Reachable Spaces and Controllability With Focus on Heat Equation Systems

Marius Tucsnak

Outline

- Well-posed linear time invariant control systems
- Reachable space and controllability
- Some remarks about HUM

 The reachable space for the constant coefficients heat equation.

 Robustness of the reachable space with respect to perturbations of the generator

Well-posed linear time invariant control systems

Some notation

We consider control systems described by equations of the form

$$\dot{z}(t) = Az(t) + Bu(t), \quad \text{with}$$

- X (the state space) and U (the input space) are complex Hilbert spaces. We have $X = \mathbb{C}^n$ and $U = \mathbb{C}^m$ for finite-dimensional control systems.
- $\mathbb{T} = (\mathbb{T}_t)_{t \geq 0}$ is a strongly continuous semigroup on X generated by A. We have $\mathbb{T}_t = e^{tA}$ for finite-dimensional control systems. X_1 is $\mathcal{D}(A)$ endowed with the graph norm and X_{-1} is the dual of $\mathcal{D}(A^*)$ with respect to the pivot space X.
- $B \in \mathcal{L}(U; X_{-1})$ is the control operator.

Admissible control operators

The solution of (SE) writes:

$$z(t) = \mathbb{T}_t z(0) + \Phi_t u,$$

where \mathbb{T} is the semigroup generated by A and

$$\Phi_t \in \mathcal{L}(L^2([0,\infty);U), X_{-1}), \quad \Phi_t u = \int_0^t \mathbb{T}_{t-\sigma} Bu(\sigma) d\sigma.$$

Definition.B is called an admissble control operator for \mathbb{T} if $\operatorname{Ran} \Phi_t \subset X$ for one (and hence all) t > 0.

Example. Take $A = -A_0$ with $A_0 > 0$. For $\alpha > 0$, denote $X_{\alpha} = \mathcal{D}(A_0^{\alpha})$ and $X_{-\alpha}$ is the dual of X_{α} with respect to the pivot space X. Then every operator $B \in \mathcal{L}(U, X_{-\frac{1}{2}})$ is admissible.

Institut de Mathématiques de Bordeaux

Reachable space and controllability

Definition and first properties

- The reachable space at time τ is $\operatorname{Ran} \Phi_{\tau}$, it generally depends on τ and it is not, in general, a closed subspace of X.
- Ran Φ_{τ} is a Hilbert space when endowed with the norm

$$\|\eta\|_{\operatorname{Ran}\Phi_{\tau}} = \inf \{ \|u\|_{L^{2}([0,\tau];U)}, \text{ s.t. } \Phi_{\tau}u = \eta. \}$$

• (Kalman, 1963) If X and U are finite dimensional then

Ran
$$\Phi_{\tau}$$
 = Ran $\begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$.

Controllability types

(A, B) is said exactly controllable in time τ if $\operatorname{Ran} \Phi_{\tau} = X$.

(A, B) is said null controllable in time τ if $\operatorname{Ran} \Phi_{\tau} \supset \operatorname{Ran} \mathbb{T}_{\tau}$. This is equivalent to the existence, for each $z_0 \in X$ of $u \in L^2([0, \tau]; U)$ such that the solution of

$$\dot{z}(t) = Az(t) + Bu(t), \qquad z(0) = z_0,$$

satisfies $z(\tau) = 0$.

(A, B) is approximatively controllable in time τ if $\overline{\text{Ran }\Phi_{\tau}} = X$.

The three above concepts coincide with the usual controllability concept in the case of finite dimensional LTIs.

A classical example

The system
$$(\Sigma_{\text{wave}})$$

$$\begin{cases} \ddot{v}(t,x) - \Delta v(t,x) &= u(t,x)\chi_{\mathcal{O}}(x) \\ v(t,x) &= 0 \end{cases}$$
 $(t \geqslant 0, x \in \Omega),$ $(t \geqslant 0, x \in \partial\Omega),$

is exactly controllable in time τ , see Bardos, Lebeau and Rauch (1992) iff any light ray traveling in Ω at unit speed and reflected according to geometric optics laws when it hits \mathcal{O} will hit Ω in time $\leq \tau$.

There is almost no information about the reachable space when the Bardos-Lebeau-Rauch condition fails or when the time is small!

