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The Plan

Lecture 1: Analytical tools for a proof of Anderson localization
Lie-Schwinger rotations provide a graphical framework for stepwise diagonalization of
the Hamiltonian. Nonperturbative regions are controlled probabilistically with moment
estimates and the Markov inequality.
Lecture 2: Existence of an MBL phase
I will describe competing effects on the density of nonperturbative regions. In the RG,
isolated nonperturbative regions can be eliminated, while nearby ones have to be
merged. Percolation estimates ensure that these regions are compact and rare,
maintaining a minimum exponential decay rate and forestalling the avalanche
mechanism.
Lecture 3: The MBL transition
In order to understand the nature of the transition between the MBL and ETH phases,
I will use a series of approximations to develop RG flow equations based on elimination
and merging of nonperturbative regions. These equations resemble the
Kosterlitz-Thouless (KT) flow equations, but there are important differences that place
the MBL transition in a new universality class.



Outline of Lecture 31

1. Insights from the MBL proof: Buffer zones; combining nearby resonant regions;
effect of resonant regions on the decay rate

2. Simplified picture: Thermalized/Localized intervals

3. The transition out of the MBL phase

3.1 Review of resonant regions, buffer zones, and the avalanche mechanism
3.2 Approximate recursion relation leads to flow equations
3.3 Correlation length exponent; comparison with KT

1Based on Morningstar, Huse, Imbrie: “Many-body localization near the critical point”, PRE2020



Resonant regions (= Griffiths regions) need buffer zones
These are regions where we have failure of the bounds needed to control the rotations.

Buffer zones are needed so that the smallness ∼ γL of a graph crossing the buffer is
much smaller than the typical ∆E = 2−R in the resonant region.

Resonant Region

R

Buffer zoneBuffer zone

The buffer zone is expected to be thermalized by the resonant region.

In 1-d the buffer zone has volume comparable to that of the resonant block, so we can
diagonalize H in the combined region, eliminating internal interactions while keeping
the level-spacing larger than the interactions with spins outside.



Renormalization group picture

In RG terms, the rotations removing terms in the Hamiltonian up to order γL is
analogous to “integrating out” short distance degrees of freedom in traditional RG.

At the same time, resonant regions up to some size R are “eliminated” once L is large
enough so that the remaining interaction terms are smaller than the level spacing in
the region (with its buffer zone, total size R + 2L). At that point, the region hosts a
“metaspin” which takes 2R+2L values, but the interactions are so small that there is
little hybridization with spins elsewhere.

Note two effects are in play:
(1) Elimination of smaller resonant regions reduces the density.
(2) Fattening of the buffer zones on the remaining regions can cause neighboring
resonant blocks to merge. These effects increase the density.

My MBL proof shows that (1) dominates (2) deep in the weak coupling/strong
disorder region, and the density goes to zero as L→∞.



Moving toward the transition: the avalanche effect

For weaker disorder/stronger interactions, the decay rate can be reduced to the point
where no buffer size can insulate the resonant region from the rest of the chain: the
avalanche instability2.

Flip rates for off-diagonal matrix elements connecting the resonant region with spins
outside the buffer zone should behave as 2−2L/ζ for some decay length ζ. For this to
be small compared with the level spacing ∼ 2−(R+2L), we need ζ−1 > 1. Let
x = ζ−1 − 1 be the excess decay rate. Equating 2−2L/ζ = 2−2L(1+x) with 2−(R+2L), we
find that the buffer size must satisfy

L ≥ R

2x
.

As γ increases, the excess decay rate x → 0 and then the buffer size L will diverge.

At some point, then, increasing γ causes (2) to dominate (1); i.e. the fattening effect
dominates the eliminations, and the density of resonant regions grows with L.

2Many-body delocalization as a quantum avalanche. Thiery, Huveneers, Müller, De Roeck, PRL ’18



Simplified strong-disorder RG picture, I
At a given cutoff Λ, the line consists of alternating localized intervals (L-blocks) and
thermalized intervals (T-blocks). Assumes bimodality is strongly attractive near
transition. Assume the decay rate deficit x is constant in space.3

I L-blocks represent intervals where quasilocal basis changes have been defined.

I T-blocks have minimum length Λ; they represent intervals where the basis change
cannot be defined due to too-strong interactions with the environment.

I As Λ→ Λ + dΛ, T-blocks of length ∈ [Λ,Λ + dΛ] are erased (absorbed into
neighboring L-blocks) if they are isolated, that is, separated by more than the
buffer size Λ/x from other T-blocks.

