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Well-posed linear time 1invariant
control systems
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Some notation

We consider control systems described by equations of the form
(SE) 2(t) = Az(t) + Bu(t), with

e X (the state space) and U (the input space) are complex Hilbert
spaces. We have X = C" and U = C™ for finite-dimensional con-
trol systems.

o T = (Ty):>p is a strongly continuous semigroup on X generated by A.
We have T; = e/ for finite-dimensional control systems. X; is D(A)

endowed with the graph norm and X_; is the dual of D(A*) with re-
spect to the pivot space X.

e Be L(U;X_1) is the control operator.
N i i
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Admissible control operators
The solution of (SE) writes:

z(t) = Ty2z(0) + Pyu,

where T is the semigroup generated by A and

(4
D, € L(L2([0,00): U), X_1), ®ju = / T, ,Bu(o)do.
0

Definition.B 1is called an admissble control operator for T if Ran ®; C X
for one (and hence all) t > 0.

Example. Take A = —Ag with Ag > 0. For a > 0, denote X, = D(Af)

and X _, is the dual of X, with respect to the pivot space X. Then every

operator B € L(U, X_1) is admissible.
2 N i i
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Reachable space and controllability
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Definition and first properties

e The reachable space at time 7 is Ran ®., it generally depends on 7
and it is not, in general, a closed subspace of X.

e Ran @, is a Hilbert space when endowed with the norm
InllrRan @, = inf {{|u ||r2j0.7.07), 8-t Pru=n.}

e (Kalman, 1963) If X and U are finite dimensional then

Ran®, =Ran |[B AB A?’B --- A" !'B].

N
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Controllability types

(A, B) is said ezactly controllable in time 7 if Ran &, = X.

(A, B) is said null controllable in time 7 if Ran ®. D RanT,. This is equiv-
alent to the existence, for each zg € X of v € L?(|0,7]; U) such that the

solution of
2(t) = Az(t) + Bu(t), 2(0) = 2o,

satisfies z(7) = 0.

(A, B) is approximatively controllable in time 7 if Ran ®, = X.

The three above concepts coincide with the usual controllability
concept in the case of finite dimensional LT1Is.
227
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A classical example

v(t,r) — Av(t,r) =u(t,x)xol(r t >0,z €,
The system (Se) { op3) A0 Zplb el (20 2R
is exactly controllable in time 7, see Bardos, Lebeau and Rauch (1992) iff
any light ray traveling in {2 at unit speed and reflected according to geomet-
ric optics laws when it hits O will hit €2 in time < 7.

There is almost no information about the reachable space when the Bardos-
Lebeau-Rauch condition fails or when the time is small!
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Null controllability and reachable space

Proposition. (Fattorini, Seidman) If (A, B) is null controllable in any time
then Ran @, does not depend on 7 > 0. Given 7, 7/ > 0, the norms ||-||Ran .
and | - ||Ran®_, are equivalent.

Proof. The fact that for 0 <t < 7, Ran ®; C Ran ®, is an obvious one.

Let now 0 < 7 < t, n € Ran ®; and

(o) =u(loc+t—1), w(o) =w(oc+t—rT,-).

Then n = w(t, ) = w(r,-) = T,w(0,-) + ®;u. Since Ran®,. D RanT,, we
have n € Ran ®,, thus Ran ®; C Ran ®,.

Remark. (Normand, 2019) under the
above assumptions

®.(vtL*([0,7];U)) = Ran @..
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(Hilbert Uniqueness Method)
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A classical result (Douglas, 1966)

Proposition.If Z, X are Hilbert spaces and G € L(Z, X)), then the following
statements are equivalent:

(a) G is onto.
(b) G* is bounded from below, i.e., there exists a constant m > 0 such that

|G"z]|z = mlz] x (z € X).

(c) GG* > 0.
Moreover, if these statements are true then [[(GG*)™| < #, where m s
the constant appearing in statement (b).

5> )
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The controllability Gramian

Definition. Let (T, ®) be a well-posed control LTI. The operator
R, =@, € L(X)
is called the controllability Gramian in time T.

Remark. If B € L(U, X) then R, = [ T;BB*T; dt.

