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THE HYPERKÄHLER METRIC
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• curve C g → 2

• Higgs bundles (E,!), ! ↑ H
0
(C,EndE ↓K)

• Hermitian metric: equations FA + [!,!
↔
] = 0

equivalently ↗A + e
iω
!+ e

↘iω
!

↔
is a flat connection for all ω
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• moduli space M: infinite-dimensional hyperkähler quotient

• complex structures I, J,K

I: moduli space of Higgs bundles

J: moduli space of flat connections

Hom(ω1(C), GL(n,C))/GL(n,C)

• (M, I), complex symplectic form ε2 + iε3, depends on

complex structure of C

(M, J) complex symplectic form ε3 + iε1, independent of
complex structure of C

36



• isometric circle action ! →↑ eiω!

• holomorphic on (M, I), preserves Kähler form ε1

vector field X, moment map f = ↓↔!↔
2/2

• on MB = (M, J) ε2 = Kähler form ε2 = ↓dJdf

f : MB ↑ R determines the hyperkähler metric

1

• isometric circle action ! →↑ eiω!

• holomorphic on (M, I), preserves Kähler form ε1

vector field X, moment map f = ↓↔!↔
2/2

• on MB = (M, J) ε2 = Kähler form ε2 = ↓dJdf

f : MB ↑ R determines the hyperkähler metric

1



• T = Teichmüller space

complex manifold, parametrizes complex structures on C

• action of mapping class group ω0(Di!(C))

• f : MB → T ↑ R

determines all hyperkähler metrics

– the geometry of the universal family
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L.Álvarez-Cónsul, M.Garcia-Fernandez, O.Garćıa-Prada & S.Trautwein,
Universal Hitchin moduli spaces, arXiv:2512.07553

B.Collier, J.Toulisse & R.Wentworth, Higgs bundles, isomon-

odromic leaves and minimal surfaces, arXiv:2512.2512.07152

• (M, I) = MDol = moduli space of Higgs bundles (E,!)

→ holomorphic family over T

• isomonodromic leaf = Higgs bundles defining the same

point in (M, J) = MB = character variety

• Aim: Use f to construct the holomorphic family on MB ↑ T
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CONNECTIONS

1



• fibration ω : E → B, fibres ↑= M

Ehresmann connection = horizontal subbundle H of TE

• associated to principal Di!(M) bundle, action on M

• adjoint action = covariant derivative on C↓(TF )

TF = tangent bundle along fibres

• ↔XY = [X̃, Y ], X̃ = horizontal lift of X
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• E = MB → T ↑ T = B

flat connection ↓B, preserving J and ω3,ω1

• acts on Hamiltonian vector fields wrt ω1

h : MB →B ↑ R = section of the adjoint bundle

↓Bh = derivative in the direction of the base B

• e.g. ↓Bf = ε, a section of ϑ↔T ↔
B, ḟ = iY ε, Y ↗ TB

1

• tangent space TCT
→= H1(C,K↑) Kodaira-Spencer class

•

ḟ + iġ =
∫

C
µ tr!2

µ ↓ ”0,1(C,K↑)

•
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• circle action along fibres, preserves ω1

does not preserve →B

• transform →B ↑ S
1-family of flat symplectic connections

• connections form an a!ne space – average over the group

invariant connection →A = →B + c, c section of ε
↓
T
↓
B

e.g. function h, →Ah = dBh+ {c, h} (Poisson bracket)
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• ω1 constant (→Bω1 = 0)

→B{f, h} = {→Bf, h}+ {f,→Bh}

↑ (LX→B)h = {→Bf, h} = {ε, h}

•

ϑ = ε + iϖ = ↓
1

2

∫

C

ϱ tr(ς1,0)2

! ↔↗ e
iφ! acts as e

2iφ on ϑ

↑ LXϑ = 2iϑ and ϖ = ↓2LXε

• LX→A = 0 (invariance) ↑ LX(→B + c) = 0
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•

→B = →A +
1

2
ω = →A ↑

i

4
(ε↑ ε̄)

• S
1 family of flat connections

→ϑ = →A ↑
i

4
(e2iϑε↑ e

↑2iϑ
ε̄).