3This approximation can be justified near the transition using Chayes-Harris arguments, once we
have solved for the length divergence.



Simplified strong-disorder RG picture, II

I If a T-block is not isolated, then it pairs with a neighboring T-block that lies
within the distance Λ/x to form a larger T-block (eliminating the intervening
L-block). Such blocks do not have enough room to localize separately.



Simplified strong-disorder RG picture, III

I The avalanche parameter x flows downward with the RG because erased T-blocks
interrupt the decay of interactions.



Functional RG
Due to the quenched (iid) randomness, we can assume that T-blocks appear ”at
random” with an exponential distribution in space for each subsequent T-block
(outside of the minimum distance Λ/x as determined by the RG rules). Letting RΛ

denote the rate for this exponential distribution, we have that RΛ exp(−RΛw)dw is the
probability that length of an L-block lies in [Λ/x + w ,Λ/x + w + dw ].

This rate can be broken down according to the length ` of the T-block that appears
after the L-block: RΛ =

∫∞
Λ rΛ(`)d`.

The full functional RG describes the flow with Λ of the function rΛ(`) and x :
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For large negative z, we may neglect the 2 in Eqn. (9),
and the resulting exponential growth reproduces Eqn. (8)
after replacing t with log Λ.

Above the separatrix, it is evident that once δ is O(1),
both the recursion and the flow leave, in finite RG time,
the regime of their validity (that is, x and y/x small). We
presume, then, that within a finite RG time, the majority
of space will be covered by T-blocks, and the system is
decidedly approaching complete thermalization.

Recall that rΛ(`) ≈ r`(`) for Λ ≤ ` ≤ Λ/x (see
also Eqn. (16) below). This means that any solution
(x(t), y(t)) to the flow determines r`(`) = y`/`

2 as the
(unnormalized) distribution of T-block sizes in [Λ,Λ/x]
when the cutoff is Λ. We assumed from the beginning
that this distribution is dominated by ` near Λ, and this
is evidently true on the separatrix (where y` ∼ 1/(log `)2)
and below (where y` decreases more rapidly). We see
that the critical theory exhibits a 1/`2 distribution, with
a logarithmic correction. This is consistent with all of
the previous RGs, which found a distribution of T-block
sizes approaching a power law ∝ `−α at criticality, with
α & 2 [21, 22, 27]. Noting that x−1

Λ ≈ t = log Λ, we see
that the average size of T-blocks for the critical theory
at cutoff Λ is approximately

R−1
Λ

∫ Λ/x

Λ

`r`(`)d` = R−1
Λ

∫ Λ/x

Λ

d`

`(log `)2
(10)

≈ R−1
Λ

log x−1

(log Λ)2
≈ R−1

Λ

log log Λ

(log Λ)2
.

Recalling that RΛ ≈ yΛ/Λ, the average size of I-blocks is
Λ/x+R−1

Λ = R−1
Λ (y/x+ 1) ≈ R−1

Λ . Thus for the critical
theory the fraction of the system in T-blocks decreases
as (log log Λ)/(log Λ)2.

IV. A CONCRETE RG AND ITS FLOW
EQUATIONS

In this section we introduce the RG of Ref. [22], which
was, in turn, a modification of the RGs of Refs. [20, 21],
and modify it so as to work in the approximation of spa-
tially uniform x within the insulating regions. The result-
ing flow equations for x and rΛ(`) can be written down
exactly. We examine these under the assumption that x
and y/x are small, and show that our fundamental re-
cursion relation Eqn. (2) follows. For definiteness, let us

assume that y ≤ x3/2.
Following Ref. [22], the line is divided into a sequence

of alternating T-blocks (thermalized blocks) and I-blocks
(insulating blocks). At a given RG cutoff length scale Λ,
the T-blocks have lengths ` ≥ Λ. The I-blocks are char-
acterized by two lengths, the physical length ` and the
“deficit” d. The latter can be interpreted as the length
of the shortest T-block that can, by itself, thermalize
that I-block. At this point the parameter x, which de-
scribes how close an I-block is to the avalanche instabil-
ity [26, 31, 33, 34], is given by x = d/` and varies from
one I-block to another. When the cutoff is Λ, all I-blocks
have deficit d ≥ Λ and physical length ` ≥ Λ/x. As the
cutoff is raised from Λ to Λ +dΛ, all T-blocks with ` and
I-blocks with d in that range are “erased” or absorbed,
along with the two adjacent blocks, into a single new
block whose physical length is the sum of the individual
physical lengths. These “moves” are either TIT→T or
ITI→I. In the latter case, one sets dnew = d1 − Λ + d2,
where d1 and d2 are the deficits of the two I-blocks.