Proposition. (T, ®) is exactly controllable in time T > 0 if and only if
R;>0.If
u=®*R_12,

then ®,.u = zg. Moreover u is the unique minimal norm control.
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Basic HUM Method in Two Lines

1. Computing R,: For ne€ X we have R.n= ®,v where
v(t) = B*TI_;n (t € [0, 7]).

2. Computing u: With n = R-1z set
u(t) = B"T7_yn (t €10,7]),

and you found the minimal norm control.

\
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HUM and the reachable space

Proposition. Assume that (A, B) is approximately controllable in some time
T > 0. Then

171l (Ran @,y = 12771l L2(j0,71:0) (n € X).
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The reachable space for the
constant coetficients heat equation.
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[he heat equation on

ow 0“w
ot (t,z) = o2 (

w(t,0) = u(t), t € 10,00),

w(0,x) =0 z € (0,00),

the half line (Dirichlet)

t,x) t>=0, z € (0,00),

(LCH) <

We have a well-posed system with X = W~%%(0, 00) and U = C,

_(z—yp)? _ (z+y)? ]

lef - e AT € AT
(te0) @) = || G = G | v
| T e T
((I)lTeftu) (x) N (5’3:3_ U)3/2u(a) do
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- A “typically infinite dimensional” example

e Approximately controllable in any positive time (duality)

e Ran ®*NRan T = {0} (an application of Hardy’s uncertainty prin-
ciple, see also Escauriaza, Seregin and Sverak (2003) or Dardé and
Ervedoza (2020) for generalizations). No null controllability.

Y

A

o DX (VEL2([0,7);U)) = A%(A, wo,r)
= {f € HOL(A) | [Alf(z +iy)[Pwor (x4 iy) dedy < oo},

Re (32)

where wp ;(s) = “—— for s € A (Aikawa, Hayashi and Saitoh, 1990).
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The heat equation on an interval

( 811} aQw
E(t’x):w(tw) t>0, xe(0,m),
(BCH) < w(t,0) = ug(t), w(t,m) = ur(t) t € [0,00),
- w(0,z) =0 z € (0,m),

Given 7 > 0, define the wnput to state map

The above equations define a well-posed control LTIs with

X =H10,7) and U = C.
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“Classical” results

Given 7 > 0 it is known that:

/D\
e Ran ®. C Hol(D), where \\y

D={s=z+weC | |y<z and |y| < —z};

e Ran®, O {1 € Hol(S) | ¥ (0) = 4(®*)(r) = 0 for k € N}, where
S={s=xz+4+iyeC | |yl <nm} (Fattorini and Russell, 1971);

° RancpT ) HOI(B), Where B — {S & C ’ ’S — %‘ < %6(26)_1 }
(Martin, Rosier and Rouchon, 2016);

e For every ¢ > 0 we have Ran®, D Hol(D.), where D. is an e-
neighbourhood of the square D (Dardé and Ervedoza, 2016).

e ?(D) C Ran®, C A%(D) (Hartmann, Kellay and M. T., JEMS, 2021)
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Hilbert spaces of analytic functions

Let 2 C C be an open set with Lipschitz boundary.

The Hardy-Smirnov space E?() is

Ez(Q):{feHol ‘/m ||d§|<oo}

The Bergman space with weight w is
A%(Q,w) = Hol(Q) N L*(Q,w).

For w = 1 we simply write A%(Q).
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Recent results (I): notation

A=m—A

Re (82)

Let 6 > 0. wys(s) = “—— for s € A.

Let wy 5(3) = wos(m — ) for 5 € A.

Let X5 = A2(A,w0,5) + AQ(A,wﬂ,(g).

l¢lls = inf <

/

\
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leoll a2(aw 6) T 07l 422 0, )
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Recent results (1I):

Theorem 1. (Kellay, Normand and M.T., Analysis & PDE, 2022)
For every 7 > 0 we have Ran®, = X .

Proposition 1. (Kellay, Normand and M.T., 2022)
For every 6 > 0 we have X5 = A?(A) + A%(A).

Corollary 1. (Orsoni, 2019, Kellay, Normand and M. T., 2019)
We have Ran ®, = A%(A) + A?(A) for every 7, 6 > 0.

