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Aim and contents

The general aim of these lectures is to coherently cover subjects
going from introductory material to new challenging topics and
open questions.

Contents:

1 Admissible control operators (or well posed control LTI’s)

2 Reachable spaces and controllability, with focus on heat
equation systems

3 Hautus conditions and perturbations for time reversible
systems

4 Time optimal control problems.
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First definitions

Definition 1

A family T = (Tt)t⩾0 in L(X), with X a Hilbert space, is a
strongly continuous (operator) semigroup on X if
(1) T0 = I,
(2) Tt+τ = TtTτ for every t, τ ⩾ 0 (the semigroup property),
(3) lim

t→0, t>0
Ttz0 = z0, for all z0 ∈ X (strong continuity).

Definition 2

A : D(A) → X, D(A) =
{
z ∈ X

∣∣ limt→0, t>0
Ttz−z

t exists
}
,

Az = lim
t→0, t>0

Ttz − z

t
(z ∈ D(A)),

is called the generator of T.
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First examples associated to differential equations

Example 3

For A ∈ L(X) we put Tt = etA :=
∑∞

k=0
(tA)k

k! .

Example 4

Let τ > 0, take X = L2[0, a] and for every t ∈ R and z ∈ X define

(Ttz)(x) =

{
z(x+ t) if x+ t ⩽ a,

0 else.

Moreover,

A =
d

dx
, D(A) = {z ∈W 1,2(0, a) | z(a) = 0}.
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Sufficient conditions for semigroup generation

Theorem 5

Let D(A) be a dense subspace of X. If A : D(A) → X satisfies
one of the conditions:

A = A∗ ⩽ mIX , for some m ∈ R.
A = −A∗ ,

A = Ã+ P , where Ã : D(A) → X generates a C0-semigroup
on X and P ∈ L(X),

then A generates a C0-semigroup on X. In the second case T can
be extended to a unitary group.
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Further examples

Example 6

The Dirichlet Laplacian on an open set Ω with “smooth“ ∂Ω is
selfadjoint and non negative on L2(Ω),

Example 7

The wave operator

A =

[
0 I
∆ 0,

]
is skew-adjoint on X =W 1,2

0 (Ω)× L2(Ω).
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The space X−1

Definition 8

Let V ⊂ X be a dense subspace. Then the dual V ′ of V with
respect to the pivot space X is the completion of X with respect
to the norm on X defined by ∥f∥V ′ = sup

∥φ∥V ⩽1
|⟨φ, f⟩X |. For

V = D(A∗), with A a semigroup generator, V ′ is denoted by X−1.

Theorem 9

Suppose that A is the generator of a strongly continuous semigroup
T on X. Let X1 be D(A) endowed with the graph norm.
Then for every t ⩾ 0, Tt has a restriction which is in L(X1) and a
unique extension T̃t which is in L(X−1). Moreover, these new
families of operators are similar to the original semigroup.

Marius Tucsnak Infinite dimensional LTI’s



General introduction
A (very) brief introduction to operator semigroups

What is a well-posed LTI system?
Some examples of well-posed control LTIs

Extrapolation spaces or “towers of Hilbert spaces”

Remark 1

The construction of X1 and X−1 can be iterated, in both
directions, so that we obtain the infinite sequence of spaces

... X2 ⊂ X1 ⊂ X ⊂ X−1 ⊂ X−2 ...

each inclusion being dense and with continuous embedding. For
each k ∈ Z, the original semigroup T has a restriction (or an
extension) to Xk which is the image of T through the unitary
operator (βI −A)−k ∈ L(X,Xk). The space X−2 occasionally
arises in the proof of theorems in infinite-dimensional systems
theory.
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Linear differential equations in Hilbert spaces (I)

Definition 10

Consider the differential equation

ż(t) = Az(t) + f(t), (1)

where f ∈ L1
loc([0,∞);X−1). A solution of (1) in X−1 is a

function
z ∈ L1

loc([0,∞);X) ∩ C([0,∞);X−1)

which satisfies the following equations in X−1:

z(t)− z(0) =

∫ t

0
[Az(σ) + f(σ)] dσ (t ∈ [0,∞)). (2)
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Linear differential equations in Hilbert spaces (II)

Remark 2

We could also define the concept of a “weak solution of (1) in
X−1”, by requiring instead of (2) that for every φ ∈ Xd

1 (which
designs D(A∗) endowed with the graph norm) and every t ⩾ 0,

⟨z(t)−z(0), φ⟩X−1,Xd
1
=

∫ t

0

[
⟨z(σ), A∗φ⟩X + ⟨f(σ), φ⟩X−1,Xd

1

]
dσ.

