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A KdV control system

Following L. Rosier (1997), we consider the KdV control system

{

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(1)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is
u(t) ∈ R.



Controllability of the linearized control system

The linearized control system (around 0) is

{

yt + yx + yxxx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(2)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is
u(t) ∈ R.

Theorem (L. Rosier (1997))

For every T > 0, the linearized control system is controllable in time T if
and only

(3) L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗

}

.

Moreover, if L ∈ N , the uncontrollable part is a linear space (later
denoted M) of finite dimension.
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Application to the nonlinear system

Theorem (L. Rosier (1997))

For every T > 0, the KdV control system is locally controllable (around 0)
in time T if L 6∈ N for the L2-norm for the state and the L2-norm for the
control.

Remark

The above controllability property is called Small-Time Local
Controllability, STLC in short: the time, the state, and the controls are
small (for suitable norms).



Controllability when L ∈ N

Theorem (STLC if dim(M) = 1, JMC and E. Crépeau (2004))

If the uncontrollable part M of the linearized system is of dimension 1, for
every T > 0 the KdV control system is locally controllable (around 0) in
time T .

Remark

If L = 2π, M is of dimension 1 and there are infinitely many L such that
M is of dimension 1.

Theorem (Local controllability in large time, E. Cerpa (2007), E.
Cerpa and E. Crépeau (2008))

For every L ∈ N , there exists T > 0 such that the KdV control system is
locally controllable (around 0) in time T .



The proofs of these theorems rely on the power series expansion method.
In the first theorem an expansion to the order 3 is required, while in the
secund theorem an expansion to the order 2 is used. For the order 3 the
computations are more complicate but the fact that this order is odd helps
to get the local controllability in small time.



STLC for every L ∈ N ?

Question (Small-time local controllability)

Assume that dim(M) > 1. Is is true that for every T > 0 the control
system

{

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(4)

is locally controllable in time T ?



Theorem (JMC, A. Koenig and H.-M. Nguyen (2022))

Let k, l ∈ N \ {0} be such that 2k + l 6∈ 3N. Assume that

(5) L = 2π

√

k2 + kl + l2

3
.

Then our KdV control system is not small-time locally null-controllable
with controls in H1 and initial datum in H3(0, L) ∩H1

0 (0, L), i.e., there
exist T0 > 0 and ε0 > 0 such that, for every δ > 0, there is
y0 ∈ H3(0, L) ∩H1

0 (0, L) with ‖y0‖H3(0,L) < δ such that for every
u ∈ H1(0, T0) with ‖u‖H1(0,T0) < ε0 and u(0) = y′0(L), we have

(6) y(T0, ·) 6= 0,

where y ∈ C
(

[0, T0];H
3(0, L)

)

∩ L2
(

[0, T0];H
4(0, L)

)

is the unique
solution of our control system for the control u and starting from y0.



Open problem (Regularity and small-time local controllability)

Is the KdV control system small-time locally null controllable with initial
state in L2(0, L) and control in L2(0, T ) for a critical length as in the
previous theorem?

Related to this problem let us recall that M. Bournissou (2022) gave a
PDE example (a Schrödinger equation) such that the functional spaces do
matter for the small-time controllability: She gives the first example for a
pde control system where the cubic term (which gives the positive result:
it is STLC) wins against the quadratic term (which gives the negative
result: not STLC).
Note that with the boundary conditions y(t, 0) = yx(t, L) = 0 and
y(t, 0) = u(t), Hoai-Minh Nguyen (2023) got the optimal result:
obstruction to the small-time local controllability in the good spaces for all
critical lengths!



Open problem (Just dimM > 1)

Can the assumption 2k + l 6∈ 3N be replaced by the weaker assumption
dimM > 1?

Open problem (Optimal time)

What is the minimal time for local controllability?
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The water tank control system

u = F

The modelling is done with the Saint-Venant equations. See F. Dubois, N.
Petit and P. Rouchon (1999).



Saint-Venant equations: Notations

D

x

vH

The horizontal velocity v is taken with respect to the one of the tank.