Theorem 2. (Hartmann and Orsoni., 2020)
A%(A) + A%(A) = A%(D), thus Ran ®, = A?(D).
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Proof of Proposition 1 (I)

eft right ! 6[( .
(®ru)(x) = (B uo) () + (] ur) () + | 52— 0, 0)uo(0) do
+ ' aaliw (1 — 0, 2)ur(0)do (x € (0,7)),
0

52

- 4(T—o0)

577 Jo ooy suo(0) do, (@7 ur)(s) = (€ ur ) (m — 5)

(@) (5) =

(x+2m7r) ~ 1 _ (z+(2m—1)7)?
,/m Z Kr(o,z) = %Ze .

Since (CDT — Pleft _ rlght) (Vtu) is “small” in X, it suffices to consider
only the first two terms in the rlght—hand side.
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Several space dimensions

( %—?(t,x):Aw(t,az) t >0, z el
(BCHn) y wit,) =u, t €[0,00), x € 0N
( w(0,z) =0 T €L,

Given 7 > 0, define the tnput to state map
¢ u=w(r,-) (t >0, u € L*([0,7]; L*(0%)).

Theorem (Strohmaier and Waters, 2020).
If 2 is a ball then for every 7 > 0 we have Ran ®, O Hol (5 (Q)), where

EQ)={x+iyeC" | z€Q, |yl <d(z,00)}.
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Robustness of the reachable space
with respect to
perturbations of the generator
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Perturbations of the generator

e The reachable space of a finite dimensional LTI is not, in general,
robust with respect to small perturbations of the generator (exercice
using Kalman’s matrix).

e For infinite dimensional LTIs the exact controllability property and
thus the reachable space, are robust with respect to small perturba-
tions of the generator.

e (Can a similar robustness property be obtained for LTI’s with a weaker
controllability property?

5> )
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Main results (Ervedoza, Le Balch’, MT, JFA, 2022)

Theorem 3. Assume that (A, B) is null controllable in any time and that

Pe L(X)NnL(Ran®,,) for some 19 > 0.
Then there exists d;, > 0 such that if HPHL(Ranq) ) < 0r,, then
70

Ran CIDZ = Ran ¢,,.

Theorem 4. Suppose that A < 0 has compact resolvents, B € L(U, X_,)
for some a € |0,1/2], and that (A, B) is null-controllable in any time 7 > 0.
Moreover, suppose that P € L£(X; , .,Ran®.), where a € [0,1/2] and
e € (0,1 — «J. Finally, suppose that the pair (A + P, B) satisfies the Hautus
type condition Ker (s/ — A — P*) N Ker B* = {0} for all s € C. Then for
every 7 > (0 we have Ran CIDf = Ran®,, and Ran Tf C Ran CIDf , that is the

system (A + P, B) is null-controllable in any time 7 > 0.
W i
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Main ingredient of the proof

Theorem 4.(Ervedoza, Le Balch and M.T., 2022)

Let ¥ = (T, ®) be a well posed control system which is null controllable

in any positive time. For 7 > 0 we denote by T = (Tt) the semigroup of
t>0

operators defined by

Pﬁ“t — Tt‘Ranq)Ta (t Z O)

Then the family T = (T;|ran o, )0 does not depend on the choice of T > 0,

and forms a C° semigroup on Ran®,. Moreover, the couple ¥ = (T, ®)
determines a well-posed control system with state space Ran ®, and input
space U. Finally, this system is exactly controllable in any positive time.

5> )
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Idea of the proot (1)

It suffices to prove that for every 7 > 0 there exists a constant ¢, > 0 such
that

HTtHE(RaHCI)T) < Cr (t = (077-])7

and then apply a classical result of Hille. First note that that

[ T¢n||Ran @, < ¢ || Ten||Ran @,, (t € (0,7], n € Ran®,).

On the other hand, we will see that

HTmHRanCDzT < H77HRan<I>27_t (t € (0,7], n € Ran®,).

We can thus combine the last two inequalities to obtain that

HTthRaHCI)T < C7'H77||Ran<1327_t (t S (O,T], nc Ran (I)T)

Since 27 —t > 7, the last estimate 1mph /)j)be conclusion.
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Idea of the proof (2)

Proof of the inequality:

| Ten||Ran @2 < ||7]|Ran ®or (t € (0,7], n € Ran P, ).