Remark 3

If f ∈ L1
loc([0,∞);X) then the concept of a solution of (1) in X

can be defined similarly, by replacing everywhere in Definition
10 the space X−1 by X and X by X1. This concept of a solution
appears often in the literature, being designed as weak solution.
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Mild=Weak and a regularity result

Proposition 1

With the notation of Definition 10, suppose that z is a solution of
(1) in X−1 and denote z0 = z(0). Then z is given by

z(t) = Ttz0 +

∫ t

0
Tt−σf(σ)dσ. (3)

Theorem 11

If z0 ∈ X and f ∈W 1,∞
loc ((0,∞);X−1), then the equation (1) has

a unique solution in X−1, denoted z, that satisfies z(0) = z0.
Moreover, this solution is such that

z ∈ C([0,∞);X) ∩ C1([0,∞);X−1),

and it satisfies (1) in the classical sense, at every t ⩾ 0.
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Basic ingredients

The Hilbert spaces U , X and Y

U is the input space, X is the state space and Y is the output
space

A family of operators

Στ =
[
Tτ Φτ

]
: X × L2([0,∞);U) → X

Some notation: for u, v ∈ L2
loc([0,∞);W ) and τ ⩾ 0,

the τ -concatenation of u and v, denoted u♢
τ
v, is the function

defined by

(u♢
τ
v)(t) =

{
u(t) for t ∈ [0, τ ],

v(t− τ) for t > τ.
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First basic definition

Definition. (Σt)t⩾0 = (Tt,Φt)t⩾0 define a well-posed linear
system withe state space X and input space U if

1 T = (Tt)t⩾0 is an operator semigroup on X,

2 The input maps (Φt)t⩾0 are in L
(
L2([0,∞);U), X

)
and

Φτ+t(u♢
τ
v) = TtΦτu+Φtv (u, v ∈ L2([0,∞);U)).

If U , X are finite dimensional then A ∈ L(X), B ∈ L(U,X) and

Tt = etA, Φtu =

∫ t

0
e(t−σ)ABu(σ) dσ (t ⩾ 0).

We thus retrieve the standard description of finite dimensional LTIs

ż(t) = Az(t) +Bu(t).
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Representation of infinite dimensional systems

Theorem 12 (Weiss [2] (1989), M.T. and Weiss, [1] (2014))

Let (T,Φ) be a well posed system. Then there is a unique
B ∈ L(U,X−1) such that

Φtu =

∫ t

0
Tt−σBu(σ) dσ

(
t ⩾ 0, u ∈ L2([0,∞);U)

)
.

(4)
Moreover,for any z0 ∈ X the function

z(t) = Ttz0 +Φtu (t ⩾ 0)

is the (unique) mild solution of ż(t) = Az(t) +Bu(t) with
z(0) = z0.
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Admissible control operators

Let B ∈ L(U,X−1). For τ ≥ 0, we define Φτ ∈ L(U,X−1) by (4).

Definition 13

Let (T,Φ) be a well posed system. Then there is a unique
B ∈ L(U,X−1) such that

Φtu =

∫ t

0
Tt−σBu(σ) dσ

(
t ⩾ 0, u ∈ L2([0,∞);U)

)
.

Moreover,for any z0 ∈ X the function

z(t) = Ttz0 +Φtu (t ⩾ 0)

is the (unique) mild solution of ż(t) = Az(t) +Bu(t) with
z(0) = z0.
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A duality result

Theorem 14

Suppose that B ∈ L(U,X−1). Then B is an admissible control
operator for T if and only if B∗ is an admissible observation
operator for T∗, i.e., for evert τ > 0 there exists kτ > 0 with∫ τ

O
∥B∗T∗

t f∥2U dt ⩽ k2τ∥f∥2X (f ∈ D(A∗)).