Null controllability and reachable space

Proposition. (Fattorini, Seidman) If (A, B) is null controllable in any time then Ran Φ_{τ} does not depend on $\tau > 0$. Given τ , $\tau' > 0$, the norms $\|\cdot\|_{\operatorname{Ran}\Phi_{\tau}}$ and $\|\cdot\|_{\operatorname{Ran}\Phi_{\tau'}}$ are equivalent.

Proof. The fact that for $0 < t < \tau$, $\operatorname{Ran} \Phi_t \subset \operatorname{Ran} \Phi_\tau$ is an obvious one.

Let now $0 < \tau < t$, $\eta \in \operatorname{Ran} \Phi_t$ and $\tilde{u}(\sigma) = u(\sigma + t - \tau)$, $\tilde{w}(\sigma) = w(\sigma + t - \tau, \cdot)$.

Then $\eta = w(t, \cdot) = \tilde{w}(\tau, \cdot) = \mathbb{T}_{\tau} \tilde{w}(0, \cdot) + \Phi_{\tau} \tilde{u}$. Since $\operatorname{Ran} \Phi_{\tau} \supset \operatorname{Ran} \mathbb{T}_{\tau}$, we have $\eta \in \operatorname{Ran} \Phi_{\tau}$, thus $\operatorname{Ran} \Phi_t \subset \operatorname{Ran} \Phi_{\tau}$.

Remark. (Normand, 2019) under the above assumptions

$$\Phi_{\tau}(\sqrt{t}L^2([0,\tau];U)) = \operatorname{Ran}\Phi_{\tau}.$$

Some remarks about HUM (Hilbert Uniqueness Method)

A classical result (Douglas, 1966)

Proposition. If Z, X are Hilbert spaces and $G \in \mathcal{L}(Z, X)$, then the following statements are equivalent:

- (a) G is onto.
- (b) G^* is bounded from below, i.e., there exists a constant m > 0 such that

$$||G^*x||_Z \geqslant m||x||_X \qquad (x \in X).$$

(c) $GG^* > 0$.

Moreover, if these statements are true then $||(GG^*)^{-1}|| \leq \frac{1}{m^2}$, where m is the constant appearing in statement (b).

The controllability Gramian

Definition. Let (\mathbb{T}, Φ) be a well-posed control LTI. The operator

$$R_{\tau} = \Phi_{\tau} \Phi_{\tau}^* \in \mathcal{L}(X)$$

is called the controllability Gramian in time τ .

Remark. If $B \in \mathcal{L}(U, X)$ then $R_{\tau} = \int_0^{\tau} \mathbb{T}_t B B^* \mathbb{T}_t^* dt$.

Proposition. (\mathbb{T}, Φ) is exactly controllable in time $\tau > 0$ if and only if $R_{\tau} > 0$. If

$$u = \Phi_{\tau}^* R_{\tau}^{-1} z_0,$$

then $\Phi_{\tau}u=z_0$. Moreover u is the unique minimal norm control.

Basic HUM Method in Two Lines

1. Computing R_{τ} : For $\eta \in X$ we have $R_{\tau}\eta = \Phi_{\tau}v$ where

$$v(t) = B^* \mathbb{T}_{\tau - t}^* \eta$$
 $(t \in [0, \tau]).$

2. Computing u: With $\eta = R_{\tau}^{-1}z_0$ set

$$u(t) = B^* \mathbb{T}_{\tau - t}^* \eta \qquad (t \in [0, \tau]),$$

and you found the minimal norm control.

HUM and the reachable space

Proposition. Assume that (A, B) is approximately controllable in some time $\tau > 0$. Then

$$\|\eta\|_{(\operatorname{Ran}\Phi_{\tau})'} = \|\Phi_{\tau}^*\eta\|_{L^2([0,\tau];U)} \qquad (\eta \in X).$$

The reachable space for the constant coefficients heat equation.

The heat equation on the half line (Dirichlet)

(LCH)
$$\begin{cases} \frac{\partial w}{\partial t}(t,x) = \frac{\partial^2 w}{\partial x^2}(t,x) & t \ge 0, \ x \in (0,\infty), \\ w(t,0) = u(t), & t \in [0,\infty), \\ w(0,x) = 0 & x \in (0,\infty), \end{cases}$$