From this starting point, we modify the RG to have
the same x across all I-blocks, or equivalently, the same
decay length ζ. The order of moves is as described above:
when the cutoff length is Λ, TIT→T moves happen when
the middle block has d = Λ (i.e., ` = Λ/x), and ITI→I
moves happen when the middle block has ` = Λ. The
TIT→T moves do not change the global x, since they do
not make new I-blocks, but the ITI→I moves do. When
an ITI→I move happens, the new I-block is first gener-
ated as defined above. But that I-block then has a new
value of d/` that is different from the global value of x, so
we “average” over all I-blocks to compute a new global x
and use that to reset the deficit d of all I-blocks to d = x`.
This ensures the total length of the system is preserved.
When the RG length cutoff is Λ, TIT→T moves gener-
ate T-blocks of size > (2 + x−1)Λ ≈ Λ/x and the ITI→I
moves generate I-blocks of size > (2x−1 + 1)Λ ≈ 2Λ/x.
Both types of moves are capturing processes at physical
time exp(cΛ/x) for some order-one constant c, because
they are both associated with an avalanche running for a
distance Λ/x (either across the I-block as an I-block ther-
malizes or into I-blocks as a T-block localizes). Interblock
correlations are not generated by these RG rules because
the order of moves is determined only by the properties
of the middle blocks in any candidate move.

In the context of this RG, one may define as in Sec. II
the rate functions rΛ(`) and RΛ =

∫∞
Λ
rΛ(`)d`. In terms

of these quantities, the exact flow equations are as fol-
lows:

dx

dΛ
= −ΛrΛ(Λ)(1 + x)

1 + ΛRΛ/x
(11)

drΛ(L)

dΛ
=

1

x

(
dx

dΛ
−RΛ

)
rΛ(L) +

1

x
Θ(L− [2 + x−1]Λ)

∫ L−(1+x−1)Λ

Λ

d`rΛ(`)rΛ(L− `− Λ/x). (12)



Reduction to two parameters

The rate rΛ(Λ) has dimensions 1/(length)2, so let us define a dimensionless rate

y = yΛ = Λ2rΛ(Λ).

We anticipate that y = 0, x ≥ 0 will be the MBL fixed line, due to the vanishing
density of T-blocks. The phase transition will be governed by the point x = y = 0,
where the fixed line becomes unstable because the interaction decay rate reaches the
critical value for avalanches.



Recursion, I

The dominant mode of production of T-blocks of size Λ/x should be the combination
of component T-blocks of size close to Λ. (The most efficient – least unlikely – way to
create a T-block of a given length is to combine the smallest possible subblocks.)



Recursion, II
Fixing the distance between the outer edges of the pair of blocks at Λ/x , the inner
edges remain free. The rate for a block with one edge free is RΛ, so we obtain a
recursion relation4

rΛ(Λ/x) = R2
Λ. (1)

For the same reason, rΛ(`) should depend weakly on Λ between x` and `.

For dimensional reasons, rΛ(`) ≈ yΛ/`
2 for Λ ≤ ` ≤ Λ/x and RΛ ≈ ΛrΛ(Λ).

Combining these facts with the recursion (1), we obtain a recursion for y :

yΛ/x = (Λ/x)2rΛ/x(Λ/x) ≈ (Λ/x)2rΛ(Λ/x) = (Λ/x)2R2
Λ = (Λ2rΛ(Λ))2/x2 =

(
yΛ

xΛ

)2

.

4This relation is consistent with dimensional analysis as rΛ has dimension 1/length2 and RΛ has
dimension 1/length.



Recursion, III
The above heuristic derivation of the recursion

yΛ/x =

(
yΛ

xΛ

)2

can be confirmed quantitatively by analyzing the functional RG equations
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assuming that y and y/x are small. Within these approximations, the first equation
gives the flow equation for x :

Λ
dx

dΛ
= −y .



Behavior of the recursion/flow

As is customary, we use t = log Λ to parametrize the RG.
The recursion/flow can then be written as:

dx

dt
= −y , yΛ/x =

(
yΛ

xΛ

)2

, (2)

with the equation for x representing the decrease in decay rate due to the erasure of
T-blocks at the cutoff Λ (“rule of halted decay”).