The model: Saint-Venant equations

Ht + (Hv)x = 0, t ∈ [0, T ], x ∈ [0, L],(1)

vt +

(

gH +
v2

2

)

x

= −u (t) , t ∈ [0, T ], x ∈ [0, L],(2)

v(t, 0) = v(t, L) = 0, t ∈ [0, T ],(3)

ṡ(t) = u (t) , t ∈ [0, T ],(4)

Ḋ(t) = s (t) , t ∈ [0, T ].(5)

u (t) is the horizontal acceleration of the tank in the absolute
referential,

g is the gravity constant,

s is the horizontal velocity of the tank,

D is the horizontal displacement of the tank.



State space

d

dt

∫ L

0
H (t, x) dx = 0,(1)

Hx(t, 0) = Hx(t, L) (= −u(t)/g).(2)

Definition (State space)

The state space (denoted Y) is the set of

Y = (H, v, s,D) ∈ C1([0, L]) × C1([0, L]) × R× R

satisfying

v(0) = v(L) = 0, Hx(0) = Hx(L),

∫ L

0
H(x)dx = LHe.(3)



Local controllability in large time

Theorem (JMC, (2002))

For T > 0 large enough the water-tank control system is locally
controllable in time T around (Ye, ue) := ((He, 0, 0, 0), 0).

Prior work: F. Dubois, N. Petit and P. Rouchon (1999):

1 The linearized control system around (Ye, ue) is not controllable,

2 Steady state controllability of the linearized control system around
(Ye, ue).



Steady-state controllability

D1

u



F. Dubois, N. Petit and P. Rouchon proved in 1999 that for the linearized
system around the equilibrium H = He, speed=0, position of the tank at
the origin, the steady-state controllability is valid for every time T such
that

T >

√

LHe

g
.(1)

However we have the following theorem

Theorem (JMC, A. Koenig and H.-M. Nguyen (2023))

For every T < 2
√

LHe
g the steady-state controllability with small (for the

C0-norm) control does not hold in time T even if the two steady states are
arbitrary close but different.
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A quantum particle in a moving box

(Suggested by P. Rouchon)

ψ



Local (“null”) controllability

−1 1

ψ

−1 1

ϕ1
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Motion of the box

ψ ψ

u



Global controllability: From the first eigenfunction to the

second one

−1 1

ψ

−1 1

ψ

u



Controllability results

Theorem

The steady-state motion of the box for the linearized control system
around the first eigenfunction holds in small time: P. Rouchon (2003).
However this result does not hold for the (nonlinear) system JMC
(2006) for small controls and arbitrary small but not 0 displacement.

Large time local controllability: Without (S,D): K. Beauchard
(2005); with (S,D): K. Beauchard and JMC (2006),

Large time controllability between eigenfunctions: K. Beauchard and
JMC (2006),

Large time global controllability: V. Nersesyan (2008).



Not STLC: Notations

1

x

ψ(t, x)

D

ψ



Not STLC: Equations and definitions

Let ε ∈ (0, 1]. Let u : (0, T ) → R be such that

|u(t)| < ε, t ∈ (0, T ).(2)

Let (ψ, S,D) be the solution of the Cauchy problem (the control system
(P. Rouchon))

iψt = −ψxx − u(t)xψ, (t, x) ∈ (0, T ) × (−1, 1),(3)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(4)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ),(5)

ψ(0, x) = ϕ1(x), x ∈ (−1, 1),(6)

S(0) = 0, D(0) = 0.(7)

We assume that S(T ) = 0. Let θ : [0, T ] × (−1, 1) → C be defined by

θ(t, x) := eiλ1tψ(t, x), (t, x) ∈ (0, T ) × (−1, 1).(8)



Not STLC: A quantity with a sign whatever is the control

One defines V (t) := −i+ i
∫ 1
−1 θ(t, x)ϕ1(x). Simple computations show

that

V (t) =

∫ t

0
S(τ)V0(τ)dτ +

∫ t

0
S(τ)2V1(τ)dτ(9)

with

V0(τ) := 2i

∫ 1

−1
θ(τ, x)ϕ1x(x)dx, V1(τ) := − i

2

∫ 1

−1
θt(τ, x)x

2ϕ1(x)dx.

Standard estimates lead to

V0(t) = S(t) +O(‖S‖L1(0,t) + ε‖S‖L2(0,t) + ε|S(t)|),(10)

V1(t) = O(ε).(11)

... Hence the real part of V (t) is positive for t small enough and S 6≡ 0 on
[0, t]. Typical obstruction: a quantity which should be unsigned has a sign
whatever is the control. It is very classical for finite dimensional control
systems.