We have a well-posed system with $X = W^{-1,2}(0,\infty)$ and $U = \mathbb{C}$,

$$\left(\mathbb{T}_{\tau}^{\text{left}}\psi\right)(x) = \int_{0}^{\infty} \left[\frac{e^{-\frac{(x-y)^{2}}{4\tau}}}{2\sqrt{\pi\tau}} - \frac{e^{-\frac{(x+y)^{2}}{4\tau}}}{2\sqrt{\pi\tau}}\right] \psi(y) \,dy$$

$$\left(\Phi_{\tau}^{\text{left}}u\right)(x) = \frac{1}{2\sqrt{\pi}} \int_{0}^{\tau} \frac{x e^{-\frac{x^2}{4(\tau-\sigma)}}}{(\tau-\sigma)^{3/2}} u(\sigma) d\sigma$$

18

A "typically infinite dimensional" example

- Approximately controllable in any positive time (duality)
- Ran $\Phi_{\tau}^{\text{left}} \cap \text{Ran } \mathbb{T}_{\tau}^{\text{left}} = \{0\}$ (an application of Hardy's uncertainty principle, see also Escauriaza, Seregin and Sverak (2003) or Dardé and Ervedoza (2020) for generalizations). No null controllability.

• $\Phi_{\tau}^{\text{left}}\left(\sqrt{t}L^{2}([0,\tau];U)\right) = A^{2}(\Delta,\omega_{0,\tau})$ $:= \{f \in \text{HOL}(\Delta) \mid \int_{\Delta} |f(x+iy)|^{2}\omega_{0,\tau}(x+iy) \,dx \,dy < \infty\},$ where $\omega_{0,\tau}(s) = \frac{e^{\frac{\text{Re}(s^{2})}{2\tau}}}{\tau}$ for $s \in \Delta$ (Aikawa, Hayashi and Saitoh, 1990).

The heat equation on an interval

(BCH)
$$\begin{cases} \frac{\partial w}{\partial t}(t,x) = \frac{\partial^2 w}{\partial x^2}(t,x) & t \geqslant 0, \ x \in (0,\pi), \\ w(t,0) = u_0(t), \ w(t,\pi) = u_\pi(t) & t \in [0,\infty), \\ w(0,x) = 0 & x \in (0,\pi), \end{cases}$$

Given $\tau > 0$, define the input to state map

$$\Phi_{\tau} \begin{bmatrix} u_0 \\ u_{\pi} \end{bmatrix} = w(\tau, \cdot) \qquad (\tau > 0, \ u_0, \ u_{\pi} \in L^2[0, \tau]),$$

The above equations define a well-posed control LTIs with

$$X = H^{-1}(0, \pi) \text{ and } U = \mathbb{C}^2.$$

"Classical" results

Given $\tau > 0$ it is known that:

- Ran $\Phi_{\tau} \subset \text{Hol}(D)$, where $D = \{s = x + iy \in \mathbb{C} \mid |y| < x \text{ and } |y| < \pi x\};$
- Ran $\Phi_{\tau} \supset \{\psi \in \operatorname{Hol}(S) \mid \psi^{(2k)}(0) = \psi^{(2k)}(\pi) = 0 \text{ for } k \in \mathbb{N} \}$, where $S = \{s = x + iy \in \mathbb{C} \mid |y| < \pi \}$ (Fattorini and Russell, 1971);
- Ran $\Phi_{\tau} \supset \text{Hol}(B)$, where $B = \left\{ s \in \mathbb{C} \mid \left| s \frac{\pi}{2} \right| < \frac{\pi}{2} e^{(2e)^{-1}} \right\}$ (Martin, Rosier and Rouchon, 2016);
- For every $\varepsilon > 0$ we have $\operatorname{Ran} \Phi_{\tau} \supset \operatorname{Hol}(D_{\varepsilon})$, where D_{ε} is an ε -neighbourhood of the square D (Dardé and Ervedoza, 2016).
- $E^2(D) \subset \text{Ran } \Phi_{\tau} \subset A^2(D)$ (Hartmann, Kellay and M.T., JEMS, 2021)

Hilbert spaces of analytic functions

Let $\Omega \subset \mathbb{C}$ be an open set with Lipschitz boundary.

The Hardy-Smirnov space $E^2(\Omega)$ is

$$E^{2}(\Omega) = \left\{ f \in Hol(\Omega) \mid \int_{\partial \Omega} |f(\zeta)|^{2} |d\zeta| < \infty \right\},\,$$

The Bergman space with weight ω is

$$A^{2}(\Omega,\omega) = Hol(\Omega) \cap L^{2}(\Omega,\omega).$$

For $\omega = 1$ we simply write $A^2(\Omega)$.

