Hautus conditions and perturbations for time reversible systems

Marius Tucsnak

Outline

- Introduction and main results
- Background on observability and Hautus test
- From the wave to the Schrödinger equation
- A frequency dependent Hautus test
- Linear perturbations
- The Von Karman system
- Concluding remarks

Introduction and main results

Control systems described by the Schrödinger or Euler-Bernoulli plate equations

$$(\Sigma_{\text{plate}}) \qquad \begin{cases} \ddot{w}(t,x) + \Delta^2 w(t,x) &= u(t,x)\chi_{\mathcal{O}}(x) \\ w(t,x) = 0, \ \Delta w(t,x) &= 0 \end{cases} \qquad (t \geqslant 0, x \in \Omega),$$

$$(t \geqslant 0, x \in \partial\Omega).$$

$$\begin{cases} \dot{z}(t,x) + i\Delta z(t,x) &= u(t,x)\chi_{\mathcal{O}}(x) \\ z(t,x) &= 0 \end{cases} \qquad (t \geqslant 0, x \in \Omega),$$

$$(t \geqslant 0, x \in \partial\Omega),$$

Known results: The two above systems are exactly controllable in arbitrarilly small time if:

1) The system
$$(\Sigma_{\text{wave}})$$

$$\begin{cases} \ddot{v}(t,x) - \Delta v(t,x) &= u(t,x)\chi_{\mathcal{O}}(x) \\ v(t,x) &= 0 \end{cases}$$
 $(t \geqslant 0, x \in \Omega),$ $(t \geqslant 0, x \in \partial\Omega)$

is exactly controllable (in some time), see Lebeau, 1992,

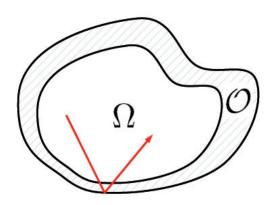
2) Ω is a rectangle (Jaffard, 1990).

Institut de Mathématiques de Bordeaux

The Bardos-Lebeau-Rauch condition

It has been shown in Bardos, Lebeau and Rauch (1992) that a necessary and sufficient condition on the control domain \mathcal{O} in order to have the exact controllability in some time τ of (Σ_{wave}) is the following:

(BLR): Any light ray traveling in Ω at unit speed and reflected according to geometric optics laws when it hits \mathcal{O} will hit Ω in time $\leq \tau$.



5

First perturbation results

$$\left(\tilde{\Sigma}_{\text{plate}}\right) \qquad \left\{ \begin{array}{ll} \ddot{w} + \Delta^2 w + \tilde{P}w &= u(t,x)\chi_{\mathcal{O}} \\ w(t,x) = 0, \ \Delta w(t,x) &= 0 \end{array} \right. \qquad (t \geqslant 0, x \in \Omega),$$

where \tilde{P} is a second order differential operator. Let $a \in L^{\infty}(\Omega; i\mathbb{R})$.

$$\begin{cases} \dot{z} + i\Delta z + az &= u\chi_{\mathcal{O}} \\ z(t, x) &= 0 \end{cases} \qquad \begin{array}{l} (t \geqslant 0, x \in \Omega), \\ (t \geqslant 0, x \in \partial\Omega), \end{cases}$$

Known results: The system $\tilde{\Sigma}_{schrod}$ is exactly controllable in arbitrarilly small time if:

1) The system
$$(\Sigma_{\text{wave}})$$

$$\begin{cases} \ddot{v}(t,x) - \Delta v(t,x) &= u(t,x)\chi_{\mathcal{O}}(x) \\ v(t,x) &= 0 \end{cases}$$
 $(t \geqslant 0, x \in \Omega),$ $(t \geqslant 0, x \in \partial\Omega),$

is exactly controllable (in some time), see ... folklore.

2) Ω is a rectangle (Burq and Zworski, 2011).