If we start on the curve y = x2+δ, then the image under the recursion is close to the
curve y = x2+2δ. Hence the separatrix is asymptotic to the curve y = x2.

The flow along the separatrix is then determined, with x ∼ t−1, y ∼ t−2.

Below the separatrix, x freezes and determines the scale jumps in forming thermal
blocks, hence their fractal dimension (log 2)/(log x−1).

Near and below the separatrix we do indeed have y/x small as long as y is small.



Diverging length
A diverging length may be defined as the point where an orbit departs the vicinity of
the separatrix, from an initial small displacement δ0. We find that this length is

Λ = et = δ
− log2 log2 δ

−1
0

0 . (3)

This evidently diverges faster than any power of δ0, so we have in effect ν =∞.

The above form for the divergence of length at the critical point may be distinguished

from the KT form: Λ = exp(const · δ−1/2
0 ).

An alternative approach to defining ν is to equate Λ = δ−ν0 and solve for ν as a
function of Λ (this is with δ0 considered as a function of Λ through eqn. 3). We find

ν(Λ) ≈ log2 log Λ,

which represents the effective ν that is seen in a box of size Λ. For example,
ν(106) ∼ 3, ν(1060) ∼ 7.

Aside: W (L) ∼ L essentially ruled out by the theorem discussed yesterday.



Qualitative differences with the KT flow

Like the KT flow, there is logarithmic slowdown along the separatrix and ν =∞.
However in that case progress is slow both along the separatrix and orthogonal to it.

Here we have exponential divergence from the separatrix along with slow progress
along it, which leads to an unusual degree of sensitivity to the initial condition, if one
wants to see the system remain critical at large length scales.



ν =∞ justifies neglect of spatial fluctuations in x

The Chayes et al inequality ν ≥ 2 is satisfied, which tells us that fluctuations of size

Λ−1/2 in x are small in comparison to the initial displacement δ
−1/ν
0 that is needed to

depart the vicinity of the separatrix at scale Λ. In this way, we can justify the neglect
of fluctuations in x in the derivation of these equations.



Equivalent flow equations

The following flow equation for y
leads to the same critical
behavior as the recursion:

dy

dt
= −(log 2)yδ

= −(log 2)y

(
log y

log x
− 2

)
.

Note the nonanalyticity: Logs are
needed in order to put the
squaring operation on an
infinitesimal level.

Unchanged flow equation for x :

dx

dt
= −y

0.0 0.1 0.2

x

0.0

0.1

0.2

√
y



Parallels with the KT transition
KOSTERLITZ-THOULESS SCALING AT MANY-BODY … PHYSICAL REVIEW B 99, 094205 (2019)

at all steps [45]. This avalanche process is supported by
exact diagonalization studies on toy models that incorporate
“random-matrix-type” inclusions [47,48]; however, it remains
to be tested for fully microscopic lattice models.

We emphasize that the growth of ETH bubbles by ab-
sorbing spins is controlled by the effective interaction matrix
elements of these resonances, which have to be carefully
considered. Tracking the evolution of the effective coupling
strengths and the degree of instability to thermalization at long
distances is the purview of RG methods, to which we now
turn.

B. Kosterlitz-Thouless scaling

We now argue that the basic ingredients of the avalanche
discussed above give rise to a Kosterlitz-Thouless scaling at
the MBL transition, with minimal additional assumptions.
Already implicit in the avalanche discussion is a degree of
coarse graining, due to the presence of fully thermal regions
at intermediate scales that arise out of microscopic configura-
tions. We shall proceed with this picture, which we emphasize
is not tied to any specific model, and will comment further on
its validity below.

Given the presence of thermal regions that grow to drive the
delocalization transition, it is natural to work with variables
that capture the distributions of individual locally thermal
blocks and their effectiveness in thermalizing neighboring
regions. First, we identify the average density of thermal
blocks ρ(�) as a scaling variable. Here, � = �0e−� is the RG
scale at which we are probing the system and �0 ∼ 1/a is
the cutoff scale set by the lattice spacing a. As the second
scaling variable, we identify the length scale ζ (�) that governs
the effective matrix element �(�) ∼ e−x/ζ (�) at a distance x
from the boundary of a thermal block. These scaling variables
control the distributions of physical observables, that are
themselves broad at criticality due to the strong randomness
inherent to the MBL transition.