Recent results (I): notation

Let
$$\delta > 0$$
. $\omega_{0,\delta}(s) = \frac{e^{\frac{\operatorname{Re}(s^2)}{2\delta}}}{\delta}$ for $s \in \Delta$.

Let
$$\omega_{\pi,\delta}(\tilde{s}) = \omega_{0,\delta}(\pi - \tilde{s})$$
 for $\tilde{s} \in \tilde{\Delta}$.

Let
$$X_{\delta} = A^2(\Delta, \omega_{0,\delta}) + A^2(\tilde{\Delta}, \omega_{\pi,\delta}).$$

$$\|\varphi\|_{\delta} = \inf \left\{ \|\varphi_0\|_{A^2(\Delta,\omega_{0,\delta})} + \|\varphi_{\pi}\|_{A^2(\tilde{\Delta},\omega_{\pi,\delta})} \quad \middle| \begin{array}{c} \varphi_0 + \varphi_{\pi} = \varphi \\ \varphi_0 \in A^2(\Delta,\omega_{0,\delta}) \\ \varphi_{\pi} \in A^2(\tilde{\Delta},\omega_{\pi,\delta}) \end{array} \right\}.$$

$$\left. \begin{array}{l} \varphi_0 + \varphi_\pi = \varphi \\ \varphi_0 \in A^2(\Delta, \omega_{0,\delta}) \\ \varphi_\pi \in A^2(\tilde{\Delta}, \omega_{\pi,\delta}) \end{array} \right\}.$$

Recent results (II):

Theorem 1. (Kellay, Normand and M.T., Analysis & PDE, 2022) For every $\tau > 0$ we have Ran $\Phi_{\tau} = X_{\tau}$.

Proposition 1. (Kellay, Normand and M.T., 2022) For every $\delta > 0$ we have $X_{\delta} = A^2(\Delta) + A^2(\tilde{\Delta})$.

Corollary 1. (Orsoni, 2019, Kellay, Normand and M.T., 2019) We have Ran $\Phi_{\tau} = A^2(\Delta) + A^2(\tilde{\Delta})$ for every τ , $\delta > 0$.

Theorem 2. (Hartmann and Orsoni., 2020) $A^2(\Delta) + A^2(\tilde{\Delta}) = A^2(D)$, thus Ran $\Phi_{\tau} = A^2(D)$.

Proof of Proposition 1 (I)

$$(\Phi_{\tau}u)(x) = (\Phi_{\tau}^{\text{left}}u_0)(x) + (\Phi_{\tau}^{\text{right}}u_{\pi})(x) + \int_0^{\tau} \frac{\partial K_0}{\partial x}(\tau - \sigma, x)u_0(\sigma) d\sigma + \int_0^{\tau} \frac{\partial \tilde{K}_{\pi}}{\partial x}(\tau - \sigma, x)u_{\pi}(\sigma) d\sigma \qquad (x \in (0, \pi)),$$

$$(\Phi_{\tau}^{\text{left}}u_0)(s) = \frac{1}{2\sqrt{\pi}} \int_0^{\tau} \frac{e^{-\frac{s^2}{4(\tau - \sigma)}}}{(\tau - \sigma)^{3/2}} s u_0(\sigma) d\sigma, \quad (\Phi_{\tau}^{\text{right}}u_{\pi})(s) = (\Phi_{\tau}^{\text{left}}u_{\pi})(\pi - s)$$

$$\tilde{K}_0(\sigma, x) = -\sqrt{\frac{1}{\pi\sigma}} \sum_{m \in \mathbb{Z}^*} e^{-\frac{(x+2m\pi)^2}{4\sigma}}, \quad \tilde{K}_{\pi}(\sigma, x) = \sqrt{\frac{1}{\pi\sigma}} \sum_{m \in \mathbb{Z}^*} e^{-\frac{(x+(2m-1)\pi)^2}{4\sigma}}.$$

Since $\left(\Phi_{\tau} - \Phi_{\tau}^{\text{left}} - \Phi_{\tau}^{\text{right}}\right)(\sqrt{t}u)$ is "small" in X_{τ} , it suffices to consider only the first two terms in the right-hand side.