Remark 4

In the above theorem, and in most of the results to follow, X
and U are identified with their duals. This means in particular,
that the dual of any subspace of X will be taken with respect to
the pivot space X.
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Heat equation with Dirichlet b.c. on a half-line (I)


∂φ

∂t
(t, x) =

∂2φ

∂x2
(t, x) (t ⩾ 0, x ∈ (0,∞)),

φ(t, 0) = 0, (t ∈ [0,∞)),

(5)

Proposition 2

Let X be one of the spaces W 1,2
0 (0,∞), L2(0,∞) or W−1,2(0,∞).

Then equations (5) determine a C0-semigroup Tleft on X with

(
Tleft
τ ψ

)
(x) =

∫ ∞

0

e−
(x−y)2

4τ

2
√
πτ

− e−
(x+y)2

4τ

2
√
πτ

ψ(y) dy.
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Heat equation with Dirichlet b.c. on a half-line (II)


∂z

∂t
(t, x) =

∂2z

∂x2
(t, x) (t ⩾ 0, x ∈ (0,∞)),

z(t, 0) = u(t), (t ∈ [0,∞)),

(6)

Proposition 3

(6) determines a well-posed control LTI, denoted (Tleft,Φleft) with
X =W−1,2(0, π), U = C where Tleft is given in Proposition 2 and

(Φleft
τ u)(x) =

1

2
√
π

∫ τ

0

e
− x2

4(τ−σ)

(τ − σ)3/2
xu(σ) dσ.
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Heat equation with Dirichlet b.c. on an interval (I)


∂φ

∂t
(t, x) =

∂2φ

∂x2
(t, x) (t ⩾ 0, x ∈ (0, π)),

φ(t, 0) = 0, φ(t, π) = 0, (t ∈ [0,∞)),

(7)

Proposition 4

Let X be one of the spaces W 1,2
0 (0, π), L2(0, π) or W−1,2(0, π).

Then equations (7) determine a C0-semigroup T on X with

(Tτψ) (x) =
1

2
√
τπ

∫ π

0

∑
m∈Z

e−
(x−ξ+2mπ)2

4τ ψ(ξ) dξ

− 1

2
√
τπ

∫ π

0

∑
m∈Z

e−
(x+ξ+2mπ)2

4τ ψ(ξ) dξ. (8)
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Heat equation with Dirichlet b.c. on an interval (II)


∂z

∂t
(t, x) =

∂2z

∂x2
(t, x) (t ⩾ 0, x ∈ (0, π)),

z(t, 0) = u0(t), z(t, π) = uπ(t) (t ∈ [0,∞)),

(9)

Proposition 5

(9) determines a well-posed control LTI, denoted (T,Φ) with
X =W−1,2(0, π), U = C where T is given in Proposition 4 and

(Φτu)(x) = (Φleft
τ u0)(x) +

(
Φright
τ uπ

)
(x)+∫ τ

0

∂K̃0

∂x
(τ − σ, x)u0(σ) dσ +

∫ τ

0

∂K̃π

∂x
(τ − σ, x)uπ(σ) dσ,

(Φright
τ uπ)(x) = (Φleft

τ uπ)(π − x),
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Continued

K̃0(σ, x) = −
√

1

πσ

∑
m∈Z∗

e−
(x+2mπ)2

4σ ,

K̃π(σ, x) =

√
1

πσ

∑
m∈Z∗

e−
(x+(2m−1)π)2

4σ .

Proof.

It suffices to solve the Cauchy problem with the initial data

ψ̃(η) =

{
ψ(η + 2mπ) η ∈ [−2mπ,−(2m− 1)π]

−ψ(η + 2mπ) η ∈ [−(2m+ 1)π,−2mπ],

with m ∈ Z.
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M. Tucsnak and G. Weiss, Well-posed systems-the LTI
case and beyond, Automatica, 50 (2014), pp. 1757–1779.

G. Weiss, Admissibility of unbounded control operators,
SIAM J. Control Optim., 27 (1989), pp. 527–545.
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