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Introduction and main results
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—Control systems described by-the————
Schrodinger or Euler-Bernoulli plate equations

(5 1ute) w(t,z) + A%w(t,z) =u(t,z)xo(z) (t >0,z €Q),
plate w(t,z) =0, Aw(t,z) =0 (t >0,z € 09).
Z(t,x) +1Az(t,x) =u(t,z)xo(r) (t > 0,2 € Q),
(Zschrod) { z(t, x) =0 o (t >0,z € 09),

Known results: The two above systems are exactly controllable in arbi-

trarilly small time if:

(t,z) — Av(t,z) =u(t,z)xo(x) (t >0,z € Q),
1) The system (Xwave) { u(t, ) — 0 (t> 0,2 € 90)
is exactly controllable (in some time), see Lebeau, 1992, ... .
2) Q) is a rectangle (Jaffard, 1990).
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The Bardos-Lebeau-Rauch condition

It has been shown in Bardos, Lebeau and Rauch (1992) that a necessary
and sufficient condition on the control domain O in order to have the exact
controllability in some time 7 of (Xyave) is the following:

(BLR): Any light ray traveling in €2 at unit speed and reflected according
to geometric optics laws when it hits O will hit €2 in time < 7.
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First perturbation results

(Xplate) W+ A%w + Pw = u(t, )Xo (t=0,2 €0),
plate w(t, ZE) — O’ Aw(t, w) — O (t > O) Tr < (9(2),

where P is a second order differential operator. Let a € L>(€;iR).

(f] ) Z+iAz+az = uxo (t >0,z €Q),
schrod Z(t, x) =0 (t 2 O, T & (99),

Known results: The system isehmd is exactly controllable in arbitrarilly

small time if:
v(t,x) — Av(t,z) = u(t,x)xo(x) (t >0,z €Q),

1) The system (Xwave) { o(t, z) —0 (t>0,2 € O0),
is exactly controllable (in some time), see ... folklore.
2) Q is a rectangle (Burq and Zworski, 2011).
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Our (Bournissou, Ervedoza, M.T. (2024))
new (linear) perturbation result

Theorem. Assume that ay; € WQ’OO(Q;R), A = Qg and

n

n
Pw = by ——
’ 1531 o ‘%kax'l Z kaxk e,

with > ", 8““ = 0. Moreover, assume that (Xyave) is exactly controllable

(in some tlme). Then iplate is exactly controllable in arbitrarilly small time.

Remark. Note that the generator of f]plate is not skew-adjoint.
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Local controllability for the von Karman system (I)

W+ Aw + [w, ®(w,w)] = f +uxo(r) (t€(0,00), v €Q),
w=Aw=0 (x € 092, t € (0,00)),
w(0,2) = wo(z), w(0,x)=wi(z) (x € Q),

where the Airy stress function ®(v, w) is defined by

A*® (v, w)(t, z) = [v, w](t, x) (t € (0,00), x € Q),
w(t,z) = g—qj(t,x):O (t € (0,00),x € 09),

and the bracket [-,-] : H*(Q) x H*(Q) — LY(Q) is defined by

PpPo e M Py 2
— — 2 H=(Q2)).
¥, ¢ Ox? 0x3  Ox3 0r%  Ox10x9 Ox101T9 (€ H(S))
o i i
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Local controllability for the von Karman system (1I)
(Bournissou, Ervedoza, M.T. (2024))

Theorem. Assume that (Xyave) is exactly controllable (in some time) and
that n € H>"(Q) is an analytic (in w) stationary solution. Then for every
T > 0, there exists a > 0 such that for every

wo € H*(Q) N Hy (),  wy € L*(Q),

with
lwo = nllg2(0) + llwillr2) < @,
there exists u € L?([0, 7]; L*(Q)) such that

’UJ(T, ) =1,
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Background on exact observability
and on the Hautus test
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Admissible observation operators

Let X and Y be Hilbert spaces, A: D(A) — X et C € L(D(A),Y).
w(t) = Aw(t), y(t) = Cw(t).
Assume that A generates a CV semigroup, denoted T, in X.

