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The Plan

Lecture 1: Analytical tools for a proof of Anderson localization

Lie-Schwinger rotations provide a graphical framework for stepwise diagonalization of
the Hamiltonian. Nonperturbative regions are controlled probabilistically with moment
estimates and the Markov inequality.

Lecture 2: Existence of an MBL phase

| will describe competing effects on the density of nonperturbative regions. In the RG,
isolated nonperturbative regions can be eliminated, while nearby ones have to be
merged. Percolation estimates ensure that these regions are compact and rare,
maintaining a minimum exponential decay rate and forestalling the avalanche
mechanism.

Lecture 3: The MBL transition

In order to understand the nature of the transition between the MBL and ETH phases,
| will use a series of approximations to develop RG flow equations based on elimination
and merging of nonperturbative regions. These equations resemble the
Kosterlitz-Thouless (KT) flow equations, but there are important differences that place
the MBL transition in a new universality class.



Outline of Lecture 31

1. Insights from the MBL proof: Buffer zones; combining nearby resonant regions;
effect of resonant regions on the decay rate
2. Simplified picture: Thermalized/Localized intervals

3. The transition out of the MBL phase
3.1 Review of resonant regions, buffer zones, and the avalanche mechanism
3.2 Approximate recursion relation leads to flow equations
3.3 Correlation length exponent; comparison with KT

!Based on Morningstar, Huse, Imbrie: “Many-body localization near the critical point”; PRE2020



Resonant regions (= Griffiths regions) need buffer zones
These are regions where we have failure of the bounds needed to control the rotations.

Buffer zones are needed so that the smallness ~ ~L of a graph crossing the buffer is
much smaller than the typical AE = 2R in the resonant region.
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The buffer zone is expected to be thermalized by the resonant region.

In 1-d the buffer zone has volume comparable to that of the resonant block, so we can
diagonalize H in the combined region, eliminating internal interactions while keeping
the level-spacing larger than the interactions with spins outside.



Renormalization group picture

In RG terms, the rotations removing terms in the Hamiltonian up to order ~ is
analogous to “integrating out” short distance degrees of freedom in traditional RG.

At the same time, resonant regions up to some size R are “eliminated” once L is large
enough so that the remaining interaction terms are smaller than the level spacing in
the region (with its buffer zone, total size R + 2L). At that point, the region hosts a
“metaspin” which takes 27*2L values, but the interactions are so small that there is
little hybridization with spins elsewhere.

Note two effects are in play:

(1) Elimination of smaller resonant regions reduces the density.

(2) Fattening of the buffer zones on the remaining regions can cause neighboring
resonant blocks to merge. These effects increase the density.

My MBL proof shows that (1) dominates (2) deep in the weak coupling/strong
disorder region, and the density goes to zero as L — oc.



Moving toward the transition: the avalanche effect

For weaker disorder/stronger interactions, the decay rate can be reduced to the point
where no buffer size can insulate the resonant region from the rest of the chain: the
avalanche instability?.

Flip rates for off-diagonal matrix elements connecting the resonant region with spins
outside the buffer zone should behave as 272L/¢ for some decay length . For this to
be small compared with the level spacing ~ 2~ (FT2L) we need (71 > 1. Let

x = (71 — 1 be the excess decay rate. Equating 27 2L/¢ = 27-2L(1+x) \yith 2-(R+2L) e
find that the buffer size must satisfy

1>
— 2x
As 7 increases, the excess decay rate x — 0 and then the buffer size L will diverge.

At some point, then, increasing v causes (2) to dominate (1); i.e. the fattening effect
dominates the eliminations, and the density of resonant regions grows with L.

2Many-body delocalization as a quantum avalanche. Thiery, Huveneers, Miiller, De Roeck, PRL '18



Simplified strong-disorder RG picture, |

At a given cutoff A, the line consists of alternating localized intervals (L-blocks) and
thermalized intervals (T-blocks). Assumes bimodality is strongly attractive near
transition. Assume the decay rate deficit x is constant in space.3

» L-blocks represent intervals where quasilocal basis changes have been defined.

» T-blocks have minimum length A; they represent intervals where the basis change
cannot be defined due to too-strong interactions with the environment.

» As A — A+ dA, T-blocks of length € [A,A + dA] are erased (absorbed into

neighboring L-blocks) if they are isolated, that is, separated by more than the
buffer size A/x from other T-blocks.

3This approximation can be justified near the transition using Chayes-Harris arguments, once we
have solved for the length divergence.



Simplified strong-disorder RG picture, Il

» If a T-block is not isolated, then it pairs with a neighboring T-block that lies
within the distance A/x to form a larger T-block (eliminating the intervening
L-block). Such blocks do not have enough room to localize separately.



Simplified strong-disorder RG picture, Il

» The avalanche parameter x flows downward with the RG because erased T-blocks
interrupt the decay of interactions.



Functional RG

Due to the quenched (iid) randomness, we can assume that T-blocks appear "at
random” with an exponential distribution in space for each subsequent T-block
(outside of the minimum distance A/x as determined by the RG rules). Letting Ra
denote the rate for this exponential distribution, we have that Rp exp(—Raw)dw is the
probability that length of an L-block lies in [A/x + w,A/x + w + dw].

This rate can be broken down according to the length ¢ of the T-block that appears
after the L-block: Ry = [1° ra(¢)dC.

The full functional RG describes the flow with A of the function rz(¢) and x:

de _ Ara(A)(1+ 1)

dA 1+ARA/.Z
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Reduction to two parameters

The rate ra(A) has dimensions 1/(length)?, so let us define a dimensionless rate
Y =VY\n—= /\Zr/\(/\).