Our (Bournissou, Ervedoza, M.T. (2024)) new (linear) perturbation result

Theorem. Assume that $a_{kl} \in W^{2,\infty}(\Omega;\mathbb{R}), a_{kl} = a_{lk}$ and

$$\tilde{P}w = \sum_{k,l=1}^{n} a_{kl} \frac{\partial^2 w}{\partial x_k \partial x_l} + \sum_{k=1}^{n} b_k \frac{\partial w}{\partial x_k} + cw,$$

with $\sum_{l=1}^{n} \frac{\partial a_{kl}}{\partial x_{l}} = 0$. Moreover, assume that (Σ_{wave}) is exactly controllable (in some time). Then $\tilde{\Sigma}_{\text{plate}}$ is exactly controllable in arbitrarilly small time.

Remark. Note that the generator of $\tilde{\Sigma}_{\text{plate}}$ is not skew-adjoint.

Local controllability for the von Karman system (I)

$$\ddot{w} + \Delta^2 w + [w, \Phi(w, w)] = f + u\chi_{\mathcal{O}}(x) \quad (t \in (0, \infty), \ x \in \Omega),$$
 $w = \Delta w = 0$
 $(x \in \partial\Omega, \ t \in (0, \infty)),$
 $w(0, x) = w_0(x), \quad \dot{w}(0, x) = w_1(x)$
 $(x \in \Omega),$

where the Airy stress function $\Phi(v, w)$ is defined by

$$\Delta^2 \Phi(v, w)(t, x) = [v, w](t, x) \qquad (t \in (0, \infty), \ x \in \Omega),$$
$$w(t, x) = \frac{\partial w}{\partial \nu}(t, x) = 0 \qquad (t \in (0, \infty), x \in \partial\Omega),$$

and the bracket $[\cdot,\cdot]:H^2(\Omega)\times H^2(\Omega)\to L^1(\Omega)$ is defined by

$$[\psi,\varphi] = \frac{\partial^2 \psi}{\partial x_1^2} \frac{\partial^2 \varphi}{\partial x_2^2} + \frac{\partial^2 \psi}{\partial x_2^2} \frac{\partial^2 \varphi}{\partial x_1^2} - 2 \frac{\partial^2 \psi}{\partial x_1 \partial x_2} \frac{\partial^2 \varphi}{\partial x_1 \partial x_2} \qquad (\psi,\varphi \in H^2(\Omega)).$$

Local controllability for the von Karman system (II) (Bournissou, Ervedoza, M.T. (2024))

Theorem. Assume that (Σ_{wave}) is exactly controllable (in some time) and that $\eta \in H^{3+\varepsilon}(\Omega)$ is an analytic (in ω) stationary solution. Then for every $\tau > 0$, there exists $\alpha > 0$ such that for every

$$w_0 \in H^2(\Omega) \cap H_0^1(\Omega), \qquad w_1 \in L^2(\Omega),$$

with

$$||w_0 - \eta||_{H^2(\Omega)} + ||w_1||_{L^2(\Omega)} \leqslant \alpha,$$

there exists $u \in L^2([0,\tau];L^2(\Omega))$ such that

$$w(\tau, \cdot) = \eta, \qquad \dot{w}(\tau, \cdot) = 0.$$

Background on exact observability and on the Hautus test

Admissible observation operators

Let X and Y be Hilbert spaces, $A: \mathcal{D}(A) \to X$ et $C \in \mathcal{L}(\mathcal{D}(A), Y)$.

$$\dot{w}(t) = Aw(t), \ y(t) = Cw(t).$$

Assume that A generates a C^0 semigroup, denoted \mathbb{T} , in X.

Definition 1. $C \in \mathcal{L}(\mathcal{D}(A), Y)$ is an admissible observation operator for \mathbb{T} if there exist $\tau > 0$, $k_{\tau} > 0$ such that

$$k_{\tau}^{2} \int_{0}^{\tau} \|C\mathbb{T}_{t} z_{0}\|_{Y}^{2} dt \leq \|z_{0}\|_{X}^{2} \qquad \forall z_{0} \in \mathcal{D}(A).$$

Observability types

Definition 2. Let $\tau > 0$ and let $C \in \mathcal{L}(\mathcal{D}(A), Y)$ be an admissible observation operator for \mathbb{T} .

