Cyclic characters of alternating group
joint work with Amritanshu Prasad and Velmurugan S

Algebraic and Combinatorial Methods in Representation Theory
13-24 November 2023

Cyclic Characters

Let G be a group and $g \in G$ of order m.
Consider the cyclic subgroup $C_{m}=\langle g\rangle$ with irreducible characters

$$
\begin{aligned}
\sigma_{i}: C_{m} & \rightarrow \mathbb{C} \\
g & \mapsto \zeta_{m}^{i},
\end{aligned}
$$

where $0 \leq i<m$.

Cyclic Characters

Let G be a group and $g \in G$ of order m.
Consider the cyclic subgroup $C_{m}=\langle g\rangle$ with irreducible characters

$$
\begin{aligned}
\sigma_{i}: C_{m} & \rightarrow \mathbb{C} \\
g & \mapsto \zeta_{m}^{i},
\end{aligned}
$$

where $0 \leq i<m$.
The induced characters,

$$
\psi:=\operatorname{Ind}_{C_{m}}^{G} \zeta_{m}^{i}
$$

are called cyclic characters of G.

Litreature review

- In 1987, Kraśkiewicz and Weyman [KW01] described the decomposition of cyclic characters of Coxeter groups obtained by inducing characters of the cyclic group generated by a Coxeter element.
$>$ In 1989 Stembridge [Ste89] did it for all cyclic characters of symmetric groups, wreath product groups, and a few cyclic characters of complex reflection groups.
$>$ Garsia [Gar90] has given a different proof for the case of the cyclic subgroup generated by the largest n cycle of the symmetric group.
- Jöllenbeck and Schocker [JS00] gave a new approach to Stembridge's result on the symmetric group.

Diagrams and Tableaux

$$
\begin{array}{cc}
\lambda & \rightarrow \chi_{\lambda} \\
\text { partition of } n & \text { irreducible character of } S_{n}
\end{array}
$$

Diagrams and Tableaux

\[

\]

Diagrams and Tableaux

$$
\begin{aligned}
& \lambda \quad \rightarrow \quad \chi_{\lambda} \\
& \text { partition of } n \quad \text { irreducible character of } S_{n} \\
& \text { partition } \quad \rightarrow \quad \text { Young diagram } \\
& \lambda=(3,2) \vdash 5 \\
& \begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
\hline
\end{array} \\
& \text { partition } \lambda \rightarrow \text { conjugate } \lambda^{\prime}
\end{aligned}
$$

Descents and Major index

Standard Young Tableau (SYT): $\quad T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | |$\in S Y T(3,2)$

Entries increase along rows and columns

Descents and Major index

Standard Young Tableau (SYT): $\quad T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | |$\in S Y T(3,2)$

Entries increase along rows and columns
Descent set of $T: \quad \operatorname{Des}(T)$ is the set of all i for which $i+1$ appears below i in T.

Descents and Major index

Standard Young Tableau (SYT): $\quad T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | |$\in S Y T(3,2)$

Entries increase along rows and columns
Descent set of $T: \quad \operatorname{Des}(T)$ is the set of all i for which $i+1$ appears below i in T.

$$
T=
$$

Descents and Major index

Standard Young Tableau (SYT): $\quad T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | |$\in S Y T(3,2)$

Entries increase along rows and columns
Descent set of $T: \quad \operatorname{Des}(T)$ is the set of all i for which $i+1$ appears below i in T.

$$
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 &
\end{array} \quad \rightarrow \quad \operatorname{Des}(T)=\{1,4\} .
$$

Descents and Major index

Standard Young Tableau (SYT): $\quad T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | |$\in S Y T(3,2)$

Entries increase along rows and columns
Descent set of $T: \quad \operatorname{Des}(T)$ is the set of all i for which $i+1$ appears below i in T.

$$
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 &
\end{array} \quad \rightarrow \quad \operatorname{Des}(T)=\{1,4\}
$$