Definition 1. C € L(D(A),Y) is an admissible observation operator for
T if there exist 7 > 0, k; > 0 such that

ki/ ICTyz0ll2dt < |20l ¥ 20 € D(A).
0
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Observability types

Definition 2. Let 7 > 0 and let C' € £L(D(A),Y ) be an admissible observa-
tion operator for T.

e The pair (A, C) is exactly observable in time 7 if there exists K, > 0
such that

K2 [ICTilfdt > sk V20 € D(A).
0

e The pair (A, C) is approximately observable in time 7 if the only 2o € X
such that CTyzy = 0 for every t € [0, 7] is 29 = 0.

e The pair (A, C) is final state observable in time 7 if there exists K, > 0
such that

Kf_/ ICT,z0l2dt > [Tozol% V20 € D(A).
0

Remark. If X = C" the 3 concepts coincide and are time independent.
> 2>
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Perturbations of exactly observable systems

Proposition (Haad and Duprez-Olive). Let 7 > 0and let C € L(D(A),Y)

be an admissible observation operator for T. Assume that the pair (A, C) is
exactly observable in time 19 and let P € £L(X). Then (A + P,C) is exactly
observable in any time 7 > 7q if

o [|[P|lgx) << 1.

e P compact and Ker (sI — A — C') = {0} for every s € C.

Remark. Our perturbation results do not require any of the above assump-
tions .
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The duality observability-controllability

Proposition 2 (Dolecki and Russell, 1973) . The pair (A, C) is exactly
observable in time T iff the pair (A*,C*) is exactly controllable in time T
(this means that for every zo € X there exists u € L*([0,7];U) s.t.

2(t) = A" z(t)+C"u(t), 2(0) =0, 2(1) = z9).

Moreover, the control cost for (A*, C*) coincides with the observation cost of

(A,0).
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The classical Hautus test

Let X=C"and Y =C" A: X € L(X)and C € L(X,Y).

w(t) = Aw(t), y(t) = Cw(t).

Theorem (Hautus). The following conditions are equivalent:
e (A,C) observable;
e rang (sl — A C| =n for every s € C.

e There exists m > 0 such that |[sp — Ap||5% + [|Collz- = m?||p||5 for
every ¢ € X.

e (v # 0 for every eigenvector ¢ of A.
i

ttttttttt

DDDDDDD

ICTS, 2024 15



Hautus test for skew-adjoint generators (I)

Let T be a group of unitary operators on X, with generator A.
Let C' € L(D(A),Y) be an admissible observation operator for T.

Theorem. (Miller (2005))
The pair (A, C') is exactly observable iff there exists M, m > 0 s.t.

M2H(7,cu] — A)Z()H2 —|—m2HCZOHQ > H20H2 Vwée R, 20 € D(A)

If the above estimate holds then
(A, (') is exactly observable in any time 7 > M.

ICTS, 2024 16




Hautus test for skew-adjoint generators (1I)

Assume that there exists an orthonormal basis (¢ )ren formed of
eigenvectors of A and the corresponding eigenvalues \; satisfy

lim |Az| = 00. Let C € L(D(A),Y) be an admissible observation
operator for T. For some a > 0 denote FE, = span{¢; | || < o}t

Proposition 3 (Tucsnak and Weiss (2009)).
Asssume that

1. There exist M, m, a > 0 s.t. for every w € R with |w| > «, we have

MZ[|(iw] — A)zol|* +m?[[Czol* = (120 V 20 € Ea ND(A),

2. C¢ # 0 for every eigenvector ¢ of A.

Then (A, C) is exactly observable in any time 7 > M
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A spectral test for skew-adjoint generators

Assume that there exists an orthonormal basis (¢ )ren formed of eigenvec-
tors of A and the corresponding eigenvalues \j satisfy lim |A\x| = oco. Let
C' € L(D(A),Y) be an admissible observation operator for T. For w € R
and r > 0, set J(w,r) = {k € A such that |u, —w| < r}.