• The pair (A, C) is exactly observable in time τ if there exists $K_{\tau} > 0$ such that

$$K_{\tau}^{2} \int_{0}^{\tau} \|C\mathbb{T}_{t} z_{0}\|_{Y}^{2} dt \geqslant \|z_{0}\|_{X}^{2} \qquad \forall z_{0} \in \mathcal{D}(A).$$

- The pair (A, C) is approximately observable in time τ if the only $z_0 \in X$ such that $C\mathbb{T}_t z_0 = 0$ for every $t \in [0, \tau]$ is $z_0 = 0$.
- The pair (A, C) is final state observable in time τ if there exists $K_{\tau} > 0$ such that

$$K_{\tau}^{2} \int_{0}^{\tau} \|C\mathbb{T}_{t} z_{0}\|_{Y}^{2} dt \ge \|\mathbb{T}_{\tau} z_{0}\|_{X}^{2} \qquad \forall z_{0} \in \mathcal{D}(A).$$

Remark. If $X = \mathbb{C}^n$ the 3 concepts coincide and are time independent.

In stitut de Mathématiques de Bordeaux

Perturbations of exactly observable systems

Proposition (Haad and Duprez-Olive). Let $\tau > 0$ and let $C \in \mathcal{L}(\mathcal{D}(A), Y)$ be an admissible observation operator for \mathbb{T} . Assume that the pair (A, C) is exactly observable in time τ_0 and let $P \in \mathcal{L}(X)$. Then (A + P, C) is exactly observable in any time $\tau > \tau_0$ if

- $||P||_{\mathcal{L}(X)} << 1.$
- P compact and $\operatorname{Ker}(s\mathbb{I} A C) = \{0\}$ for every $s \in \mathbb{C}$.

Remark. Our perturbation results do not require any of the above assumptions .

The duality observability-controllability

Proposition 2 (Dolecki and Russell, 1973). The pair (A, C) is exactly observable in time τ iff the pair (A^*, C^*) is exactly controllable in time τ (this means that for every $z_0 \in X$ there exists $u \in L^2([0, \tau]; U)$ s.t.

$$\dot{z}(t) = A^*z(t) + C^*u(t), \ z(0) = 0, \ z(\tau) = z_0.$$

Moreover, the control cost for (A^*, C^*) coincides with the observation cost of (A, C).

The classical Hautus test

Let
$$X = \mathbb{C}^n$$
 and $Y = \mathbb{C}^m$, $A : X \in \mathcal{L}(X)$ and $C \in \mathcal{L}(X, Y)$.

$$\dot{w}(t) = Aw(t), \ y(t) = Cw(t).$$

Theorem (Hautus). The following conditions are equivalent:

- (A, C) observable;
- rang $[s\mathbb{I} A \ C] = n$ for every $s \in \mathbb{C}$.
- There exists m > 0 such that $||s\varphi A\varphi||_X^2 + ||C\varphi||_Y^2 \ge m^2 ||\varphi||_X^2$ for every $\varphi \in X$.
- $C\varphi \neq 0$ for every eigenvector φ of A.

Hautus test for skew-adjoint generators (I)

Let \mathbb{T} be a group of unitary operators on X, with generator A. Let $C \in \mathcal{L}(\mathcal{D}(A), Y)$ be an admissible observation operator for \mathbb{T} .

Theorem. (Miller (2005))

The pair (A, C) is exactly observable iff there exists M, m > 0 s.t.

$$M^2 \|(i\omega I - A)z_0\|^2 + m^2 \|Cz_0\|^2 \ge \|z_0\|^2 \qquad \forall \omega \in \mathbb{R}, \ z_0 \in \mathcal{D}(A).$$

If the above estimate holds then (A, C) is exactly observable in any time $\tau > M\pi$.

Hautus test for skew-adjoint generators (II)

Assume that there exists an orthonormal basis $(\phi_k)_{k\in\mathbb{N}}$ formed of eigenvectors of A and the corresponding eigenvalues λ_k satisfy $\lim |\lambda_k| = \infty$. Let $C \in \mathcal{L}(\mathcal{D}(A), Y)$ be an admissible observation operator for \mathbb{T} . For some $\alpha > 0$ denote $E_{\alpha} = \operatorname{span} \{\phi_k \mid |\mu_k| \leq \alpha\}^{\perp}$

Proposition 3 (Tucsnak and Weiss (2009)).

