains a prime. Here c = 1 + 4
log x .

I Ramaré and Saouter ’03 (c = 8/5)
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Our team

M. Milinovich (Mississippi) and K. Soundararajan (Stanford)
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Improved estimates
joint with M. Milinovich and K. Soundararajan ’19

Theorem (Asymptotic version)
Assume RH. For x large, every interval[

x , x +
21
25
√

x log x
]

contains a prime.

Theorem (Non-asymptotic version)
Assume RH. For x ≥ 4, every interval[

x , x +
22
25
√

x log x
]

contains a prime.
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Strategy

1 Explicit formula connecting zeros of ζ(s) and primes.

2 Fourier optimization problems.

3 Brun-Titchmarsh inequality.

Emanuel Carneiro Fourier optimization July 2023 19 / 33



Original manuscript - I

Riemann’s 1859
manuscript

(Source: American
Institute of Mathematics).
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Original manuscript - II

(Source: American Institute of Mathematics).

"Man findet nun in der That etwa so viel reele Wurzeln innerhalb dieser
Grenzen, und es is sehr wahrscheinlich, dass alle Wurzeln reele sind."

"One now finds indeed approximately this number of real roots within
these limits, and it is very probable that all roots are real."
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Original manuscript - III

First expression of the
Riemann hypothesis in
Monatsberichte der
Berliner Akademie,
November, 1859.
(Source: American Institute of
Mathematics).
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For Re(s) > 1:

ζ(s) =
∑
n≥1

1
ns =

(
1 +

1
2s +

1
22s + ...

)(
1 +

1
3s +

1
32s + ...

)
...

=
∏

p

(
1− 1

ps

)−1

.

Then ζ′(s)
ζ(s) =

∑
n≥1

Λ(n)
ns , with Λ(n) = log p, if n = pk , p prime.

Let ξ(s) = 1
2s(s − 1)π−s/2 Γ

( s
2

)
ζ(s). Then ξ(s) = ξ(1− s).
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Explicit formulas

ξ(s) = 1
2s(s − 1)π−s/2 Γ

( s
2

)
ζ(s). Then ξ(s) = ξ(1− s).

Now let h be a good function and note that∑
ρ ; ζ(ρ)=0

h
(
ρ− 1

2
i

)
=

1
2πi

∫
C

h
(

s− 1
2

i

)ξ′(s)

ξ(s)
ds.
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Explicit formula
Lemma (Guinand-Weil Explicit Formula)

Let h(s) be analytic in the strip |Im(s)| ≤ 1/2 + ε for some ε > 0, and
such that |h(s)| � (1 + |s|)−(1+δ) when |Re(s)| → ∞.∑

ρ

h(γ) = h
( 1

2i

)
+ h
(
− 1

2i

)
− 1

2π
ĥ(0) log π

+
1

2π

∫ ∞
−∞

h(u) Re
Γ′

Γ

(1
4

+
iu
2

)
du

− 1
2π

∞∑
n=2

Λ(n)√
n

(
ĥ
( log n

2π

)
+ ĥ
(− log n

2π

))
,

where ρ = 1
2 + iγ are the non-trivial zeros of ζ(s) and Λ(n) is defined to

be log p if n = pk , p a prime and k ≥ 1, and zero otherwise.

Idea: to use this with ĥ
(
± log ·

2π

)
localized in an interval without primes.
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Setup
For this let f be a smooth function such that supp(̂f ) ⊂ [−1,1], let
0 < ∆ ≤ 1, let 1 < a, and set

g(z) = ∆f (∆z) ; h(z) = g(z)aiz

Assume that for a certain c > 0 there is an infinite sequence of x →∞
such that [x , x + c

√
x log x ] contains no primes. Choose

[x , x + c
√

x log x ] =
[
a e−2π∆,a e2π∆

]
Then

4π∆ = log

(
1 + c

log x√
x

)
= c

log x√
x

+ O

(
log2 x

x

)
and

a = x
(

1 + c
log x√

x

)1/2

= x + O(
√

x log x).

Idea: Perform an asymptotic analysis as x →∞.
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Setup II

g(z) = ∆f (∆z) ; h(z) = g(z)aiz

Then∑
ρ

h(γ) = h
( 1

2i

)
+ h
(
− 1

2i

)
− 1

2π
ĥ(0) log π

+
1

2π

∫ ∞
−∞

h(u) Re
Γ′

Γ

(1
4

+
iu
2

)
du

− 1
2π

∞∑
n=2

Λ(n)√
n

(
ĥ
( log n

2π

)
+ ĥ
(− log n

2π

))
,
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Main competition
Matters are reduced to∣∣∣∣g( 1

2i

)
a1/2 + g

(
− 1

2i

)
a−1/2

∣∣∣∣ ≤∑
γ

|g(γ)|+ O(1).

Observe that

g
(

1
2i

)
= ∆f

(
∆

2i

)
= ∆

∫ 1

−1
eπt∆ f̂ (t) dt

= ∆

∫ 1

−1
f̂ (t) dt + ∆

∫ 1

−1

(
eπt∆ − 1

)
f̂ (t) dt

= ∆f (0) + O(∆2).

We may similarly estimate g(− 1
2i ) and, hence, the (LHS) above is

g
(

1
2i

)
a1/2 + g

(
− 1

2i

)
a−1/2 = ∆f (0)

(
a1/2 + a−1/2)+ O(∆2a1/2).
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Sum over zeros

Let N(x) denote the number of zeros with 0 < γ ≤ x . Using the fact
that N(x) = x

2π log x
2π −

x
2π + O(log x), we evaluate the sum

∑
γ |g(γ)|

using summation by parts to get

∑
γ

|g(γ)| =
1

2π

∫ ∞
−∞
|g(x)| log+ |x |

2π
dx + O

(
‖g‖∞ + ‖g′(x) log+|x |‖1

)
,

where log+x = max{log x ,0} for x > 0.

Recalling that g(x) = ∆f (∆x),∑
γ

|g(γ)| =
1

2π

∫ ∞
−∞
|f (y)| log+|y/2π∆| dy + O(1)

=
log(1/2π∆)

2π
‖f‖1 + O(1).
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Conclusion

We get

∆f (0) a1/2 + O(∆2a1/2) ≤ log(1/2π∆)

2π
‖f‖1 + O(1).

Since 4π∆ = c log x√
x + O

(
log2 x

x

)
and a = x + O(

√
x log x),

c f (0)

4π
log x ≤ ‖f‖1

4π
log x + O(1)

along this sequence of x →∞. This is only possible if

c ≤ ‖f‖1
f (0)

≤ 0.9259...

as we wanted to show.
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This leads to...
1 If supp(F̂ ) ⊂ [−1,1] we would have

c ≤ ‖F‖1
F (0)

.

2 One can actually do better by (over)estimating in [−1,1]c :

c ≤ ‖F‖1(
F (0)− B

∫
[−1,1]c

(
F̂ (t)

)
+

dt
) .

3 Here B is the Brun-Titchmarsh constant in our desired scale

B := lim sup
x→∞

π(x +
√

x)− π(x)√
x/ log x

.

4 By the PNT (on the left) and work of Iwaniec (on the right):

1 ≤ B ≤ 36
11
.
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