• Flatness:

dAε = 0, {ε,ε} = 0, FA +
1

8
{ε, ε̄} = 0

(ϖ1 Poisson brackets)
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THE HIGGS BUNDLE ANALOGY

2



• →A – “unitary connection”

Lie group – Hamiltonian di!eomorphisms of (M,ω1)

Lie algebra – functions f : M ↑ R

• S1-invariance ↓

→A acting on functions commutes with h ↔↑ {f, h}

↓ →Af = 0

↓ connection reduces to stabilizer of S1
↗ Ham(M)

• ε̄A

– holomorphic structure on complexification of adjoint bundle
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• ω – “Higgs field”

• {ω,ω} = 0

ω =
∑

εidti

εi holomorphic on M

• ϑ̄A

– holomorphic structure on complexification of adjoint bundle

2

• {ω,ω} = 0, ε1 Poisson bracket

•

ω =
∑

ωidti

I-holomorphic, ε1 type (1,1)

• g, h holomorphic

Hamiltonian vector field of g:

Xg =
∑

εīj
1
ϑg

ϑzi

ϑ

ϑz̄j

{g, h} = Xg(h) = 0

1
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• S1-action ω →↑ e2iεω

“variation of Hodge structure”

• invariant by ω →↑ ↓ω

• Lie algebra C↔(M)↗C

= (f) ↘ odd weights ↘ even weights

2



But...

• S1-family of “unitary” connections

• involution on Lie algebra h →↑ h̄

FA +
1

8
{ω, ω̄} = 0

↓ FA ↔ [!,!↗] = 0

• g, h holomorphic

1

But...

• S1-family of “unitary” connections

• involution on Lie algebra h →↑ h̄

FA +
1

8
{ω, ω̄} = 0

↓ FA ↔ [!,!↗] = 0

• g, h holomorphic

1

But...

• S1-family of “unitary” connections

• involution on Lie algebra h →↑ h̄

FA +
1

8
{ω, ω̄} = 0

↓ FA ↔ [!,!↗] = 0

• g, h holomorphic

1

But...

• S1-family of “unitary” connections

• involution on Lie algebra h →↑ h̄

FA +
1

8
{ω, ω̄} = 0

↓ FA ↔ [!,!↗] = 0

• ↓ (pluri)harmonic map to compact G or symmetric space

1



THE CONNECTION →A

1



• →Af = 0 and →AX = 0

• parallel translation: path g : [0,1] ↑ T

integrate a time-dependent vector field to give a Hamiltonian
isotopy from the fibre at t = 0 to t = 1

• M noncompact but note: |f | ↓ N compact since f is proper

→Af = 0 ↔ flow within a compact region,

• Corollary: fixed points of S1, or of a subgroup, are di!eo-
morphic on varying the complex structure

e.g. cyclic Higgs bundles
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• curvature FA: section of ω→!2T →
B ↑ !2T →

M↓B

FA +
1

8
{ε, ε̄} = 0

•

ε = ↔
1

2

∫

C
µ tr(”2)

[µ] ↗ H1(C,K→) = T1,0
B ↘ ε type (1,0)

• ↘ FA type (1,1)
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O.Tošic, Non-strict plurisubharmonicity of energy on Teichmüller

space, IMRN (2024)(9), 7820–7845.
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• Thm: (Tošic) Define R : M→B ↑ M by

R : (E,!) = (E, i!).

Then the kernel of the Levi form is the kernel of the derivative
DR restricted to TB.

• Prf: The kernel of DR is the intersection of the horizontal
space of ↓B = ↓A + ω/2 = ↓A ↔

i
4(ε↔ ε̄) and its transform

by eiϑ = i.

↓A ↔
i

4
(e2iϑε↔ e↔2iϑε̄).

Transform = ↓A↔ω/2 so intersection is defined by iY Xω = 0.

1
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• Thm: (Tošic) Define R : M→B ↑ M by

R : (E,!) = (E, i!).

Then the kernel of the Levi form is the kernel of the derivative
DR restricted to TB.

• Prf: The kernel of DR is the intersection of the horizontal
space of ↓B = ↓A + ω/2 = ↓A ↔

i
4(ε↔ ε̄) and its transform

by eiϑ = i.

↓A ↔
i

4
(e2iϑε↔ e↔2iϑε̄).

Transform = ↓A↔ω/2 so intersection is defined by iY Xω = 0.

1
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→ intersection is defined by iY Xω = 0.

• kernel of Levi form = null space of

Jak =
εϑa

εzk

= {Y ↑ TB : iY Xϑ = 0}

(Xϑ = Hamiltonian vector field of ϑ wrt ϖ1)

= critical point of iY ϑ

(= quadratic function of the integrable system )

• IB = complex structure on B = Teichmüller space



M→ T AS A COMPLEX MANIFOLD
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• complex structure I on fibres

complex structure IB on base B = T

• horizontal subbundle H → TM↑B, H ↓= ω↔TB

I : TF ↗ TF ,ω
↔IB : H ↗ H

Thm: This complex structure is integrable.