Asssume that

1. There exist $M, m, \alpha > 0$ s.t. for every $\omega \in \mathbb{R}$ with $|\omega| > \alpha$, we have

$$M^2 \|(i\omega I - A)z_0\|^2 + m^2 \|Cz_0\|^2 \ge \|z_0\|^2 \qquad \forall z_0 \in E_\alpha \cap \mathcal{D}(A),$$

2. $C\phi \neq 0$ for every eigenvector ϕ of A.

Then (A, C) is exactly observable in any time $\tau > M\pi$

A spectral test for skew-adjoint generators

Assume that there exists an orthonormal basis $(\phi_k)_{k\in\mathbb{N}}$ formed of eigenvectors of A and the corresponding eigenvalues λ_k satisfy $\lim |\lambda_k| = \infty$. Let $C \in \mathcal{L}(\mathcal{D}(A), Y)$ be an admissible observation operator for \mathbb{T} . For $\omega \in \mathbb{R}$ and r > 0, set $J(\omega, r) = \{k \in \Lambda \text{ such that } |\mu_k - \omega| < r\}$.

Proposition. The following statements are equivalent:

- (S1) There exist $r, \delta > 0$ such that for all $\omega \in \mathbb{R}$ and for every wave packet of A of parameters ω and r, denoted by z, we have $\|Cz\|_Y \ge \delta \|z\|_X$.
- (S2) (A, C) is exactly observable.

Moreover, if **(S1)** holds for some r, $\delta > 0$, then (A, C) is exactly observable in any time $\tau > \pi \sqrt{\frac{1}{r^2} + \frac{4K^2(r)}{r\delta^2}}$, where

$$K(r) = \sup_{s \in \mathbb{C}_r} \sqrt{\operatorname{Re} s} \|C(sI - A)^{-1}\|_{\mathcal{L}(X,Y)}.$$

Exact controllability for a Schrödinger system

Theorem. (Jaffard (1990), Bourgain, Burq and Zworski (2013)) Let $\Omega = [0, 1]^2$ and let $\mathcal{O} \subset \Omega$ be a set of positive measure. Then the system

$$\begin{cases} \dot{z} + i\Delta z = u\chi_{\mathcal{O}} & (t \geqslant 0, x \in \Omega), \\ z(t, x) = 0 & (t \geqslant 0, x \in \partial\Omega), \end{cases}$$

is exactly controllable in any time $\tau > 0$.

Proof. It almost suffices to combine the spectral test with the following results of Zygmund (1972):

Theorem. With the above notation, there exists a constant $K_{\mathcal{O}} > 0$ such that for every R > 0 and $(c_{mn}) \in l^2$, we have

$$K_{\mathcal{O}}^{2} \int_{\mathcal{O}} \left| \sum_{m^{2}+n^{2}=R^{2}} c_{mn} e^{2\pi i (mx+ny)} \right| dx dy \geqslant \sum_{m^{2}+n^{2}=R^{2}} |c_{mn}|^{2}.$$

Zygmund's proof (I)

Lemma 1. Let $\widehat{\chi}(\nu) = \int_{\mathcal{O}} e^{-2\pi i \nu \cdot \xi}$. Then there exists $\varepsilon > 0$ such that $|\widehat{\chi}(\nu)| < \mu(\mathcal{O}) - \varepsilon$ $(\nu \in \mathbb{R}^2 \setminus \{(0,0)\})$.

Lemma 2. For any three lattice points λ , μ , ν situated on a circumference of radius R we have

$$|\lambda - \mu| |\mu - \nu| |\nu - \lambda| \geqslant 2R.$$

Zygmund's proof (II)

$$\int_{\mathcal{O}} \left| \sum_{m^2 + n^2 = R^2} c_{mn} e^{2\pi i (mx + ny)} \right|^2 dx dy = \underbrace{|\mathcal{O}|}_{m^2 + n^2 = R^2} \underbrace{|c_{mn}|^2 + \sum_{\lambda \neq \mu} c_{\mu} \overline{c_{\nu}} \widehat{\chi}(\nu - \mu)}_{Q}.$$