A Burgers control system

Let us consider the following Burgers control system (introduced by S.
Guerrero)

{

yt − yxx + yyx = u(t), t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = 0, y(t, L) = 0, t ∈ [0, T ],

(12)

where, at time t, the state is y(t, ·) ∈ L2(0, L) and the control is u(t) ∈ R.

Theorem (F. Marbach (2018))

The control system (12) is not small-time locally controllable.

Marbach’s proof relies on scaling, power series expansions and new
quadratic estimates (for kernel operators with singular kernels) leading to a
quantity which should be unsigned but has a sign whatever is the control.

Open problem

Is the control system (12) locally null controllable in large enough time?



Main novelties of our obstruction to STLC for KdV

This is the first case dealing with boundary controls. In our case one
does not know what are the iterated Lie brackets even heuristically.
Let us take this opportunity to point out that, even if they are not
expected to be in the state space (see JMC (2007)), that would be
very interesting to understand what are these iterated Lie brackets.

It sounds difficult to perform the change of time-scale introduced by
F. Marbach (2018) for a Burgers control system in our situation.
Indeed this change will also lead to a boundary layer. However one
can no longer use the maximum principle to study this boundary
layer. Moreover if the change of time-scale, if justified, allows simpler
computations, the advantage for not using it might be to get better
or more explicit time for the obstruction to small-time local
controllability.

The linear drift term of the linearized control system is neither
self-adjoint nor skew-adjoint.
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A toy example

Let us consider the finite dimensional control system

(13) ẏ1 = u, ẏ2 = y3, ẏ3 = −y2 + 2y1u,

where the state is (y1, y2, y3)
tr ∈ R

3 and the control is u ∈ R. The
linearized control system of our toy control system around (0, 0) ∈ R

3 × R

is

(14) ẏ1 = u, ẏ2 = y3, ẏ3 = −y2,
which is clearly not controllable. An obstruction to small-time local
controllability of our toy control system (13) can be obtained by pointing
out that if (y, u) : [0, T ] → R

3 × R is a trajectory of the toy control
system (13) such that y(0) = 0, then

y2(T ) =

∫ T

0
cos(T − t)y21(t)dt,(15)

y3(T ) = y1(T )
2 −

∫ T

0
sin(T − t)y21(t)dt.(16)



Hence,

y2(T ) ≥ 0 if T ∈ [0, π/2](17)

y3(T ) 6 0 if T ∈ [0, π] and y1(T ) = 0,(18)

which both show that our toy control system is not small-time locally
controllable. More precisely, using (18), is not locally controllable in time
T ∈ [0, π] ((17) gives only an obstruction for T ∈ [0, π/2]). For the toy
control system one knows that it is locally controllable in a large enough
time and the optimal time for local controllability is also known: this
control system is locally controllable in time T if and only if T > π.
Moreover, if there are higher order perturbations (with respect to the
weight (r1, r2, r3) = (1, 2, 2) for the state and 1 for the control) one can
still get an obstruction to small-time local controllability by pointing out
that the two previous obstructions respectively imply the following
coercivity properties



∀T ∈ (0, π/2), ∃δ > 0 s. t. y2(T ) ≥ δ|u|2H−1(0,T ),(19)

∀T ∈ (0, π], ∃δ > 0 s. t. (y1(T ) = 0 ⇒ y3(T ) 6 −δ|u|2H−2(0,T )).(20)

Note that inequality (19) does not require any condition on the control,
while (20) requires that the control is such that y1(T ) = 0. On the other
hand it is (20) which gives the largest time for the obstruction to local
controllability in time T : (19) gives an obstruction for T ∈ [0, π/2), while
(20) gives an obstruction for T ∈ [0, π], which in fact optimal as
mentioned above.

Remark

The fact that our toy system is not STLC follows from a necessary
condition due to H. Sussmann (1983) relying on iterated Lie brackets. See
also more general obstructions to STLC due to K. Beauchard and F.
Marbach (2018), K. Beauchard J. Le Borgne and F. Marbach (2022,
2023). See also K. Beauchard’s lectures in this conference. Unfortunately,
as already mentioned, iterated Lie brackets are not so well understood for
PDE controls, especially for boundary controls.