If u € L?([0,27 — t];U) is such that ®5,_;u = n then @ € L*([0,27];U)
defined by

(t) = u(t) (t € [0,27 —t]),
0 (t € (2T —t,27]),

satisfies ®ort = Tyn and |6 12(j0.2-.0) = |ull22(j0,2r—4;0)- SO We get

ITenllRan @5, = [[P2rtl|Ran @0, < |l £2(0,277:0) = llull 20,2710

for every u € L*([0,27 — t];U) such that ®3,_;u = 7, then by taking the
infimum of u € L?([0,27 — t];U) such that ®3,_;u = 5 in both sides of the
previous inequality we obtain the des1re@)p7equahty
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Applications to
the perturbed heat equation
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1D heat equation with Neumann boundary control

[ 02 0z
— - — >
(1) — 5 (t,2) = 0 (t>0, z € (0,7)),
! 0z 0z
s t > )
0% (1,0)=uolt), = (t.7) = us() >0
L 2(0,2) =0 (x € (0,7)),
d? 5 9 dz dz
A= @OHX L0, 7], D(A){ZEH (O’W)’@(O)@(W)O}
B [uO] = —updg + UrOr.
Ug
Null-controllable in any time 7 > 0. [Fattorini Russell 1971]
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Known result
Theorem 4. ([Hartmann-Orsoni 2021], ...,[Hartman, Kellay, Tucsnak, 2021])
The reachable space of the above 1d heat equation is independent of the time
horizon 7 > 0 and, for all 7 > 0,

Ran ®, = AY%(D),

where
D={s=x+iyeC | |y <z and |y| <7 —x}.

and AY?(D) = {f € Hol(D) nW14(D)}

oy
N
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First application: small potentials

Proposition.
There exists € > 0, such that if p € Hol (D)NW"°°(D) with ||p||yy1.00(p) < €,
the reachable set for the equation

| %(t,x) 322<t z)+p(z)a(t,z) =0 (>0, z€(0,m)),
< g;(t 0) = uo(t), %(t,w):uw(t) (t > 0),
L 2(0,2) =0 (z € (0,m)),

is independent of the time horizon and coincides with A#(D)
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Non Tocal perturbations (inspired by [Cara and Zuazua, 2016])

Proposition. Let K € L*([0,7] x [0,7]) be such that x — K(x,y) is in
Hol(D) N W'#(D) and that K € L2 ([0, 7]; W,*(D)). Suppose that

( d2
< ) s / Ko 7)) du, (@ € 0.7)),
dy) dy)
| 6(0) = 2 (0) = ¥(r) = =(r) =0,
iff ©» = 0 . Then the reachable space of
(0 0>
= (t,2) = 55 (L )+ [T K (@,y)(ty)dy=0 (t20, z € (0,m)),
0 0
| 5o (80) = uo(t), o= (t.7) = un(t) (t>0)
| 2(0,2) =0 (z € (0,7m)),
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Reachability with smooth inputs (nonlinear perturbations)
Proposition 3 . For 7 > 0 and n € N we set

2 2 d*) 2

A2 (D) = {weA (D) | Tk € A“(D) forkzl,...,n} (n>1).
"9 - dn—lv

W %(0,7) = {’U e Wh=(0,7) | v(0)=---= T (0) = O} (n>1).

Then for every ¢ € A% (D) there exist ug, u, € Wf”2(0, 7) with ¢, [ZO] —= ).

Remark. We conjecture that the following “analytic” version holds: for
every ¢ € Hol(D), where D C C is an open set containing D, there exist
Gevrey type controls ug, u,, with all derivatives vanishing at ¢ = 0, such
that @ [“0] _y

U
>)
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Concluding remarks
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Connections with the control cost

Assuming that the system (T, ®) is null controllable in some time 7 > 0
(this means that Ran ®. D RanT,.), the cost of null controllability in time
7 is the number ¢, defined by ¢, = SUD)| || x <1 | T-9||Ran ., -

For our boundary controlled heat equation we set

d. = sup | T

Proposition 4.
With the above notation we have

Cr

lim sup d_ < 1.
T—0+ Ut
—_— EREE _—
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Questions to be studied

 Linear heat equations in several space dimensions
* Internal control
« Nonlinear heat equations (viscous Burgers,...)

« Other PDEs (Stokes, ...)
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