Let $\Delta = \{ |\lambda - \nu| \mid |\lambda| = |\nu| = R \}$ and let R_0 be such that

$$\left(2\sum_{|\lambda|\geqslant R_0}|\widehat{\chi}(\lambda)|^2\right)^{\frac{1}{2}}\leqslant \frac{\varepsilon}{2}.$$

Let
$$\Delta' = \{ \alpha \in \Delta \mid |\alpha| \leqslant R_0 \}$$
 and $\Delta'' = \Delta \setminus \Delta'$. Set

$$Q = Q' + Q''.$$

Zygmund's proof (III)

$$|Q''| \leq \left(\sum |c_{\mu}\overline{c}_{\nu}|^{2}\right)^{\frac{1}{2}} \left(\left|\sum \widehat{\chi}(\nu-\mu)\right|^{2}\right)^{\frac{1}{2}} \leq \sum_{|\lambda|=R} |c_{\lambda}|^{2} \left(2\sum_{|\lambda| \geq R_{0}} |\widehat{\chi}(\lambda)|^{2}\right)^{\frac{1}{2}} \leq \frac{\varepsilon}{2} \sum_{|\nu|=R} |c_{\nu}|^{2},$$

since a circle has at most two chords of prescribed length and direction.

With R_0 fixed we can choose, by Lemma 2, R large enough to split the lattice points of C(0,R) into "distant" pairs (μ,ν) such that $|\mu-\nu| \leq R_0$. For each of these pairs we use Lemma 1 to obtain that

$$|c_{\mu}\overline{c}_{\nu}\widehat{\chi}(\nu-\mu)+c_{\nu}\overline{c}_{\mu}\widehat{\chi}(\mu-\nu)| \leq (|c_{\mu}|^2+|c_{\nu}|^2)(|\mathcal{O}|-\varepsilon).$$

Thus
$$|Q'| \leq (|\mathcal{O}| - \varepsilon) \sum_{|\nu|=R} |c_{\nu}|^2$$
.

From the wave to the Schrödinger equation

The wave equation with Neumann boundary observation

Theorem.(Bardos, Lebeau, Rauch, 1992).

Assume that $\Gamma \subset \partial \Omega$ and that $\tau > 0$ and consider the system

$$\begin{cases} \ddot{w} - \Delta w = 0 & (x \in \Omega, \ t \ge 0), \\ w = 0 & (x \in \partial\Omega, \ t \ge 0). \end{cases}$$

Then the following conditions are equivalent:

1. There exists $K_{\tau,\Gamma} > 0$ s.t.

$$K_{\tau,\Gamma}^2 \int_0^{\tau} \int_{\Gamma} \left| \frac{\partial w}{\partial \nu} \right|^2 d\Gamma dt \geqslant \int_{\Omega} \left(|\nabla w(0)|^2 + \dot{w}(0)|^2 \right) dx,$$

for every solution w.

2. Γ satisfies the geometric optics condition (also called Bardos, Lebeau, Rauch condition).

Institut de Mathématiques de Bordeaux

Notation

- $A_0: \mathcal{D}(A_0) \to H$ with compact resolvents and $A_0 = A_0^* > 0$.
- $H_{\frac{1}{2}} = \mathcal{D}(A_0^{\frac{1}{2}})$ with the norm $\|w\|_{\frac{1}{2}} = \|A_0^{\frac{1}{2}}w\|$

•
$$X = H_{\frac{1}{2}} \times H$$
, $A : \mathcal{D}(A) \to X$, $A = \begin{bmatrix} 0 & I \\ -A_0 & 0 \end{bmatrix}$

• $C_1 \in \mathcal{L}(H_1, Y), C \in \mathcal{L}(X_1, Y), C = \begin{bmatrix} C_1 & 0 \end{bmatrix}.$

Proposition (Miller (2005), Tucsnak and Weiss(2009)).

If (A, C) is exactly observable then (iA_0, C_1) , with the state space $H_{\frac{1}{2}}$, is exactly observable in any time $\tau > 0$.