Our approach is inspired by the power series expansion method introduced
by JMC and E. Crépeau (2004). The idea of this method is to
search/understand a control u of the form

u = εu1 + ε2u2 + · · · .(21)

The corresponding solution then formally has the form

y = εy1 + ε2y2 + · · · ,(22)

and the non-linear term yyx can be written as

yyx = ε2y1y1,x + · · · .(23)



One then obtains the following systems (x ∈ (0, L) and t ∈ (0, T ))

(24)







y1,t(t, x) + y1,x(t, x) + y1,xxx(t, x) = 0,
y1(t, 0) = y1(t, L) = 0,
y1,x(t, L) = u1(t),

(25)







y2,t(t, x) + y2,x(t, x) + y2,xxx(t, x) + y1(t, x)y1,x(t, x) = 0,
y2(t, 0) = y2(t, L) = 0,
y2,x(t, L) = u2(t).



Let us recall that for the local controllability in large time the idea (JMC
and E. Crépeau (2004), E. Cerpa (2007) and E. Cerpa and E. Crépeau
(2009) is then to find u1 and u2 such that, if y1(0, ·) = y2(0, ·) = 0, then
y1(T, ·) = 0 and the L2(0, L)-orthogonal projection of y2(T ) on M is a
given (non-zero) element in M. In JMC and E. Crépeau an expansion up
to the order 3 is necessary since y2 belongs to the orthogonal space of M
in this case. The three papers rely on contradiction arguments using the
structure of the KdV systems.



Here instead of using a contradiction argument, the strategy is to
characterize all possible u1 which steers the linearized control system from
0 at time 0 to 0 at time T . This is done by taking the Fourier transform
with respect to time of the solution y1 and applying Paley-Wiener’s
theorem. We then prove, in the case 2k + l 6= 3N \ {0}, if the time T is
sufficiently small, y2(T, ·) has to be in some explicit open half-space if
u1 6= 0.



Notations

For z ∈ C, let (λj)16j63 =
(

λj(z)
)

16j63
be the three solutions repeated

with the multiplicity of

(26) λ3 + λ+ iz = 0.

Set

(27) Q(z) :=





1 1 1
eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L



 ,

(28) P (z) :=

3
∑

j=1

λj(e
λj+2L − eλj+1L) = det





1 1 1
eλ1L eλ2L eλ3L

λ1 λ2 λ3



 ,

with the convention λ4 = λ1.



(29) Ξ = Ξ(z) := −(λ2 − λ1)(λ3 − λ2)(λ1 − λ3),

(30) G(z) = P (z)/Ξ(z) and H(z) = detQ(z)/Ξ(z).



Characterization of the controls steering the linearized

control system from 0 to 0

Proposition

Let L > 0, T > 0, and u ∈ L2(−∞,+∞). Assume that u has a compact
support included in [0, T ], and u steers the linearized control system from
0 at the time 0 to 0 at the time T . Then û and ûG/H satisfy the
Paley-Wiener conditions

û and ûG/H are entire functions,(31)

and

|û(z)| +
∣

∣

∣

∣

ûG(z)

H(z)

∣

∣

∣

∣

≤ CeT |ℑ(z)|,(32)

for some positive constant C.



Some definitions

Let k, l ∈ N \ {0} be such that be such that

(33) L = 2π

√

k2 + kl + l2

3
.

Let us define

η1 = −2πi

3L
(2k + l), η2 = η1 +

2πi

L
k, η3 = η2 +

2πi

L
l,(34)

p =
(2k + l)(k − l)(2l + k)

3
√
3(k2 + kl + l2)3/2

,(35)

E :=
40π3

3L3
(eη1L − 1)ikl(k + l),(36)

ϕ(x) :=

3
∑

j=1

(ηj+1 − ηj)e
ηj+2x for x ∈ [0, L], with η4 := η1,(37)

Ψ(t, x) := ℜ(Eϕ(x)e−ipt).(38)



Some properties

(E 6= 0) ⇔ (2k + l 6∈ 3N),(39)

(Ψ(0, ·) 6= 0) ⇔ (E 6= 0),(40)

Ψt +Ψx +Ψxxx = 0,(41)

Ψ(t, 0) = Ψ(t, L) = Ψx(t, 0) = Ψx(t, L) = 0.(42)



Coercivity

Proposition

If E 6= 0, there exists T∗ > 0 and C > 0 such that, for any (real)
u ∈ L2(−∞,+∞) with u(t) = 0 for t 6∈ (0, T∗) and y(T∗, ·) = 0 where y
is the unique solution of the linearized KdV control system starting from 0
at time 0 and using the control u, we have

(43)

∫ T∗

0

∫ L

0
y2(t, x)Ψx(t, x)dxdt ≥ C‖u‖2

H−2/3(R)
.

