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Cyclic Characters

Let G be a group and g ∈ G of order m.

Consider the cyclic subgroup Cm = ⟨g⟩ with irreducible characters

σi : Cm → C
g 7→ ζim,

where 0 ≤ i < m.

The induced characters,
ψ := IndGCm

ζim

are called cyclic characters of G.
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Litreature review

▶ In 1987, Kraśkiewicz and Weyman [KW01] described the decomposition of cyclic
characters of Coxeter groups obtained by inducing characters of the cyclic group
generated by a Coxeter element.

▶ In 1989 Stembridge [Ste89] did it for all cyclic characters of symmetric groups, wreath
product groups, and a few cyclic characters of complex reflection groups.

▶ Garsia [Gar90] has given a different proof for the case of the cyclic subgroup
generated by the largest n cycle of the symmetric group.

▶ Jöllenbeck and Schocker [JS00] gave a new approach to Stembridge’s result on the
symmetric group.
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Irreducible characters of alternating group

If λ ̸= λ′ then the restriction

ResSn
An
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An
χλ′ = χλ
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Therefore,

⟨IndAn
Cn
ζin, χλ⟩An = ⟨IndSn

Cn
ζiv, χλ⟩Sn = aλ,i.

If λ = λ′ then the restriction

ResSn
An
χλ = χ+

λ + χ−
λ .

We denote

a+λ,i := ⟨IndAn
Cn
ζin, χ

+
λ ⟩An and a−λ,i := ⟨IndAn

Cn
ζin, χ

−
λ ⟩An



Irreducible characters of alternating group

If λ ̸= λ′ then the restriction

ResSn
An
χλ = ResSn

An
χλ′ = χλ

gives an irreducible character of An. Therefore,

⟨IndAn
Cn
ζin, χλ⟩An = ⟨IndSn

Cn
ζiv, χλ⟩Sn = aλ,i.

If λ = λ′ then the restriction

ResSn
An
χλ = χ+

λ + χ−
λ .

We denote

a+λ,i := ⟨IndAn
Cn
ζin, χ

+
λ ⟩An and a−λ,i := ⟨IndAn

Cn
ζin, χ

−
λ ⟩An



Irreducible characters of alternating group

If λ ̸= λ′ then the restriction

ResSn
An
χλ = ResSn

An
χλ′ = χλ

gives an irreducible character of An. Therefore,

⟨IndAn
Cn
ζin, χλ⟩An = ⟨IndSn

Cn
ζiv, χλ⟩Sn = aλ,i.

If λ = λ′ then the restriction

ResSn
An
χλ = χ+

λ + χ−
λ .

We denote

a+λ,i := ⟨IndAn
Cn
ζin, χ

+
λ ⟩An and a−λ,i := ⟨IndAn

Cn
ζin, χ

−
λ ⟩An



Irreducible characters of alternating group

If λ ̸= λ′ then the restriction

ResSn
An
χλ = ResSn

An
χλ′ = χλ

gives an irreducible character of An. Therefore,

⟨IndAn
Cn
ζin, χλ⟩An = ⟨IndSn

Cn
ζiv, χλ⟩Sn = aλ,i.

If λ = λ′ then the restriction

ResSn
An
χλ = χ+

λ + χ−
λ .

We denote

a+λ,i := ⟨IndAn
Cn
ζin, χ

+
λ ⟩An and a−λ,i := ⟨IndAn

Cn
ζin, χ

−
λ ⟩An



λ = λ′ and σ = (n)

There exists a pair of irreducible characters χ+
λ and χ−

λ .

▶ If λ ̸= (n+1
2 , 1, . . . , 1) then

χ+
λ (wσ) = χ−

λ (wσ) =
χλ(wσ)

2
.

Therefore,

⟨IndAn
Cn
ζin, χ

+
λ ⟩An = ⟨IndAn

Cn
ζin, χ

−
λ ⟩An =

1

2
aλ,i.

▶ If λ = (n+1
2 , 1, . . . , 1) then

χ±
λ (w

−
σ ) = χ∓

λ (w
+
σ ).



λ = λ′ and σ = (n)

There exists a pair of irreducible characters χ+
λ and χ−

λ .

▶ If λ ̸= (n+1
2 , 1, . . . , 1) then

χ+
λ (wσ) = χ−

λ (wσ) =
χλ(wσ)

2
.

Therefore,

⟨IndAn
Cn
ζin, χ

+
λ ⟩An = ⟨IndAn

Cn
ζin, χ

−
λ ⟩An =

1

2
aλ,i.

▶ If λ = (n+1
2 , 1, . . . , 1) then

χ±
λ (w

−
σ ) = χ∓

λ (w
+
σ ).



λ = λ′ and σ = (n)

There exists a pair of irreducible characters χ+
λ and χ−

λ .