Proof. By Theorem 2 there exist M, m > 0 s.t.

$$M^{2}\|(i\sqrt{\omega}I - A)\widetilde{z}\|^{2} + m^{2}\|C\widetilde{z}\|^{2} \ge \|\widetilde{z}\|^{2} \qquad \forall \omega > 0, \ \widetilde{z} \in \mathcal{D}(A)$$

If we choose
$$\widetilde{z} = \begin{bmatrix} z \\ iA_0^{\frac{1}{2}}z \end{bmatrix}$$
, with $z \in \mathcal{D}(A_0^{\frac{3}{2}})$, we obtain

$$\frac{M^2}{\omega} \|(\omega I - A_0)z\|_{\frac{1}{2}}^2 + \frac{m^2}{2} \|C_1 z\|^2 \ge \|z\|_{\frac{1}{2}}^2 \qquad \forall \, \omega > 0, \, z \in \mathcal{D}(A_0^{\frac{3}{2}}).$$

We conclude using Hautus.

The Schrödinger equation with Neumann boundary observation

Theorem. Assume that $\Gamma \subset \partial \Omega$ satisfies the Bardos-Lebeau-Rauch condition. Then for every $\tau > 0$, there exists $K_{\tau,\Gamma} > 0$ s.t.

$$K_{\tau,\Gamma}^2 \int_0^{\tau} \int_{\Gamma} \left| \frac{\partial w}{\partial \nu} \right|^2 d\Gamma \ge \int_{\Omega} |\nabla w(0)|^2 dx dt,$$

for every solution w.

$$\begin{cases} \dot{w} + i\Delta w = 0 & (x \in \Omega, \ t \ge 0), \\ w = 0 & (x \in \partial\Omega, \ t \ge 0). \end{cases}$$

Remark. The above result has been obtained by micro-local analysis by Lebeau in 1992. A "softer" approach has been obtained by Burq and Zworski (2005) and precised in Miller (2006) and Tucsnak and Weiss (2007).

A frequency dependent Hautus test

The abstract context (I) Notation

- \mathcal{H} and Y are two Hilbert spaces;
- $A_0: \mathcal{D}(A_0) \to \mathcal{H}$ is a strictly positive operator with compact resolvents;
- For $\alpha > 0$, we denote by \mathcal{H}_{α} the space $\mathcal{D}(A_0^{\alpha})$ endowed with the graph norm of A_0^{α} . Note that for every $\alpha \in \mathbb{R}$ the operator A_0 can be restricted (or extended) to a unitary operator $\mathcal{L}(\mathcal{H}_{\alpha}, \mathcal{H}_{\alpha-1})$.
- $C_0 \in \mathcal{L}(\mathcal{H}, Y)$ is an observation operator.

29

The abstract context (II) Main result

Theorem 1. Let $\mathcal{A}: \mathcal{D}(\mathcal{A}) \to \mathcal{H} \times \mathcal{H}_{-1}$ and $C \in \mathcal{H} \times \mathcal{H}_{-1}$ be defined by $\mathcal{D}(\mathcal{A}) = \mathcal{H}_1 \times \mathcal{H}$ and $\mathcal{A} = \begin{bmatrix} 0 & I \\ -A_0^2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} C_0 & 0 \end{bmatrix}$. Suppose that the system (\tilde{A}, C) , defined by

$$\mathcal{D}(\tilde{A}) = \mathcal{H}_{\frac{1}{2}} \times \mathcal{H}_{-\frac{1}{2}}, \qquad \tilde{A} = \begin{bmatrix} 0 & I \\ -A_0 & 0 \end{bmatrix},$$

with state space $\mathcal{H} \times \mathcal{H}_{-\frac{1}{2}}$ is exactly observable (in some time).

Then there exists a continuous function $M_1 : \mathbb{R} \to [0, +\infty)$, which tends to zero when $|\omega| \to \infty$, and a constant $m_1 > 0$ such that

$$M_1^2(\omega) \| (i\omega I - \mathcal{A}) z_0 \|_{\mathcal{H} \times \mathcal{H}_{-1}}^2 + m_1^2 \| C z_0 \|_Y^2 \geqslant \| z_0 \|_{\mathcal{H} \times \mathcal{H}_{-1}}^2 \qquad (\omega \in \mathbb{R}, \ z_0 \in \mathcal{D}(\mathcal{A})).$$