This is one of the main steps of our proof of the obstruction to small time
local controllability.



Obstruction to the small-time local controllability of the

power expansion up to the order 2

y = εy1 + ε2y2 + . . . , y1 being the order 1, y2 being the order 2,(44)

u = εu1 + ε2u2, u1 being the order 1, u2 being the order 2.(45)

We have

y1t + y1x + y1xxx = 0, y1(t, 0) = y1(t, L) = 0, y1x(t, L) = u1(t),(46)

y2t + y2x + y2xxx = −y1y1x, y2(t, 0) = y2(t, L) = 0, y2x(t, L) = u2(t),
(47)

We require that y1(0, x) = y1(T
∗, x) = 0. So u1 steers the linearized

control system from 0 to 0, as u in the previous proposition. Applying this
proposition one gets that

(48)

∫ T∗

0

∫ L

0
y21(t, x)Ψx(t, x)dxdt ≥ C‖u‖2

H−2/3(R)
.



However multiplying (47) by Ψ, using the equation and the boundary
conditions satisfies by Ψ (see above) and integration by parts on gets that
the left hand side of the previous inequality is

∫ L

0
y2(T

∗, x)Ψ(T ∗, x)dx −
∫ L

0
y2(0, x)Ψ(0, x)dx.(49)

Hence

∫ L

0
y2(T

∗, x)Ψ(T ∗, x)dx−
∫ L

0
y2(0, x)Ψ(0, x)dx ≥ C‖u‖2

H−2/3(R)
(50)

which gives an obstruction to the null-controllability of the order 2 if
Ψ(0, ·) 6= 0, i.e. if 2k + l 6∈ 3N. Moreover it gives an inequality which is
crucial to deal with the remaining terms.
It remains to indeed take care of the remaining terms. Not an easy task in
fact. However when we are confident that something should work it is
often a question of time (may be large time...) to prove it. We finally
succeed to perform it.



The case of the water tank control system

Without loss of generality g = He = L = 1. The linearized control system
around the equilibrium H = 1, V = 0 is

(51)







∂th1 + ∂xv1 = 0 for (t, x) ∈ (0, T ) × (0, 1),
∂tv1 + ∂xh1 = −u(t) for (t, x) ∈ (0, T ) × (0, 1),
v1(t, 0) = v1(t, 1) = 0 for t ∈ (0, T ).

while the second order term is the control system (we forget the control
u2, the control in some sense is (h1, v1) which is a solution of (51))

(52)











∂th2 + ∂xv2 = −∂x(h1v1) for (t, x) ∈ (0, T )× (0, 1),

∂tv2 + ∂xh2 = −∂x
(

v21
2

)

for (t, x) ∈ (0, T )× (0, 1),

v2(t, 0) = v2(t, L) = 0 for t ∈ (0, T ).



The main idea is to prove that if a control steers the linearized system
from 0 to 0, this second order always lies in some half-space, at least when
T < 2. More precisely, for T < 2, we prove that for well-chosen functions
φ,ψ (they are explicit), there exists c > 0 such that for every control u

that steers the linearized system from 0 to 0 and such that
∫ T
0 u(s)ds = 0,

we have the coercivity estimate

(53) (h2(T, ·), φ) + (v2(T, ·), ψ) ≥ c‖U‖2L2 ,

with

(54) U(t) :=

∫ t

0
u(s)ds.

...
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Return to our KdV control system

(1)

{

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = 0, y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ).

We assume that

(2) L ∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗

}

.

Then (see above) the nonlinear control system is locally controllable in
large time (but not necessarily in small time). We are interested in the
stabilization of the nonlinear system. Same problem for the water tank
control system.