Proposition. The following statements are equivalent:

(S1) There exist r, § > 0 such that for all w € R and for every wave packet
of A of parameters w and r, denoted by z, we have ||Cz||y = |z x.

(S2) (A, C) is exactly observable.

Moreover, if (S1) holds for some r, § > 0, then (A, ') is exactly observable
4K2%(r)
o2

1
in any time 7 > 7r\/—2 + , Where
/”l

K(r) = sup VRes||C(sI — A) | zxv)-

seC,
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Exact controllability for a Schrodinger system

Theorem. (Jaffard (1990), Bourgain,Burq and Zworski (2013))
Let Q = [0,1]? and let O C Q be a set of positive measure. Then the system

Z2+1Az = uxo (t > 0,2 € Q),
z(t,x) =0 (t > 0,2 € 09),

15 exactly controllable in any time 7 > 0.

Proof. It almost suffices to combine the spectral test with the following
results of Zygmund (1972):

Theorem. With the above notation, there exists a constant K»n > 0 such
that for every R > 0 and (ciy) € 12, we have

K(Q/) /O Z CmnGQWi(mx—l—ny) dr dy > Z |Cmn ‘2 .

m24+n2=R? m24+n2=R?
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Zygmund’s proot (I)

Lemma 1. Let X(v) = [, e 2™ Then there exists € > 0 such that

X(v)] < u(0) —¢ (v € R*\ {(0,0)}).

Lemma 2. For any three lattice points A, u, v situated on a circumference
of radius R we have

A —pllp—vv = Al =2R.

~
I ettt da T
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Zyegmund’s proof (1)

/ Z Cmne27ri(mzv—|—ny) dedy = ’O’ Z |Cmn|2 + Z C,LE?(V - :u) :
O

m24+n2=R?2 m24+n2=R?2 £

P Q
Let A={|A—v| | |\ =|v|= R} and let Ry be such that

7

1
2

2 ) kWP <

IA|=Ro

DO ™

Let A'={a €A | |a| <Ry} and A" =A\ A’ Set

Q0=Q+Q"

BBBBBBB
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Zyegmund’s proof (11I)

Q< (Tl (ISt -nF) < S lal (22 ROP] <5 3 b
lv|=R

IA|I=R IA>Ro

since a circle has at most two chords of prescribed lenghth and direction.

With Ry fixed we can choose, by Lemma 2, R large enough to split the
lattice points of C(0, R) into “distant” pairs (u, ) such that |p — v| < Ry.
For each of these pairs we use Lemma 1 to obtain that

X (v = 1) + ctuX (= V)] < (leal” + e [*)(10] = €).

Thus [Q'] < (0] =) 3 Jeu

lv|=R
_>2>)
| Th sttt 45 T
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The wave equation with
Neumann boundary observation

Theorem.(Bardos, Lebeau, Rauch, 1992).
Assume that I' C 9€2 and that 7 > 0 and consider the system

w—Aw=0 (xeQ, t>0),
w =10 (x € 002, t > 0).

Then the following conditions are equivalent:

1. There exists K, > 0 s.t.

T
K2, / /
0 I

for every solution w.

2
Ow drdt>/ (1V0(0)[2 + 0 (0)[2) da,
ov Q

2. T satisfies the geometric optics condition (also called Bardos, Lebeau,
Rauch condition).
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Notation

o Ay :D(Ayg) — H with compact resolvents and Ag = Aj > 0.

1 1
= D(A§) with the norm HwH% = [|AGwl|

0 I
e X=Hi xH, A:D(A) — X, A= [—Ao o]

e C1 € L(H,Y), CeL(X,,Y),C=][Cy 0].
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Proposition (Miller (2005), Tucsnak and Weiss(2009)).
If (A,C) is exactly observable then (:Ag,C1), with the state space Hi, is
2

exactly observable in any time 7 > 0.

Proof. By Theorem 2 there exist M, m > 0 s.t.

