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Cyclic Characters

Let G be a group and g € G of order m.

Consider the cyclic subgroup C,, = (g) with irreducible characters
o;: Cp, —C
g G

where 0 <7 < m.

The induced characters, '
¢ :=Ind¥ ¢

are called cyclic characters of G.



Litreature review

In 1987, Kraskiewicz and Weyman [KWO01] described the decomposition of cyclic
characters of Coxeter groups obtained by inducing characters of the cyclic group
generated by a Coxeter element.

In 1989 Stembridge [Ste89] did it for all cyclic characters of symmetric groups, wreath
product groups, and a few cyclic characters of complex reflection groups.

Garsia [Gar90] has given a different proof for the case of the cyclic subgroup
generated by the largest n cycle of the symmetric group.

Jollenbeck and Schocker [JS00] gave a new approach to Stembridge’s result on the
symmetric group.
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Descents and Major index

Standard Young Tableau (SYT): T = 4 ‘6 SYT(3,2)
2
Entries increase along rows and columns
Descent set of T': Des(T) is the set of all i for which i + 1 appears below 4 in T

4

T= —  Des(T) = {1,4}.




Descents and Major index

Standard Young Tableau (SYT): T = 11314 ‘6 SYT(3,2)

2
Entries increase along rows and columns
Descent set of T': Des(T) is the set of all i for which i + 1 appears below 4 in T
7= 1314 & Des(T)={1,4}.
215
Major index of T': Maj(T)= > =z
z€Des(T)
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o= (n)Fn,and let w, = (1,2,...,n) € Sy.

ay; :=<Indg’; Cfl, XA
=#{T € SYT(\) | Maj(T) =i mod n}

Example
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o= (n)Fn,and let w, = (1,2,...,n) € Sy.

ax; :==(Indgy ¢, x»)
=#{T € SYT(\) | Maj(T) =i mod n}

1|2 3| 12 4| 12 5| 13 4| 13 5|
415 3|5 34 25 2

T € SYT(3,2)




o= (n)Fn,and let w, = (1,2,...,n) € Sy.

ax; =(Ind2r ¢, x»)
=#{T € SYT(3,2) | Maj(T) =i mod n}

1|2 3| 1|2 4| 1]2 5| 1|3 4| 1|3

T € SYT(3,2)

Maj(T) mod 5 3 1 2 0 4



o= (n)Fn,and let w, = (1,2,...,n) € Sy.

ax; =(Ind2r ¢, x»)
=#{T € SYT(3,2) | Maj(T) =i mod n}

T e SYT(3.9) 123| 124| 125| 134| 1]3
4 3 3 2 2
Maj(T) mod 5 3 1 2 0 4
We have,
ryo =1 =0\ =0\ 3 =0\, = 1
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Irreducible characters of alternating group

If X\ # )X then the restriction

Sn _ Sn —
Resy” xx = Res)” xn = xa

gives an irreducible character of A,,. Therefore,

(Indgr ¢ xa)a, = (IndZe ¢y xa)s, = axi.

If A = )\ then the restriction

Sn —
ResAnx,\ :Xi_‘f‘X)\-
We denote

a)tz <IndA: i X>\>A and ay,; = (IndA: i X)) An
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A=XNand o0 = (n)
There exists a pair of irreducible characters X;\r and x, .
If A # (23,1,...,1) then

X)\(wa)
5

Xj\_(wa) = X;(wcr) =

Therefore,

*CL)\J‘.

An i o An ~1 — o
(Indg” ¢, X3) 4, = (Indg" G, X3 ) A, = 5



A=XNand o0 = (n)

There exists a pair of irreducible characters X;\r and x, .

If A # (23,1,...,1) then

— X \w
X o) = x5 () = 200
Therefore,
<Indéz 'fu X§>A <IndAn . X)\> = 5&)\72‘.

If A= (%,1,...,1) then
X5 (wy) = xf (w]).



Observe,



Observe, . B
axi = ay,; +ay;.

Let



ot =
=ay,; —ay;

(Ch, Resgr x¥)

’U}ka

1

= 0l (w) = X3 (w)

n

k

. — (G Res2 Xy,

1 "
el ID DRSS R

Z -l — X ("))

woawk

Sk S
k= k=1

w~w woewk
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Conjugacy Classes
w, ~ w¥ if and only if ged(k,n) = 1 and there exists 7, € A,, such that TkaTk_l = wk

o

Suppose n = p® and k is a generator of the multiplicative group (Z/nZ)*, then
= (1kk.. .k(pa_pail))(p kpkip... kp(kl)_p(ai?)p) (Y kplem) =2 pla )y (pe)

w, ~ wk for all k with ged(k,n) = 1 if and only if a is even and whenever a is odd we
have 75 is an odd permutation.

Jacobi symbol: (1%) = (k)a, where

P
k 0 if k=0 mod p,
<p> =41 if k20 modpand k=22 mod p for some integer z,

-1 otherwise.
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S .
Let n =[] p?, for odd primes pj, 1 < j <s. Then w and wk are conjugate to each other
j=1
i Ay if and only if (%) =1.
So we have,

n

A= 0 ) = x @) [ Y G = 3
k=1 k=1

k
. €n " k ik
- ()

where €, = =1, for n = &1 mod 4

wka w*w



Let n = p*, where p is an odd prime and n is a natural number and let d = ged(i,n), then

(0 if n/d is not square free,
n —pa1 ifn/d=p a is even,
<> ik — { po — po-l ifn/d=1 a is even,
k=1 N 0 ifn/d#p anda is odd,
pe ! (i/Td)\/e]Tp ifn/d=p anda is odd,

b 1 if p=1 mod 4,
where €, =
P -1 if p=3 mod 4.



For any odd prime p and a > 0, let n = p?®, d = ged(n,i) and X\ = (’%1, 1,...,1) be the
hook partition. Then we have the following:

If a is even

—p*7 if d=p*!
a—2 .
Ayi=4qp2 (p—-1) ifd=p"
0 otherwise.

If a is odd,

0 otherwise,

a_1(i/d e a—
AA,i:{Epp 1(7) if d=p*~

where €, = £1 for p = £1 mod 4.



S
Let \ = ("T‘H, 1,...,1) be a partition of n = 'H1pj and d = ged(n,1). If % is not square
j:
free then we have Ay ; = 0. Otherwise, we have the following cases:

H‘”H

JEs] J¢J

if n is a square then

if n is not a square then

OV gyl T () T -0 1T L2 ym  ifay is cven Vi ¢ J

Ay = no j=1 jéJ jEJo
0 otherwise.

where J :={j € [s] : p; | 5}, Je ={j € J : a; is even}, J, = {j € J : a; is odd}, and
ng s the square free part of n.
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