Major index of T :

$$
\begin{aligned}
\operatorname{Maj}(T)= & \sum_{x \in \operatorname{Des}(T)} x \\
& \operatorname{Maj}(T)=5
\end{aligned}
$$

$$
\sigma=(n) \vdash n, \text { and let } w_{\sigma}=(1,2, \ldots, n) \in S_{n}
$$

$\sigma=(n) \vdash n$, and let $w_{\sigma}=(1,2, \ldots, n) \in S_{n}$.

$$
\begin{aligned}
a_{\lambda, i} & :=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle \\
& =\#\{T \in S Y T(\lambda) \mid \operatorname{Maj}(T) \equiv i \bmod n\}
\end{aligned}
$$

$\sigma=(n) \vdash n$, and let $w_{\sigma}=(1,2, \ldots, n) \in S_{n}$.

$$
\begin{aligned}
a_{\lambda, i} & :=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle \\
& =\#\{T \in S Y T(\lambda) \mid \operatorname{Maj}(T) \equiv i \bmod n\}
\end{aligned}
$$

Example

$$
T \in S Y T(3,2)
$$

1	2	3
4	5	

1	2	4
3	5	

1	2	5
3	4	

1	3	4
2	5	

1	3	5
2	4	

$\sigma=(n) \vdash n$, and let $w_{\sigma}=(1,2, \ldots, n) \in S_{n}$.

$$
\begin{aligned}
a_{\lambda, i} & :=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle \\
& =\#\{T \in S Y T(\lambda) \mid \operatorname{Maj}(T) \equiv i \bmod n\}
\end{aligned}
$$

Example

$$
T \in S Y T(3,2) \quad \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 \\
4 & 5 & \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & \\
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline 1 & \begin{array}{|l|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & \\
\hline
\end{array} \\
\hline
\end{array}
$$

$\sigma=(n) \vdash n$, and let $w_{\sigma}=(1,2, \ldots, n) \in S_{n}$.

$$
\begin{aligned}
a_{\lambda, i} & :=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle \\
& =\#\{T \in \operatorname{SYT}(3,2) \mid \operatorname{Maj}(T) \equiv i \bmod n\}
\end{aligned}
$$

Example

$\sigma=(n) \vdash n$, and let $w_{\sigma}=(1,2, \ldots, n) \in S_{n}$.

$$
\begin{aligned}
a_{\lambda, i} & :=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle \\
& =\#\{T \in \operatorname{SYT}(3,2) \mid \operatorname{Maj}(T) \equiv i \bmod n\}
\end{aligned}
$$

Example

$T \in S Y T(3,2)$	1	2	3	1	2	4	1	2	5	1	3	4	1	3	5
	4	5		3	5		3	4		2	5		2	4	
$\operatorname{Maj}(T) \bmod 5$	3			1				2			0			4	

We have,

$$
a_{\lambda, 0}=a_{\lambda, 1}=a_{\lambda, 2}=a_{\lambda, 3}=a_{\lambda, 4}=1
$$

Irreducible characters of alternating group

If $\lambda \neq \lambda^{\prime}$ then the restriction

$$
\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda}=\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda^{\prime}}=\chi_{\lambda}
$$

gives an irreducible character of A_{n}.

Irreducible characters of alternating group

If $\lambda \neq \lambda^{\prime}$ then the restriction

$$
\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda}=\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda^{\prime}}=\chi_{\lambda}
$$

gives an irreducible character of A_{n}. Therefore,

$$
\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle_{A_{n}}=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{v}^{i}, \chi_{\lambda}\right\rangle_{S_{n}}=a_{\lambda, i} .
$$

Irreducible characters of alternating group

If $\lambda \neq \lambda^{\prime}$ then the restriction

$$
\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda}=\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda^{\prime}}=\chi_{\lambda}
$$

gives an irreducible character of A_{n}. Therefore,

$$
\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle_{A_{n}}=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{v}^{i}, \chi_{\lambda}\right\rangle_{S_{n}}=a_{\lambda, i} .
$$