▶ If λ ̸= (n+1
2 , 1, . . . , 1) then

χ+
λ (wσ) = χ−

λ (wσ) =
χλ(wσ)

2
.

Therefore,

⟨IndAn
Cn
ζin, χ

+
λ ⟩An = ⟨IndAn

Cn
ζin, χ

−
λ ⟩An =

1

2
aλ,i.

▶ If λ = (n+1
2 , 1, . . . , 1) then

χ±
λ (w

−
σ ) = χ∓

λ (w
+
σ ).



λ = λ′ and σ = (n)

There exists a pair of irreducible characters χ+
λ and χ−

λ .

▶ If λ ̸= (n+1
2 , 1, . . . , 1) then

χ+
λ (wσ) = χ−

λ (wσ) =
χλ(wσ)

2
.

Therefore,

⟨IndAn
Cn
ζin, χ

+
λ ⟩An = ⟨IndAn

Cn
ζin, χ

−
λ ⟩An =

1

2
aλ,i.

▶ If λ = (n+1
2 , 1, . . . , 1) then

χ±
λ (w

−
σ ) = χ∓

λ (w
+
σ ).



Observe,
aλ,i = a+λ,i + a−λ,i.

Let
∆λ,i = a+λ,i − a−λ,i.



Observe,
aλ,i = a+λ,i + a−λ,i.

Let
∆λ,i = a+λ,i − a−λ,i.



∆λ,i = a+λ,i − a−λ,i

= ⟨ζin,Res
An
Cn
χ+
λ ⟩Cn − ⟨ζin,Res

An
Cn
χ−
λ ⟩Cn

=
1

n

 n∑
k=1

w∼wk

ζikn (χ+
λ (w

k)− χ−
λ (w

k)) +

n∑
k=1
w≁wk

ζikn (χ+
λ (w

k)− χ−
λ (w

k))



=
1

n
(χ+

λ (w)− χ−
λ (w))

 n∑
k=1

w∼wk

ζikn −
n∑

k=1
w≁wk

ζikn

 .



Conjugacy Classes

wσ ∼ wk
σ if and only if gcd(k, n) = 1 and there exists τk ∈ An such that τkwστ

−1
k = wk

σ.

Suppose n = pa and k is a generator of the multiplicative group (Z/nZ)∗, then

τk = (1 k k2 . . . k(p
a−pa−1))(p kp k2p . . . kp

(a−1)−p(a−2)
p) . . . (p(a−1) kp(a−1) . . . k(p−2)p(a−1))(pa)

wσ ∼ wk
σ for all k with gcd(k, n) = 1 if and only if a is even and whenever a is odd we

have τk is an odd permutation.

Jacobi symbol:
(
k
pa

)
=

(
k
p

)a
, where

(
k

p

)
=


0 if k ≡ 0 mod p,

1 if k ̸≡ 0 mod p and k ≡ x2 mod p for some integer x,

−1 otherwise.
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√
ϵn
n

n∑
k=1

(
k

n

)
ζikn

where ϵn = ±1, for n ≡ ±1 mod 4



Lemma

Let n = pa, where p is an odd prime and n is a natural number and let d = gcd(i, n), then

n∑
k=1

(
k

n

)
ζikn =



0 if n/d is not square free,

−pa−1 if n/d = p a is even,

pa − pa−1 if n/d = 1 a is even,

0 if n/d ̸= p and a is odd,

pa−1
(i/d

p

)√
ϵpp if n/d = p and a is odd,

where ϵp =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.



Proposition

For any odd prime p and a > 0, let n = pa, d = gcd(n, i) and λ = (n+1
2 , 1, . . . , 1) be the

hook partition. Then we have the following:

1. If a is even

∆λ,i =


−p

a−2
2 if d = pa−1

p
a−2
2 (p− 1) if d = pa

0 otherwise.

2. If a is odd,

∆λ,i =

{
ϵpp

a−1
(i/d

p

)
if d = pa−1

0 otherwise,

where ϵp = ±1 for p ≡ ±1 mod 4.



Theorem ([PPS])

Let λ = (n+1
2 , 1, . . . , 1) be a partition of n =

s∏
j=1

pj and d = gcd(n, i). If n
d is not square

free then we have ∆λ,i = 0. Otherwise, we have the following cases:

▶ if n is a square then

∆λ,i =
(−1)s√

n

∏
j∈[s]

p
aj−1
j

∏
j /∈J

(pj − 1)

▶ if n is not a square then

∆λ,i =


ϵn
√
n

n0
(−1)|Je|

s∏
j=1

( fj
paj

) ∏
j /∈J

(pj − 1)
∏

j∈Jo

(i/paj−1

j

pj

)√
pj if aj is even ∀j /∈ J

0 otherwise.

where J := {j ∈ [s] : pj | n
d}, Je = {j ∈ J : aj is even}, Jo = {j ∈ J : aj is odd}, and

n0 is the square free part of n.
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