• ω : M↑B ↗ is holomorphic

• S1
→ C↔-action is holomorphic
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• ω is a holomorphic 1-form



Prf:

• ω̄M→B = ω̄F + ω̄A: we need ω̄2
M→B = 0

ω̄2F = 0 (fibres holomorphic)

ω̄2B = 0 (B holomorphic and FA type (1,1))

• εc = ε2 + iε3 defines complex structure on fibres

(ϑ type (1,0) i! (εc)n ↑ ϑ = 0)

• ω̄F ω̄A + ω̄Aω̄F = 0 if ω̄Aε
c = 0
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• E rank 2, !2
E fixed, odd degree

C genus 2: y
2 = (z → µ1) · · · (z → µ6)

• moduli space of stable bundles N = Q ↑Qµ
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x
2
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2
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T
↓
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• moduli of complex structures on C ↗

{µ1, . . . , µ6} modulo PSL(2,C) ↗ {µ1, µ2, µ3,0,1,↘}
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•

ω = 4
6∑

i=1

∑

j →=i

(xiyj ↑ xjyi)2

µj ↑ µi
dµi

x ↓ y ↔ !2C6
↔ T ↗Q coadjoint orbit of SO(6,C)

• degenerate Levi form/critical locus:

6∑

i=1

x2i
z ↑ µi

= 0,
6∑

i=1

y2i
z ↑ µi

= 0,
6∑

i=1

xiyi
z ↑ µi

= 0.

A.Beauville, A.Höring, J.Liu & C.Voisin, Symmetric tensors on

the intersection of two quadrics and Lagrangian fibration, Moduli
(2024)
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A.Beauville, A.Höring, J.Liu & C.Voisin, Symmetric tensors on

the intersection of two quadrics and Lagrangian fibration, Moduli
(2024)

1

•

ω = 4
6∑

i=1

∑

j →=i

(xiyj ↑ xjyi)2

µj ↑ µi
dµi

x ↓ y ↔ !2C6
↔ T ↗Q coadjoint orbit of SO(6,C)

• degenerate Levi form/critical locus:

6∑

i=1

x2i
z ↑ µi

= 0,
6∑

i=1

y2i
z ↑ µi

= 0,
6∑

i=1

xiyi
z ↑ µi

= 0.
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A.Beauville, A.Höring, J.Liu & C.Voisin, Symmetric tensors on

the intersection of two quadrics and Lagrangian fibration, Moduli
(2024)

1



REAL FORMS

1



• G real form of Gc

• character variety: Hom(ω1(C), G)/G

Higgs bundles: H → G, maximal compact g = h↑ m

principal Hc-bundle, ! ↓ H0(C,mc
↔K)

• circle action ! ↗↘ eiε!

• M
r
≃B, average connection etc.

2



EXAMPLE: G = SL(2,R)

• Hom(ω1(C), SL(2,R)) uniformizing representation

• holomorphic fibration: H0(C,K2) → M
r
↑B → B ↓= T

• ε ↔ H0(Mr
↑B,ω↗T ↗

B) defines M
r
↑B ↓= T ↗B

= cotangent bundle of Teichmüller space

• ε becomes the canonical 1-form
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A HERMITIAN METRIC

• ω Weil-Petersson Kähler form

T (M →B) ↑= ε↓TB ↔H

define Hermitian metric so that these are orthogonal

• non-Kähler: dω̃ = ↗dFA

... but invariant by mapping class group

1



• T (M→B) ↑= TF ↓H

define a Hermitian metric so that these are orthogonal

• !2T ↔
F

↑= !2H↔

ω1 ↗↘ ω1 ≃
1

2
dFε

• Kähler forms ω1 on TF , ϑ↔ω on H

ω Weil-Petersson form

ω̃ = ϑ↔ω + ω1 ≃
1

2
dFε

1
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• dω̃ →= 0,

εε̄ω̃ →= 0...

• dω̃ →= 0,

εε̄ω̃ →= 0...



THE QUANTUM LINE BUNDLE
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• → on prequantum line bundle
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• →
0,1
L = ω̄A +→

0,1
• →

0,1
L = ω̄A +→

0,1

holomorphic sections →
0,1s = 0, ω̄As = 0