If $\lambda=\lambda^{\prime}$ then the restriction

$$
\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda}=\chi_{\lambda}^{+}+\chi_{\lambda}^{-} .
$$

Irreducible characters of alternating group

If $\lambda \neq \lambda^{\prime}$ then the restriction

$$
\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda}=\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda^{\prime}}=\chi_{\lambda}
$$

gives an irreducible character of A_{n}. Therefore,

$$
\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}\right\rangle_{A_{n}}=\left\langle\operatorname{Ind}_{C_{n}}^{S_{n}} \zeta_{v}^{i}, \chi_{\lambda}\right\rangle_{S_{n}}=a_{\lambda, i}
$$

If $\lambda=\lambda^{\prime}$ then the restriction

$$
\operatorname{Res}_{A_{n}}^{S_{n}} \chi_{\lambda}=\chi_{\lambda}^{+}+\chi_{\lambda}^{-} .
$$

We denote

$$
a_{\lambda, i}^{+}:=\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}^{+}\right\rangle_{A_{n}} \text { and } a_{\lambda, i}^{-}:=\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}^{-}\right\rangle_{A_{n}}
$$

$\lambda=\lambda^{\prime}$ and $\sigma=(n)$
There exists a pair of irreducible characters χ_{λ}^{+}and χ_{λ}^{-}.
$\lambda=\lambda^{\prime}$ and $\sigma=(n)$
There exists a pair of irreducible characters χ_{λ}^{+}and χ_{λ}^{-}.

- If $\lambda \neq\left(\frac{n+1}{2}, 1, \ldots, 1\right)$ then

$$
\chi_{\lambda}^{+}\left(w_{\sigma}\right)=\chi_{\lambda}^{-}\left(w_{\sigma}\right)=\frac{\chi_{\lambda}\left(w_{\sigma}\right)}{2} .
$$

$\lambda=\lambda^{\prime}$ and $\sigma=(n)$
There exists a pair of irreducible characters χ_{λ}^{+}and χ_{λ}^{-}.

- If $\lambda \neq\left(\frac{n+1}{2}, 1, \ldots, 1\right)$ then

$$
\chi_{\lambda}^{+}\left(w_{\sigma}\right)=\chi_{\lambda}^{-}\left(w_{\sigma}\right)=\frac{\chi_{\lambda}\left(w_{\sigma}\right)}{2} .
$$

Therefore,

$$
\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}^{+}\right\rangle_{A_{n}}=\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}^{-}\right\rangle_{A_{n}}=\frac{1}{2} a_{\lambda, i}
$$

$\lambda=\lambda^{\prime}$ and $\sigma=(n)$
There exists a pair of irreducible characters χ_{λ}^{+}and χ_{λ}^{-}.

- If $\lambda \neq\left(\frac{n+1}{2}, 1, \ldots, 1\right)$ then

$$
\chi_{\lambda}^{+}\left(w_{\sigma}\right)=\chi_{\lambda}^{-}\left(w_{\sigma}\right)=\frac{\chi_{\lambda}\left(w_{\sigma}\right)}{2} .
$$

Therefore,

$$
\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}^{+}\right\rangle_{A_{n}}=\left\langle\operatorname{Ind}_{C_{n}}^{A_{n}} \zeta_{n}^{i}, \chi_{\lambda}^{-}\right\rangle_{A_{n}}=\frac{1}{2} a_{\lambda, i}
$$

- If $\lambda=\left(\frac{n+1}{2}, 1, \ldots, 1\right)$ then

$$
\chi_{\lambda}^{ \pm}\left(w_{\sigma}^{-}\right)=\chi_{\lambda}^{\mp}\left(w_{\sigma}^{+}\right) .
$$