Several space dimensions

$$\begin{cases} \frac{\partial w}{\partial t}(t,x) = \Delta w(t,x) & t \geqslant 0, \ x \in \Omega, \\ \\ w(t,\cdot) = u, & t \in [0,\infty), \ x \in \partial \Omega \\ \\ w(0,x) = 0 & x \in \Omega, \end{cases}$$

Given $\tau > 0$, define the input to state map

$$\Phi_{\tau}u = w(\tau, \cdot) \qquad (\tau > 0, \ u \in L^2([0, \tau]; L^2(\partial\Omega)).$$

Theorem (Strohmaier and Waters, 2020).

If Ω is a ball then for every $\tau > 0$ we have $\operatorname{Ran} \Phi_{\tau} \supset \operatorname{Hol} \left(\overline{\mathcal{E}(\Omega)} \right)$, where

$$\mathcal{E}(\Omega) = \{ x + iy \in \mathbb{C}^n \mid x \in \Omega, |y| < d(x, \partial\Omega) \}.$$

26

Robustness of the reachable space with respect to perturbations of the generator

Perturbations of the generator

- The reachable space of a finite dimensional LTI is not, in general, robust with respect to small perturbations of the generator (exercice using Kalman's matrix).
- For infinite dimensional LTIs the exact controllability property and thus the reachable space, are robust with respect to small perturbations of the generator.
- Can a similar robustness property be obtained for LTI's with a weaker controllability property?

Main results (Ervedoza, Le Balch', MT, JFA, 2022)

Theorem 3. Assume that (A, B) is null controllable in any time and that $P \in \mathcal{L}(X) \cap \mathcal{L}(\operatorname{Ran} \Phi_{\tau_0})$ for some $\tau_0 > 0$.

Then there exists $\delta_{\tau_0} > 0$ such that if $||P||_{\mathcal{L}(\operatorname{Ran}\Phi_{\tau_0})} \leq \delta_{\tau_0}$, then

ICTS, 2024

$$\operatorname{Ran}\Phi_{\tau_0}^P = \operatorname{Ran}\Phi_{\tau_0}.$$

Theorem 4. Suppose that A < 0 has compact resolvents, $B \in \mathcal{L}(U, X_{-\alpha})$ for some $\alpha \in [0, 1/2]$, and that (A, B) is null-controllable in any time $\tau > 0$. Moreover, suppose that $P \in \mathcal{L}(X_{1-\alpha-\varepsilon}, \operatorname{Ran}\Phi_{\tau})$, where $\alpha \in [0, 1/2]$ and $\varepsilon \in (0, 1-\alpha]$. Finally, suppose that the pair (A+P, B) satisfies the Hautus type condition $\operatorname{Ker}(sI - A - P^*) \cap \operatorname{Ker} B^* = \{0\}$ for all $s \in \mathbb{C}$. Then for every $\tau > 0$ we have $\operatorname{Ran} \Phi_{\tau}^{P} = \operatorname{Ran} \Phi_{\tau}$, and $\operatorname{Ran} \mathbb{T}_{\tau}^{P} \subset \operatorname{Ran} \Phi_{\tau}^{P}$, that is the system (A + P, B) is null-controllable in any time $\tau > 0$.

Main ingredient of the proof

Theorem 4.(Ervedoza, Le Balch and M.T., 2022)

Let $\Sigma = (\mathbb{T}, \Phi)$ be a well posed control system which is null controllable in any positive time. For $\tau > 0$ we denote by $\tilde{\mathbb{T}} = (\tilde{\mathbb{T}}_t)_{t \geqslant 0}$ the semigroup of operators defined by

$$\tilde{\mathbb{T}}_t = \mathbb{T}_t|_{\operatorname{Ran}\Phi_{\tau}}, \qquad (t \geqslant 0).$$

Then the family $\tilde{\mathbb{T}} = (\mathbb{T}_t|_{\operatorname{Ran}\Phi_{\tau}})_{t\geqslant 0}$ does not depend on the choice of $\tau > 0$, and forms a C^0 semigroup on $\operatorname{Ran}\Phi_{\tau}$. Moreover, the couple $\tilde{\Sigma} = (\tilde{\mathbb{T}}, \Phi)$ determines a well-posed control system with state space $\operatorname{Ran}\Phi_{\tau}$ and input space U. Finally, this system is exactly controllable in any positive time.