Phantom tracking

Roughly speaking this method can be described as follows. Let us assume
that there exists a curve of equilibria γ ∈ [0, γ̄] 7→ (xγ , uγ) of the control
system ẋ = f(x, u) such that (x0, u0) = (0, 0) ∈ R

n × R
m. We assume

that for every γ ∈ (0, γ̄] there exist a feedback law uγ which
asymptotically stabilizes xγ (with a large enough basin of attraction: it
must contains 0). The idea is then to use for the control system
ẋ = f(x, u) the feedback law uγ̃ where γ̃ : Rn → [0, γ̄] is a well chosen
function. Roughly speaking one steers the control system to the
“phantom” xγ with a γ which is moving to 0.
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Phantom tracking method: An example

Let us go back to our toy control system.

ẏ1 = u, ẏ2 = y3, ẏ3 = −y2 + 2y1u,(1)

where the state is (y1, y2, y3)
tr ∈ R

3 and the control is u ∈ R. The point
(yγ , uγ) := ((γ, 0, 0, )tr , 0) is an equilibrium of the control system. The
linearized control system at this equilibrium is the linear control system

ẏ1 = u, ẏ2 = y3, ẏ3 = −y2 + 2γu,(2)

where the state is (y1, y2, y3)
tr ∈ R

3 and the control is u ∈ R. This linear
control system is controllable if (and only if ) γ 6= 0. Therefore, if γ 6= 0
the equilibrium can be asymptotically stabilized for the nonlinear control
system.



Stabilization of yγ

One considers the following control Lyapunov function V γ : R3 → R

defined by

V γ(y) := (y1 − γ)2 + y22 + y23, ∀y = (y1, y2, y3)
tr ∈ R

3.(1)

The time derivative of V γ along the trajectory of our control system is

V̇ γ = 2u(y1 − γ + 2y1y3).(2)

Hence, in order to asymptotically stabilize xγ for our control system, it is
natural to consider the feedback law uγ : R4 → R defined by

uγ := −y1 + γ − 2y1y3.(3)

One gets V̇ γ = −2(y1 − γ + 2y1y3)
2. Using the LaSalle invariance

principle, one gets that this feedback law globally asymptotically stabilizes
xγ .



Let us now follow the phantom tracking strategy. In fact, instead of using
uγ̃ with a suitable γ̃ : R3 → R it is better to use directly a control
Lyapunov of the type V γ̃ . Theoretically, the best way to choose γ̃ is to
define it implicitly by proceeding in the following way. There exits an open
neighborhood Ω of 0 ∈ R

3 and V ∈ C∞(Ω;R) such that

V (0) = 0, ∀x ∈ Ω \ {0},(1)

V (y) = (y1 − V (y))2 + y22 + y23, ∀y = (y1, y2, y3)
tr ∈ Ω.(2)

Therefore our choice of γ̃ = V (y), i.e. is such that γ̃(x) = V γ̃(y),
γ̃(0) = 0. For the existence of V : use the implicit function theorem. In
this simple case, V can be computed explicitly. One has
V̇ = 2(y1 − V )(u− V̇ ) + 2y2y3 + 2y3(−y2 + 2y1u),
i.e.,(1 + 2y1 − 2V )V̇ = 2u(y1 − V + 2y1y3). We define a feedback law
u : Ω → R by u := −y1 + V − 2y1y3, which leads to
(1 + 2x1 − 2V )V̇ = −2(V − y1 − 2y1y3)

2 6 0. One can conclude that the
feedback law u locally asymptotically our control system by using once
more the LaSalle invariance principle.



Two possible improvements:

(i) One can get global asymptotic stability. It suffices to modify V by
requiring V = V (y) = (y1 − θ(V (y)))2 + y22 + y23, with a well chosen
function θ : [0,+∞) → [0,+∞).

(ii) One can get explicit feedback laws by using a dynamic extension:
Replace the initial control system by the following one

ẏ1 = u, ẏ2 = y3, ẏ3 = −y2 + 2y1u, γ̇ = v(1)

where the state is (y1, y2, y3, γ)
tr ∈ R

3 and the control is
(u, v)tr ∈ R

2. For z = (y1, y2, y3, γ)
tr ∈ R

4, one defines

ϕ(z) = (y1 − γ)2 + y22 + y23 + γ2,(2)

W (z) := ϕ(z) + (γ − ϕ(z))2.(3)

Compute Ẇ etc.