It remains to deduce the RG equations that describe how
ρ, ζ , transform as the RG flows to longer length scales.
Following the avalanche scenario outlined above, we first
demand that at any scale, the density of thermal regions ρ

increases (decreases) under the RG if the typical localization
length ζ at that scale is larger (smaller) than some critical
value ζc, corresponding to the onset (absence) of avalanche
processes. The simplest flow equation consistent with this is

dρ

d�
= bρ(ζ − ζc) + . . . , (2)

where b ∼ O(1) is a positive constant, and the ellipsis denote
higher order terms in ρ and (ζ − ζc). In RG language, Eq. (2)
indicates that thermal resonances are relevant if ζ > ζc; they
proliferate even when they are asymptotically rare. Accord-
ingly, we set ζ−1

c = ln 2 [32].
Next, we consider the effect of the resonant regions on

the matrix elements. Intuitively, ζ should be renormalized by
thermal spots, and must grow under coarse-graining. Thermal
inclusions can “shortcut” the exponential decay of matrix el-
ements in the MBL phase, leading to an effective localization
length ζ that is larger than the microscopic one. To leading

Thermal

MBL
ζ−1

ζ−1
c

ρ

FIG. 2. Kosterlitz-Thouless RG flow obtained by integrating
Eqs. (2) and (3). The MBL phase corresponds to a line of fixed
points with ρ = 0 for ζ < ζc. For ζ > ζc, even an infinitesimally
small bare density of resonances grows under RG, driving the flow
to the thermal phase. The dotted line denotes a schematic line of
microscopic parameters, tuned, e.g., by decreasing disorder strength
W . Note that many RG trajectories initially approach the MBL
fixed line even if they eventually flow to the thermal phase; this
nonmonotonicity naturally explains why numerical simulations often
overestimate the extent of the MBL phase.

order, the simplest RG equation consistent with this reads

dζ−1

d�
= −cρζ−1 + . . . , (3)

where c is a positive constant, and we assumed that ζ is not
renormalized in the absence of thermal regions (ρ = 0). A
similar equation can be derived from the “law of halted decay”
of Ref. [32].

Equations (2) and (3) yield RG flows of the Kosterlitz-
Thouless form (Fig. 2), whose physical interpretation we now
discuss. For ζ−1 > ζ−1

c , these RG equations admit a line of
stable fixed points corresponding to the MBL phase, where
the effective density of the thermal regions vanishes at long
wavelengths, i.e., ρ∞ ≡ ρ(� → ∞) → 0. Points along this
line may be parameterized by the fixed-point value of the
typical localization length ζ∞ = ζ (� → ∞). For ζ−1 < ζ−1

c ,
ρ is relevant and flows to infinity, indicating the proliferation
of thermal spots: this is the delocalized, thermal phase. At
the critical point, ζ−1

∞ jumps discontinuously, analogous to
the stiffness discontinuity in the usual XY transition [49].
Assuming that the disorder strength W is the parameter that
tunes across the transition, ζ−1 evolves as

ζ−1
∞ = ζc

−1 + c1
√

W − Wc + . . . , (4)

for W > Wc, whereas it is formally 0 in the delocalized phase.
We emphasize that ζ−1

c = ln 2 is a universal number in this
scenario, which does not depend on microscopic details other
than the dimension of the on-site Hilbert space. In general, it is
given by the entropy density of the system at infinite effective
temperature—corresponding to the level spacing in the middle
of the many-body spectrum.

Whereas the typical localization length ζ remains finite
up until the transition, finite-size scaling is controlled by an
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Like the vortices, T-blocks represent
nonperturbative effects, and the tendency
of these effects to grow or shrink with the
flow determines the phase reached from
any starting point in the diagram. Vortex
binding is analogous to T-block erasure as
discussed above.

When bound, vortices renormalize the
stiffness (screening). Likewise, when
eliminated, T-blocks renormalize the decay
rate (anti-screening).

Note: Earlier works (Dumitrescu et al, Goremykina et al., 2019) suggested a KT picture
for the transition but assumed analytic flow equations. Our flow involves a factor
(log y)/(log x)− 2, which puts this problem in a different universality class from KT.



Generalizations

A similar analysis5 may be accomplished with correlated disorder wherein sums of N
disorder variables scales as Nγ with γ 6= 1

2 (i.e. with an exponent describing
non-central-limit-theorem behavior). The critical theory was found to universal both
for γ > 1

2 (positively correlated disorder) and for γ < 1
2 (hyperuniform disorder).

The nature of the transition for quasiperiodic “disorder” remains an open quesiton.

5Shi, Khemani, Vasseur, Gopalakrishnan: “Many body localization transition with correlated
disorder” PRB2022
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