Idea of the proof (1)

It suffices to prove that for every $\tau > 0$ there exists a constant $c_{\tau} > 0$ such that

$$\|\mathbb{T}_t\|_{\mathcal{L}(\operatorname{Ran}\Phi_{\tau})} \leqslant c_{\tau} \qquad (t \in (0, \tau]),$$

and then apply a classical result of Hille. First note that that

$$\|\mathbb{T}_t \eta\|_{\operatorname{Ran}\Phi_{\tau}} \leqslant c_{\tau} \|\mathbb{T}_t \eta\|_{\operatorname{Ran}\Phi_{2\tau}} \qquad (t \in (0,\tau], \ \eta \in \operatorname{Ran}\Phi_{\tau}).$$

On the other hand, we will see that

$$\|\mathbb{T}_t \eta\|_{\operatorname{Ran}\Phi_{2\tau}} \leqslant \|\eta\|_{\operatorname{Ran}\Phi_{2\tau-t}} \qquad (t \in (0,\tau], \ \eta \in \operatorname{Ran}\Phi_{\tau}).$$

We can thus combine the last two inequalities to obtain that

$$\|\mathbb{T}_t \eta\|_{\operatorname{Ran}\Phi_{\tau}} \leqslant c_{\tau} \|\eta\|_{\operatorname{Ran}\Phi_{2\tau-t}} \qquad (t \in (0,\tau], \ \eta \in \operatorname{Ran}\Phi_{\tau}).$$

Since $2\tau - t \ge \tau$, the last estimate implies the conclusion.

31

Idea of the proof (2)

Proof of the inequality:

$$\|\mathbb{T}_t \eta\|_{\operatorname{Ran}\Phi_{2\tau}} \leqslant \|\eta\|_{\operatorname{Ran}\Phi_{2\tau-t}} \qquad (t \in (0,\tau], \ \eta \in \operatorname{Ran}\Phi_{\tau}).$$

If $u \in L^2([0, 2\tau - t]; U)$ is such that $\Phi_{2\tau - t}u = \eta$ then $\tilde{u} \in L^2([0, 2\tau]; U)$ defined by

$$\tilde{u}(t) = \begin{cases} u(t) & (t \in [0, 2\tau - t]), \\ 0 & (t \in (2\tau - t, 2\tau]), \end{cases}$$

satisfies $\Phi_{2\tau}\tilde{u} = \mathbb{T}_t\eta$ and $\|\tilde{u}\|_{L^2([0,2\tau];U)} = \|u\|_{L^2([0,2\tau-t];U)}$. So we get

$$\|\mathbb{T}_t \eta\|_{\operatorname{Ran}\Phi_{2\tau}} = \|\Phi_{2\tau} \tilde{u}\|_{\operatorname{Ran}\Phi_{2\tau}} \le \|\tilde{u}\|_{L^2([0,2\tau];U)} = \|u\|_{L^2([0,2\tau-t];U)},$$

for every $u \in L^2([0, 2\tau - t]; U)$ such that $\Phi_{2\tau - t}u = \eta$, then by taking the infimum of $u \in L^2([0, 2\tau - t]; U)$ such that $\Phi_{2\tau - t}u = \eta$ in both sides of the previous inequality we obtain the desired inequality.

Applications to the perturbed heat equation

1D heat equation with Neumann boundary control

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) = 0 & (t \geqslant 0, \ x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = u_0(t), & \frac{\partial z}{\partial x}(t,\pi) = u_{\pi}(t) & (t \geqslant 0), \\ z(0,x) = 0 & (x \in (0,\pi)), \end{cases}$$

$$A = \frac{d^2}{dx^2} \text{ on } X = L^2[0, \pi], \, \mathcal{D}(A) = \left\{ z \in H^2(0, \pi), \frac{dz}{dx}(0) = \frac{dz}{dx}(\pi) = 0 \right\}.$$

$$B\begin{bmatrix} u_0 \\ u_{\pi} \end{bmatrix} = -u_0 \delta_0 + u_{\pi} \delta_{\pi}.$$

Null-controllable in any time $\tau > 0$.

[Fattorini Russell 1971]

Known result

Theorem 4. ([Hartmann-Orsoni 2021], ...,[Hartman, Kellay, Tucsnak, 2021]) The reachable space of the above 1d heat equation is independent of the time horizon $\tau > 0$ and, for all $\tau > 0$,

$$\operatorname{Ran}\Phi_{\tau} = A^{1,2}(D),$$

where

$$D = \{ s = x + iy \in \mathbb{C} \mid |y| < x \text{ and } |y| < \pi - x \}.$$

and $A^{1,2}(D) = \{ f \in \text{Hol}(D) \cap W^{1,2}(D) \}$

First application: small potentials

Proposition.