Applications of the phantom tracking method

1 Asymptotic stabilization of the Euler equations of incompressible
fluids: JMC (1996) -introduction of the method-, O. Glass (2005),

2 Quantum control systems: K. Beauchard, JMC, M. Mirrahimi and P.
Rouchon (2007).

3 Quantum box: K. Beauchard and M. Mirrahimi (2009).
4 Camassa-Holm equation: O. Glass (2008), V. Perrollaz (2013).

Open problem

Is it possible to apply this method to the water-tank control system?

Asymptotic stabilization of the linearized control system around “yγ” for γ
small but not 0 : JMC, A. Hayat, S. Xiang and Ch. Zhang (2022).

Remark

For the KdV control system even with critical lengths, u = 0 already gives
the asymptotic stability (with a decay rate of 1/

√
t for (k, l) = (1, 1) (J.

Chu, JMC, Shang (2015)) and (k, l) = (1, 2) (S. Tang, J. Chu, P. Shang
and JMC (2018)).
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Quadratic systems

Let us consider finite dimensional control systems of the following form

ẋ = Ax+Bu and ẏ = Ly +Q(x, x),(1)

where n, m and k are three positive integers, A ∈ R
n×n, B ∈ R

n×m,
L ∈ R

k×k and Q is a quadratic map from R
n × R

n into R
k. For the

control system (1), the state is (xtr, ytr)tr ∈ R
n+k with x ∈ R

n and
y ∈ R

k, and the control is u ∈ R
m.

Let us point out that the linearized control system around the trajectory
(x̄, ȳ, ū) := (0, 0, 0) is

ẋ = Ax+Bu and ẏ = Ly,(2)

a linear control system which is never controllable.



The assumptions

We assume the existence of T > 0 such that the following three properties
hold

(Q1) There exists ρ1 ∈ (0, 1) such that

(ẋ = Ax) ⇒
(

|x(T )|2 6 ρ1|x(0)|2
)

,(1)

(Q2) |eTLy| ≤ |y| for every y ∈ R
k,

(Q3) Let Sk−1 := {b ∈ R
k; |b| = 1}. There exist δ > 0, C0 > 0 and

v : [0, T ]× S
k−1 → R

m such that

v ∈ L∞([0, T ]× S
k−1;Rm),(2)

|v(t, b) − v(t, b′)| 6 C0|b− b′|, ∀t ∈ (0, T ), ∀b, b′ ∈ S
k−1,(3)

(4)
(

˙̃x = Ax̃+Bv(t, b), ˙̃y = Lỹ +Q(x̃, x̃), x̃(0) = 0, ỹ(0) = 0
)

⇒
(

x̃(T ) = 0, ỹ(T ) · eTLb 6 −δ
)

, ∀b ∈ S
k−1.



Definition of feedback laws

For ε > 0, let us consider the following periodic time-varying feedback law
uε : R× R

k → R
m

uε(t, y) :=







ε
√

|e−tLy|v
(

t,
e−tLy

|e−tLy|

)

, ∀t ∈ [0, T ), ∀y ∈ R
k \ {0},

0, ∀t ∈ [0, T ), y = 0 ∈ R
k.

(1)

uε(t+ T, y) = uε(t, y), ∀t ∈ R, ∀y ∈ R
k.(2)

We are interested in the asymptotic behavior of the solutions to the closed
loop system

ẋ = Ax+Buε(t, y) and ẏ = Ly +Q(x, x),(closed-loop)



Weighted exponential stability of the closed loop system

Theorem (JMC and I. Rivas (2015))

Let us assume that (Q1), (Q2) and (Q3) hold. Then, there exists ε0 > 0
such that, for every ε ∈ (0, ε0], there exist C > 0 and λ > 0 such that, for
every t0 ∈ R, for every solution (x, y) of the closed loop system defined at
time t0, one has

|x(t)|2 + |y(t)| 6 Ce−λ(t−t0)
(

|x(t0)|2 + |y(t0)|
)

, ∀t ∈ [t0,+∞).(1)



More general systems

Our next result allows to stabilize nonlinear control systems for which a
quadratic “approximation” is given by our previous quadratic system and
satisfies the assumptions of the previous theorem. The control system
takes now the following more general form