Linear perturbations

Another abstract result

Theorem 2. With the notation and assumptions in Theorem 1, assume that $P_0 \in \mathcal{L}(\mathcal{H}, \mathcal{H}_{-1}) \cap \mathcal{L}(\mathcal{H}_1, \mathcal{H})$ be such that P_0 , with domain \mathcal{H} , is a symmetric operator on \mathcal{H}_{-1} . Let $P := \begin{bmatrix} 0 & 0 \\ P_0 & 0 \end{bmatrix} \in \mathcal{L}(\mathcal{H} \times \mathcal{H}_{-1})$ and let $\mathcal{A}_P : \mathcal{D}(\mathcal{A}_P) \to \mathcal{H} \times \mathcal{H}_{-1}$ be the operator defined by

$$\mathcal{D}(\mathcal{A}_P) = \mathcal{D}(\mathcal{A}), \quad \mathcal{A}_P = \mathcal{A} - P.$$

Moreover, let $C \in \mathcal{L}(\mathcal{H} \times \mathcal{H}_{-1})$ be defined by $C = \begin{bmatrix} C_0 & 0 \end{bmatrix}$ and suppose that

$$\operatorname{Ker}(s^2I + A_0^2 + P_0) \cap \operatorname{Ker}C_0 = \{0\}$$
 $(s \in \mathbb{C}).$

Then the pair (A_P, C) is exactly observable in any time $\tau > 0$.

Application to perturbed plates

Let $P_0 \in \mathcal{L}(\mathcal{H}_1, \mathcal{H})$ be the operator defined by

$$P_0\varphi = \sum_{k,l=1}^n a_{kl} \frac{\partial^2 \varphi}{\partial x_k \partial x_l} \qquad (\varphi \in \mathcal{H}_1).$$

 $\varphi \in W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$ and $s \in \mathbb{C}$ are such that

$$s^2 \varphi + \Delta^2 \varphi + P_0 \varphi = 0$$
 (in Ω),
 $\varphi = 0, \qquad \Delta \varphi = 0$ (on $\partial \Omega$),
 $\varphi = 0, \qquad (in \mathcal{O}),$

then $\varphi = 0$. This follows from a slight variation of the global Carlemann estimates for the Laplacian.

Institut de Mathématiques de Bordeaux

The Von Karman system

Linearized von Karman system

Setting $w(t,x) = \eta(x) + \varepsilon \delta(t,x)$, we obtain the first order approximation:

$$\ddot{\delta}(t,x) + \Delta^2 \delta(t,x) + [\delta, \Phi(\eta,\eta)] + 2[\eta, \Phi(\eta,\delta)] = u(t,x)\chi_{\mathcal{O}}(x),$$

$$\delta(t,x) = \Delta \delta(t,x) = 0 \qquad (x \in \partial\Omega, \ t \in (0,\infty))$$

$$\delta(0,x) = \delta_0(x), \quad \dot{\delta}(0,x) = \delta_1(x) \qquad (x \in \Omega).$$

There are <u>two</u> perturbation operators:

$$P_0\psi = \sum_{k,l=1}^2 a_{kl} \frac{\partial^2 \psi}{\partial x_k \partial x_l} \qquad (\psi \in H^2(\Omega) \cap H_0^1(\Omega)),$$

$$Q_{0}\psi = \frac{\partial^{2}\eta}{\partial x_{1}^{2}} \frac{\partial^{2}}{\partial x_{2}^{2}} \left(\Phi\left[\eta,\psi\right] \right) + \frac{\partial^{2}\eta}{\partial x_{2}^{2}} \frac{\partial^{2}}{\partial x_{1}^{2}} \left(\Phi\left[\eta,\psi\right] \right) - 2 \frac{\partial^{2}\eta}{\partial x_{1}\partial x_{2}} \frac{\partial^{2}}{\partial x_{1}\partial x_{2}} \left(\Phi\left[\eta,\psi\right] \right).$$

Concluding remarks

Some open questions

- Arbitrary zero order perturbations for Schrödinger;
- Symmetric second order perturbations for plates when Ω is rectangular and \mathcal{O} arbitrary;
- Less restrictive assumptions on the stationary state η for the von Kármán system.
- Arbitrary second order pertbation for plates;
- Controllability around buckled states for von Karman (bilinear control).