There exists $\varepsilon > 0$, such that if $p \in \text{Hol}(D) \cap W^{1,\infty}(D)$ with $\|p\|_{W^{1,\infty}(D)} \leq \varepsilon$, the reachable set for the equation

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) + p(x)z(t,x) = 0 & (t \ge 0, \ x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = u_0(t), \ \frac{\partial z}{\partial x}(t,\pi) = u_\pi(t) & (t \ge 0), \\ z(0,x) = 0 & (x \in (0,\pi)), \end{cases}$$

is independent of the time horizon and coincides with $A^{1,2}(D)$

Non local perturbations (inspired by [Cara and Zuazua, 2016])

Proposition. Let $K \in L^2([0,\pi] \times [0,\pi])$ be such that $x \mapsto K(x,y)$ is in $\operatorname{Hol}(D) \cap W^{1,2}(D)$ and that $K \in L^2_y([0,\pi];W^{1,2}_x(D))$. Suppose that

$$\begin{cases} -\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2}(x) - s\psi(x) = \int_0^\pi \overline{K(y, x)} \psi(y) \, \mathrm{d}y, & (x \in [0, \pi]) \\ \psi(0) = \frac{\mathrm{d}\psi}{\mathrm{d}x}(0) = 0, & \psi(\pi) = \frac{\mathrm{d}\psi}{\mathrm{d}x}(\pi) = 0. \end{cases}$$

iff $\psi = 0$. Then the reachable space of

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) + \int_0^{\pi} K(x,y)z(t,y) \, dy = 0 & (t \geqslant 0, \ x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = u_0(t), \quad \frac{\partial z}{\partial x}(t,\pi) = u_{\pi}(t) & (t \geqslant 0), \\ z(0,x) = 0 & (x \in (0,\pi)), \end{cases}$$

is independent of the time horizon and coincides with $A^{1,2}(D)$

Reachability with smooth inputs (nonlinear perturbations)

Proposition 3. For $\tau > 0$ and $n \in \mathbb{N}$ we set

$$A_n^2(D) := \left\{ \psi \in A^2(D) \mid \frac{\mathrm{d}^{2k}\psi}{\mathrm{d}s^{2k}} \in A^2(D) \text{ for } k = 1, \dots, n \right\}$$
 $(n \ge 1).$

$$W_{\rm L}^{n,2}(0,\tau) = \left\{ v \in W^{n,2}(0,\tau) \mid v(0) = \dots = \frac{\mathrm{d}^{n-1}v}{\mathrm{d}t^{n-1}}(0) = 0 \right\} \qquad (n \geqslant 1).$$

Then for every $\psi \in A_n^2(D)$ there exist $u_0, u_{\pi} \in W_L^{n,2}(0,\tau)$ with $\Phi_{\tau} \begin{bmatrix} u_0 \\ u_{\pi} \end{bmatrix} = \psi$.

Remark. We conjecture that the following "analytic" version holds: for every $\psi \in Hol(\tilde{D})$, where $\tilde{D} \subset \mathbb{C}$ is an open set containing \overline{D} , there exist Gevrey type controls u_0 , u_{π} , with all derivatives vanishing at t=0, such that $\Phi_{\tau} \begin{bmatrix} u_0 \\ u_{\pi} \end{bmatrix} = \psi$.

Concluding remarks

Connections with the control cost

Assuming that the system (\mathbb{T}, Φ) is null controllable in some time $\tau > 0$ (this means that $\operatorname{Ran} \Phi_{\tau} \supset \operatorname{Ran} \mathbb{T}_{\tau}$.), the cost of null controllability in time τ is the number c_{τ} defined by $c_{\tau} = \sup_{\|\psi\|_{X} \leq 1} \|\mathbb{T}_{\tau}\psi\|_{\operatorname{Ran} \Phi_{\tau}}$. For our boundary controlled heat equation we set

$$d_{\tau} = \sup_{\|\psi\|_{W^{-1,2}(0,\pi)} \le 1} \|\mathbb{T}_{\tau}\psi\|_{\tau}.$$

Proposition 4.

With the above notation we have

$$\limsup_{\tau \to 0+} \frac{c_{\tau}}{d_{\tau}} \leqslant 1.$$

Questions to be studied

Linear heat equations in several space dimensions

Internal control

Nonlinear heat equations (viscous Burgers,...)

Other PDEs (Stokes, ...)