We anticipate that y = 0, x > 0 will be the MBL fixed line, due to the vanishing
density of T-blocks. The phase transition will be governed by the point x =y =0,
where the fixed line becomes unstable because the interaction decay rate reaches the
critical value for avalanches.



Recursion, |

The dominant mode of production of T-blocks of size A/x should be the combination
of component T-blocks of size close to A. (The most efficient — least unlikely — way to
create a T-block of a given length is to combine the smallest possible subblocks.)



Recursion, I
Fixing the distance between the outer edges of the pair of blocks at A/x, the inner
edges remain free. The rate for a block with one edge free is Rp, so we obtain a
recursion relation*

r(A/x) = R. (1)

For the same reason, ra(¥¢) should depend weakly on A between x¢ and ¢.
For dimensional reasons, rz(¢) ~ yp/€2 for A < £ < A/x and R =~ Ara(N).

Combining these facts with the recursion (1), we obtain a recursion for y:

2
Vg = (NxPrajulAX) 2 (NxPia(Ax) = (A xPRE = (Rra(A))2 /< = (yA>

XN\

*This relation is consistent with dimensional analysis as rx has dimension 1/Ieng;th2 and Ra has
dimension 1/length.



Recursion, |l

The above heuristic derivation of the recursion

2
(YA
YA/x = (X/\>

can be confirmed quantitatively by analyzing the functional RG equations

de _ Ara(A)(1+ )

d\ ~ 1+ ARnjz
dra(L) 1 (dz 1 . L=(+a™HA
A (dARA> TA(L)Jr;@(L—[Qer ]A)/A dlry(O)ra(L — € — A/x).

assuming that y and y/x are small. Within these approximations, the first equation
gives the flow equation for x:

ax

AN~y
an ~ 7



Behavior of the recursion /flow

As is customary, we use t = log A to parametrize the RG.
The recursion/flow can then be written as:

o _ (Y ©)
dr Y, YA/x = XA ’

with the equation for x representing the decrease in decay rate due to the erasure of
T-blocks at the cutoff A (“rule of halted decay”).

If we start on the curve y = x>*%, then the image under the recursion is close to the

curve y = x2+20 Hence the separatrix is asymptotic to the curve y = x2.
The flow along the separatrix is then determined, with x ~ t1 Y~ t2.

Below the separatrix, x freezes and determines the scale jumps in forming thermal
blocks, hence their fractal dimension (log?2)/(log x~1).

Near and below the separatrix we do indeed have y/x small as long as y is small.



Diverging length
A diverging length may be defined as the point where an orbit departs the vicinity of
the separatrix, from an initial small displacement §y. We find that this length is

1
A= et =g, 880 (3)

This evidently diverges faster than any power of g, so we have in effect v = c.

The above form for the divergence of length at the critical point may be distinguished
from the KT form: A = exp(const - 60_1/2).

An alternative approach to defining v is to equate A = §;" and solve for v as a
function of A (this is with dy considered as a function of A through eqn. 3). We find

v(N\) = log, log A,

which represents the effective v that is seen in a box of size A. For example,
v(10°) ~ 3, v(10%) ~ 7.

Aside: W(L) ~ L essentially ruled out by the theorem discussed yesterday.



Qualitative differences with the KT flow

Like the KT flow, there is logarithmic slowdown along the separatrix and v = co.
However in that case progress is slow both along the separatrix and orthogonal to it.

Here we have exponential divergence from the separatrix along with slow progress
along it, which leads to an unusual degree of sensitivity to the initial condition, if one
wants to see the system remain critical at large length scales.



v = oo justifies neglect of spatial fluctuations in x

The Chayes et al inequality v > 2 is satisfied, which tells us that fluctuations of size
A=1/2 in x are small in comparison to the initial displacement 651/1’ that is needed to
depart the vicinity of the separatrix at scale A. In this way, we can justify the neglect
of fluctuations in x in the derivation of these equations.



Equivalent flow equations

The following flow equation for y
leads to the same critical
behavior as the recursion:

dy
~ = (log?2
™ (log2)yd

— _(log2)y (:Zgi - 2> .

Note the nonanalyticity: Logs are
needed in order to put the
squaring operation on an
infinitesimal level.

Unchanged flow equation for x:

dx
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Parallels with the KT transition

Thermal

\

Like the vortices, T-blocks represent
nonperturbative effects, and the tendency
of these effects to grow or shrink with the
flow determines the phase reached from
any starting point in the diagram. Vortex
binding is analogous to T-block erasure as
discussed above.

When bound, vortices renormalize the
stiffness (screening). Likewise, when
eliminated, T-blocks renormalize the decay
rate (anti-screening).

Note: Earlier works (Dumitrescu et al, Goremykina et al., 2019) suggested a KT picture
for the transition but assumed analytic flow equations. Our flow involves a factor
(log y)/(log x) — 2, which puts this problem in a different universality class from KT.



Generalizations

A similar analysis® may be accomplished with correlated disorder wherein sums of N
disorder variables scales as N7 with v # % (i.e. with an exponent describing
non-central-limit-theorem behavior). The critical theory was found to universal both
for v > % (positively correlated disorder) and for v < % (hyperuniform disorder).

The nature of the transition for quasiperiodic “disorder’ remains an open quesiton.

®Shi, Khemani, Vasseur, Gopalakrishnan: “Many body localization transition with correlated
disorder” PRB2022
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