Observe,

$$
a_{\lambda, i}=a_{\lambda, i}^{+}+a_{\lambda, i}^{-}
$$

Observe,

$$
a_{\lambda, i}=a_{\lambda, i}^{+}+a_{\lambda, i}^{-}
$$

Let

$$
\Delta_{\lambda, i}=a_{\lambda, i}^{+}-a_{\lambda, i}^{-} .
$$

$$
\begin{aligned}
\Delta_{\lambda, i} & =a_{\lambda, i}^{+}-a_{\lambda, i}^{-} \\
& =\left\langle\zeta_{n}^{i}, \operatorname{Res}_{C_{n}}^{A_{n}} \chi_{\lambda}^{+}\right\rangle_{C_{n}}-\left\langle\zeta_{n}^{i}, \operatorname{Res}_{C_{n}}^{A_{n}} \chi_{\lambda}^{-}\right\rangle_{C_{n}} \\
& =\frac{1}{n}\left(\sum_{\substack{k=1 \\
w \sim w^{k}}}^{n} \zeta_{n}^{i k}\left(\chi_{\lambda}^{+}\left(w^{k}\right)-\chi_{\lambda}^{-}\left(w^{k}\right)\right)+\sum_{\substack{k=1 \\
w \nsim w^{k}}}^{n} \zeta_{n}^{i k}\left(\chi_{\lambda}^{+}\left(w^{k}\right)-\chi_{\lambda}^{-}\left(w^{k}\right)\right)\right) \\
& =\frac{1}{n}\left(\chi_{\lambda}^{+}(w)-\chi_{\lambda}^{-}(w)\right)\left(\sum_{\substack{k=1 \\
w \sim w^{k}}}^{n} \zeta_{n}^{i k}-\sum_{\substack{k=1 \\
w \nsim w^{k}}}^{n} \zeta_{n}^{i k}\right) .
\end{aligned}
$$

Conjugacy Classes

$w_{\sigma} \sim w_{\sigma}^{k}$ if and only if $\operatorname{gcd}(k, n)=1$ and there exists $\tau_{k} \in A_{n}$ such that $\tau_{k} w_{\sigma} \tau_{k}^{-1}=w_{\sigma}^{k}$.

Conjugacy Classes

$w_{\sigma} \sim w_{\sigma}^{k}$ if and only if $\operatorname{gcd}(k, n)=1$ and there exists $\tau_{k} \in A_{n}$ such that $\tau_{k} w_{\sigma} \tau_{k}^{-1}=w_{\sigma}^{k}$.
Suppose $n=p^{a}$ and k is a generator of the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{*}$, then

$$
\tau_{k}=\left(1 k k^{2} \ldots k^{\left(p^{a}-p^{a-1}\right)}\right)\left(p k p k^{2} p \ldots k^{p^{(a-1)}-p^{(a-2)}} p\right) \ldots\left(p^{(a-1)} k p^{(a-1)} \ldots k^{(p-2)} p^{(a-1)}\right)\left(p^{a}\right)
$$

Conjugacy Classes

$w_{\sigma} \sim w_{\sigma}^{k}$ if and only if $\operatorname{gcd}(k, n)=1$ and there exists $\tau_{k} \in A_{n}$ such that $\tau_{k} w_{\sigma} \tau_{k}^{-1}=w_{\sigma}^{k}$.
Suppose $n=p^{a}$ and k is a generator of the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{*}$, then

$$
\tau_{k}=\left(1 k k^{2} \ldots k^{\left(p^{a}-p^{a-1}\right)}\right)\left(p k p k^{2} p \ldots k^{p^{(a-1)}-p^{(a-2)}} p\right) \ldots\left(p^{(a-1)} k p^{(a-1)} \ldots k^{(p-2)} p^{(a-1)}\right)\left(p^{a}\right)
$$

$w_{\sigma} \sim w_{\sigma}^{k}$ for all k with $\operatorname{gcd}(k, n)=1$ if and only if a is even and whenever a is odd we have τ_{k} is an odd permutation.