(1) ẋ = Ax+Rx(x, y) +Bu, ẏ = Ly +Q(x, x) +Ry(x, y),

where the state is (xtr, ytr)tr ∈ R
n+k, with x ∈ R

n and y ∈ R
k, and the

control is u ∈ R
m. We assume that Rx : Rn × R

k → R
n and

Ry : Rn × R
k → R

k are both continuous. Our next result deals with the
asymptotic stability of 0 for the closed loop system

ẋ = Ax+Buε(t, y) +Rx(x, y) and ẏ = Ly +Q(x, x) +Ry(x, y).(2)



Theorem (JMC and I. Rivas (2015))

Let us assume that (Q1), (Q2) and (Q3) hold. Let us also assume the
existence of η > 0 and M > 0 such that, ∀ε ∈ (0, 1), ∀(x, y) ∈ R

n × R
k

such that |x|+ |y| 6 1,

|Rx(εx, ε
2y)| ≤Mε1+η,(1)

|Ry(εx, ε
2y)| ≤Mε2+η.(2)

Then, there exists ε0 > 0 such that, for every ε ∈ (0, ε0], there exist
C > 0, r > 0 and λ > 0 such that, for every t0 ∈ R, for every solution
(x, y) of

ẋ = Ax+Buε(t, y) +Rx(x, y) and ẏ = Ly +Q(x, x) +Ry(x, y).(3)

with |x(t0)|2 + |y(t0)| 6 r, one has

|x(t)|2 + |y(t)| 6 Ce−λ(t−t0)
(

|x(t0)|2 + |y(t0)|
)

, ∀t ∈ [t0,+∞).(4)



Applications to classical systems

An example satisfying the necessary Brockett condition but not my
necessary condition (JMC (1992)) for asymptotic stabilizability by
means of stationary feedback laws

ẋ1 = u1, ẋ2 = u2, ẏ1 = x21 − x22, ẏ2 = 2x1x2,(1)

The baby stroller control system

ẋ1 = x3 cos x2, ẋ2 = x4, ẋ3 = u1, ẋ4 = u2, ẏ = x3 sinx2.(2)

The underactuated surface vessel system.
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“Application” to the KdV control system

Even if the proof of the two previous theorems require that the control
system is finite dimensional, one can consider the same type of feedback
laws for systems modeled by means of partial differential equations. This
was done for the following KdV equation (already seen above)

{

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(1)

where, at time t ∈ [0, T ], the control is u ∈ R and the state is
y(t, ·) ∈ L2(0, L).



Theorem (JMC, I Rivas and S. Xiang (2016))

Assume that L is a critical length such that L 6∈ 2πN. Then the KdV
control system has a quadratic approximation satisfying (Q1), (Q2) and
(Q3). Moreover there exists ε0 > 0 such that, for every ε ∈ (0, ε0], there
exist C > 0, r > 0 and λ > 0 such that, for every t0 ∈ R and for every
solution y of the closed loop system

{

yt + yx + yxxx + yyx = 0, t ∈ [t0,+∞), x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = uε(t, y), t ∈ [t0,+∞),

(1)

such that |y(t0)|L2 6 r one has, for every t ∈ [t0,+∞),

|yc(t)|2L2 + |yu(t)|L2 6 Ce−λ(t−t0)
(

|yc(t0)|2L2 + |yu(t0)|L2

)

,(2)

where, for z ∈ L2(0, L), zc and zu are the orthogonal projection of z on
the controllable and uncontrollable linear subspace of the linearized control
systems of (1) at 0 (these two linear spaces are orthogonal complements,
so that z = zc + zu).



Open problem (Rapid stabilization)

For the same L, is it true that, for every λ > 0 there exists r > 0 and a
periodic time-varying feedback law u(t, y) such that for every t0 ∈ R for
every solution y of the closed loop system

{

yt + yx + yxxx + yyx = 0, t ∈ [t0,+∞), x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t, y), t ∈ [t0,+∞)

(1)

such that |y(t0)|L2 6 r one has, for every t ∈ [t0,+∞),

|yc(t)|2L2 + |yu(t)|L2 6 Ce−λ(t−t0)
(

|yc(t0)|2L2 + |yu(t0)|L2

)

?(2)

Open problem (The water tank control system)

Is it possible to adapt this strategy for the water tank control system?
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