M?||(ivwI — A)Z||* + m?||CZ||* > ||Z]|* Vw>0, Z€ DA
2 3
If we choose z= | 1 |, with 2 € D(A{), we obtain
1AG 2
M? m?2 3
Tl — 40213 + TGz 2 ] Vw >0, 2 e D(AY).
2 2

We conclude using Hautus.
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The Schrodinger equation with
Neumann boundary observation

Theorem. Assume that I' C 9f2 satisfies the Bardos-Lebeau-Rauch condi-
tion. Then for every 7 > 0, there exists K, > 0 s.t.

K2, / /
0 I

for every solution w.

ow |2
—— | dI" > 2
5| AT > /Q Vw(0)2dxdt,

w+iAw=0 (xe€, t > 0),
w =10 (x € 00, t > 0).

Remark. The above result has been obtained by micro-local analysis by
Lebeau in 1992. A “softer” approach has been obtained by Burq and Zworski

(2005) and precised in Miller (2006) and Tucsnak and Weiss (2007).
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A frequency dependent
Hautus test
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The abstract context (1)
Notation

e 7 and Y are two Hilbert spaces:;

e Ay : D(Ayg) — H is a strictly positive operator with compact resol-
vents;

e For o > 0, we denote by H,, the space D(Af) endowed with the graph
norm of Af. Note that for every a € R the operator Ay can be
restricted (or extended) to a unitary operator L(Hq, Ha—1)-

o Cype L(H,Y) is an observation operator.

5> )
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The abstract context (1I)

Main result
Theorem 1. Let A:D(A) — H x H_; and C' € H x H_; be defined by

D(A)=Hi xHand A= [ (342 é] : C = [Co O} . Suppose that the
—40
system (A, C), defined by

N To0 I
D(A) —H XH_%, A= [AO O] ’

with state space H x H_1 is exactly observable (in some time).
2

Then there exists a continuous function M; : R — [0, +00), which tends
to zero when |w| — 0o, and a constant mq > 0 such that

M (@)l (iwl =A)zoll3up_, +mil[C2olly = l20lFxn_, (W €R, 20 € D(A)).
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Another abstract result

Theorem 2. With the notation and assumptions in Theorem 1, assume
that Py € L(H,H_1) N L(H1,H) be such that Py, with domain H, is a

0 0
P, O] € L(H x H_y1) and let

Ap : D(Ap) — H x H_1 be the operator defined by

symmetric operator on H_;. Let P := [

D(Ap) =D(A), Ap=A-P.
Moreover, let C' € L(H x H_1) be defined by C = [Cy 0] and suppose that
Ker (s°I + A3 + Py) NKer Cy = {0} (s € C).

Then the pair (Ap, C') is exactly observable in any time 7 > 0.

27
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Application to perturbed plates

Let Py € L(H1,H) be the operator defined by

Fop = Z Akl 01,01 (¢ € Ha).
k=1

w € W22(Q) N Wol’2(Q) and s € C are such that

s°0 + A% + Pyp = 0 (in ),
@ =0, Ap =10 (on 09),
@ =0, (in O),

then ¢ = 0. This follows from a slight variation of the global Carlemman
estimates for the Laplacian.
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The Von Karman system
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Linearized von Karman system

Setting w(t,z) = n(x) + (¢, x), we obtain the first order approximation:

O(t,x) + A%6(t, x) + [6, ®(n,n)] + 2[n, @(n, 6)] = u(t, z)xo(z),
d(t,x) =Ad(t,x) =0 (x € 092, t € (0,00))

6(0,x) = do(x), d(0,2) = d1(x) (x € Q).

There are two perturbation operators:

0%y 9 1
P —
oY kEl:1akl 9100 (v € H*(2) N Hy(Q2)),
8277 82 8277 62 6277 82
— () ) — 2 P :
Qo = 535 @IV + 5555 (@) — 255520 (@ [0, )
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Concluding remarks
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Some open questions

Arbitrary zero order perturbations for Schrodinger:;

Symmetric second order perturbations for plates when €2 is rectangular
and O arbitrary;

Less restrictive assumptions on the stationary state n for the von
Karman system.

Arbitrary second order pertbation for plates;

Controllability around buckled states for von Karman (bilinear con-
trol).

~2>)
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