Conjugacy Classes

$w_{\sigma} \sim w_{\sigma}^{k}$ if and only if $\operatorname{gcd}(k, n)=1$ and there exists $\tau_{k} \in A_{n}$ such that $\tau_{k} w_{\sigma} \tau_{k}^{-1}=w_{\sigma}^{k}$.
Suppose $n=p^{a}$ and k is a generator of the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{*}$, then

$$
\tau_{k}=\left(1 k k^{2} \ldots k^{\left(p^{a}-p^{a-1}\right)}\right)\left(p k p k^{2} p \ldots k^{p^{(a-1)}-p^{(a-2)}} p\right) \ldots\left(p^{(a-1)} k p^{(a-1)} \ldots k^{(p-2)} p^{(a-1)}\right)\left(p^{a}\right)
$$

$w_{\sigma} \sim w_{\sigma}^{k}$ for all k with $\operatorname{gcd}(k, n)=1$ if and only if a is even and whenever a is odd we have τ_{k} is an odd permutation.

Jacobi symbol: $\left(\frac{k}{p^{a}}\right)=\left(\frac{k}{p}\right)^{a}$, where

$$
\left(\frac{k}{p}\right)= \begin{cases}0 & \text { if } k \equiv 0 \quad \bmod p \\ 1 & \text { if } k \not \equiv 0 \quad \bmod p \text { and } k \equiv x^{2} \quad \bmod p \text { for some integer } x \\ -1 & \text { otherwise }\end{cases}
$$

Lemma

Let $n=\prod_{j=1}^{s} p_{j}^{a_{j}}$, for odd primes $p_{j}, 1 \leq j \leq s$. Then w and w^{k} are conjugate to each other in A_{n} if and only if $\left(\frac{k}{n}\right)=1$.

Lemma

Let $n=\prod_{j=1}^{s} p_{j}^{a_{j}}$, for odd primes $p_{j}, 1 \leq j \leq s$. Then w and w^{k} are conjugate to each other in A_{n} if and only if $\left(\frac{k}{n}\right)=1$.

So we have,

$$
\Delta_{\lambda, i}=\frac{1}{n}\left(\chi_{\lambda}^{+}\left(w^{k}\right)-\chi_{\lambda}^{-}\left(w^{k}\right)\right)\left(\sum_{\substack{k=1 \\ w \sim w^{k}}}^{n} \zeta_{n}^{i k}-\sum_{\substack{k=1 \\ w \nsim w^{k}}}^{n} \zeta_{n}^{i k}\right)
$$

Lemma

Let $n=\prod_{j=1}^{s} p_{j}^{a_{j}}$, for odd primes $p_{j}, 1 \leq j \leq s$. Then w and w^{k} are conjugate to each other in A_{n} if and only if $\left(\frac{k}{n}\right)=1$.

So we have,

$$
\begin{aligned}
\Delta_{\lambda, i} & =\frac{1}{n}\left(\chi_{\lambda}^{+}\left(w^{k}\right)-\chi_{\lambda}^{-}\left(w^{k}\right)\right)\left(\sum_{\substack{k=1 \\
w \sim w^{k}}}^{n} \zeta_{n}^{i k}-\sum_{\substack{k=1 \\
w \nsim w^{k}}}^{n} \zeta_{n}^{i k}\right) \\
& =\sqrt{\frac{\epsilon_{n}}{n}} \sum_{k=1}^{n}\left(\frac{k}{n}\right) \zeta_{n}^{i k}
\end{aligned}
$$

where $\epsilon_{n}= \pm 1$, for $n \equiv \pm 1 \bmod 4$

Lemma

Let $n=p^{a}$, where p is an odd prime and n is a natural number and let $d=\operatorname{gcd}(i, n)$, then

$$
\sum_{k=1}^{n}\left(\frac{k}{n}\right) \zeta_{n}^{i k}= \begin{cases}0 & \text { if } n / d \text { is } n \text { ot square free, } \\ -p^{a-1} & \text { if } n / d=p \quad a \text { is even }, \\ p^{a}-p^{a-1} & \text { if } n / d=1 \quad a \text { is even } \\ 0 & \text { if } n / d \neq p \quad \text { and } a \text { is odd }, \\ p^{a-1}\left(\frac{i / d}{p}\right) \sqrt{\epsilon_{p} p} & \text { if } n / d=p \quad \text { and } a \text { is odd },\end{cases}
$$

where $\epsilon_{p}= \begin{cases}1 & \text { if } p \equiv 1 \bmod 4, \\ -1 & \text { if } p \equiv 3 \bmod 4 .\end{cases}$

Proposition

For any odd prime p and $a>0$, let $n=p^{a}, d=\operatorname{gcd}(n, i)$ and $\lambda=\left(\frac{n+1}{2}, 1, \ldots, 1\right)$ be the hook partition. Then we have the following:

If a is even

$$
\Delta_{\lambda, i}= \begin{cases}-p^{\frac{a-2}{2}} & \text { if } d=p^{a-1} \\ p^{\frac{a-2}{2}}(p-1) & \text { if } d=p^{a} \\ 0 & \text { otherwise }\end{cases}
$$

If a is odd,

$$
\Delta_{\lambda, i}= \begin{cases}\epsilon_{p} p^{a-1}\left(\frac{i / d}{p}\right) & \text { if } d=p^{a-1} \\ 0 & \text { otherwise }\end{cases}
$$

where $\epsilon_{p}= \pm 1$ for $p \equiv \pm 1 \bmod 4$.

Theorem (PPS])

Let $\lambda=\left(\frac{n+1}{2}, 1, \ldots, 1\right)$ be a partition of $n=\prod_{j=1}^{s} p_{j}$ and $d=\operatorname{gcd}(n, i)$. If $\frac{n}{d}$ is not square free then we have $\Delta_{\lambda, i}=0$. Otherwise, we have the following cases:
if n is a square then

$$
\Delta_{\lambda, i}=\frac{(-1)^{s}}{\sqrt{n}} \prod_{j \in[s]} p_{j}^{a_{j}-1} \prod_{j \notin J}\left(p_{j}-1\right)
$$

if n is not a square then

$$
\Delta_{\lambda, i}= \begin{cases}\frac{\epsilon_{n} \sqrt{n}}{n_{0}}(-1)^{\left|J_{e}\right|} \prod_{j=1}^{s}\left(\frac{f_{j}}{p_{j}}\right) \prod_{j \notin J}\left(p_{j}-1\right) \prod_{j \in J_{o}}\left(\frac{i / p_{j}^{a_{j}-1}}{p_{j}}\right) \sqrt{p_{j}} & \text { if } a_{j} \text { is even } \forall j \notin J \\ 0 & \text { otherwise. }\end{cases}
$$

where $J:=\left\{j \in[s]: p_{j} \left\lvert\, \frac{n}{d}\right.\right\}, J_{e}=\left\{j \in J: a_{j}\right.$ is even $\}, J_{o}=\left\{j \in J: a_{j}\right.$ is odd $\}$, and n_{0} is the square free part of n.

回 Adriano M．Garsia．

Combinatorics of the free lie algebra and the symmetric group． 1990.

固 Armin Jöllenbeck and Manfred Schocker．
Cyclic characters of symmetric groups． Journal of Algebraic Combinatorics，12：155－161， 2000.

E Witold Kraśkiewicz and Jerzy Weyman．
Algebra of coinvariants and the action of a coxeter element．
Bayreuther Mathematische Schriften，63， 012001.
居 Amrutha P，Amritanshu Prasad，and Velmurugan S．
Cyclic characters of alternating group．
Manuscript under prepration．
围 John R．Stembridge．
On the eigenvalues of representations of reflection groups and wreath products．
Pacific Journal of Mathematics，140：353－396， 1989.

