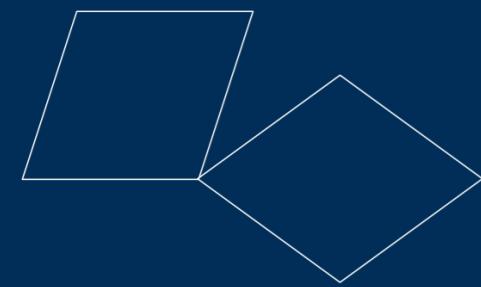


Mathematical
Institute

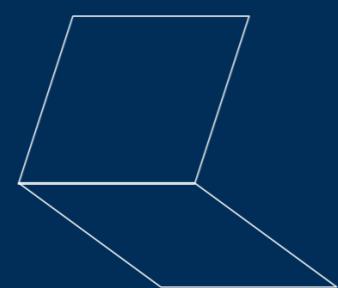
A universal moduli space

Nigel Hitchin
Mathematical Institute
University of Oxford

Ramanujan Lectures Bangalore February 2026



Oxford
Mathematics



THE HYPERKÄHLER METRIC

- curve C $g \geq 2$
- Higgs bundles (E, Φ) , $\Phi \in H^0(C, \text{End } E \otimes K)$
- Hermitian metric: equations $F_A + [\Phi, \Phi^*] = 0$
equivalently $\nabla_A + e^{i\theta}\Phi + e^{-i\theta}\Phi^*$ is a flat connection for all θ

- moduli space \mathcal{M} : infinite-dimensional hyperkähler quotient
- complex structures I, J, K
 - I : moduli space of Higgs bundles
 - J : moduli space of flat connections
 - $\text{Hom}(\pi_1(C), GL(n, \mathbf{C}))/GL(n, \mathbf{C})$
- (\mathcal{M}, I) , complex symplectic form $\omega_2 + i\omega_3$, depends on complex structure of C
- (\mathcal{M}, J) complex symplectic form $\omega_3 + i\omega_1$, independent of complex structure of C

- isometric circle action $\Phi \mapsto e^{i\theta}\Phi$
- holomorphic on (\mathcal{M}, I) , preserves Kähler form ω_1
vector field X , moment map $f = -\|\Phi\|^2/2$
- on $\mathcal{M}_B = (\mathcal{M}, J)$ ω_2 = Kähler form $\omega_2 = -dJdf$

$f : \mathcal{M}_B \rightarrow \mathbf{R}$ determines the hyperkähler metric

- \mathcal{T} = Teichmüller space
complex manifold, parametrizes complex structures on C
- action of mapping class group $\pi_0(\text{Diff}(C))$
- $f : \mathcal{M}_B \times \mathcal{T} \rightarrow \mathbf{R}$
determines all hyperkähler metrics
 - the geometry of the universal family

L.Álvarez-Cónsul, M.Garcia-Fernandez, O.García-Prada & S.Trautwein,
Universal Hitchin moduli spaces, [arXiv:2512.07553](https://arxiv.org/abs/2512.07553)

B.Collier, J.Toulisse & R.Wentworth, *Higgs bundles, isomonodromic leaves and minimal surfaces*, [arXiv:2512.2512.07152](https://arxiv.org/abs/2512.2512.07152)

- $(\mathcal{M}, I) = \mathcal{M}_{Dol}$ = moduli space of Higgs bundles (E, Φ)
 \Rightarrow holomorphic family over \mathcal{T}
- isomonodromic leaf = Higgs bundles defining the same point in $(\mathcal{M}, J) = \mathcal{M}_B$ = character variety

L.Álvarez-Cónsul, M.Garcia-Fernandez, O.García-Prada & S.Trautwein,
Universal Hitchin moduli spaces, [arXiv:2512.07553](https://arxiv.org/abs/2512.07553)

B.Collier, J.Toulisse & R.Wentworth, *Higgs bundles, isomonodromic leaves and minimal surfaces*, [arXiv:2512.2512.07152](https://arxiv.org/abs/2512.2512.07152)

- $(\mathcal{M}, I) = \mathcal{M}_{Dol}$ = moduli space of Higgs bundles (E, Φ)
 \Rightarrow holomorphic family over \mathcal{T}
- isomonodromic leaf = Higgs bundles defining the same point in $(\mathcal{M}, J) = \mathcal{M}_B$ = character variety

- **Aim:** Use f to construct the holomorphic family on $\mathcal{M}_B \times \mathcal{T}$

CONNECTIONS

- fibration $\pi : E \rightarrow B$, fibres $\cong M$
Ehresmann connection = horizontal subbundle H of TE
- associated to principal $\text{Diff}(M)$ bundle, action on M

- fibration $\pi : E \rightarrow B$, fibres $\cong M$
 Ehresmann connection = horizontal subbundle H of TE
- associated to principal $\text{Diff}(M)$ bundle, action on M
- adjoint action = covariant derivative on $C^\infty(T_F)$
 T_F = tangent bundle along fibres
- $\nabla_X Y = [\tilde{X}, Y]$, \tilde{X} = horizontal lift of X

- $E = \mathcal{M}_B \times \mathcal{T} \rightarrow \mathcal{T} = B$

flat connection ∇_B , preserving J and ω_3, ω_1

- acts on Hamiltonian vector fields wrt ω_1

$h : \mathcal{M}_B \times B \rightarrow \mathbf{R}$ = section of the adjoint bundle

$\nabla_B h$ = derivative in the direction of the base B

- $\dot{f} + i\dot{g} = -\frac{1}{2} \int_C \mu \operatorname{tr} \Phi^2 \quad \mu \in \Omega^{0,1}(C, K^*)$

$\nabla_B f = \beta$, a section of $\pi^* T_B^*$

$\dot{f} = i_Y \beta$, $Y \in T_B \cong H^1(C, K^*)$

- circle action along fibres, preserves ω_1
does not preserve ∇_B
- transform $\nabla_B \Rightarrow S^1$ -family of flat symplectic connections
- connections form an affine space – average over the group
invariant connection $\nabla_A = \nabla_B + c$, c section of $\pi^*T_B^*$
e.g. function h , $\nabla_A h = d_B h + \{c, h\}$ (Poisson bracket)

- circle action along fibres, preserves ω_1
does not preserve ∇_B
- transform $\nabla_B \Rightarrow S^1$ -family of flat symplectic connections
- connections form an affine space – average over the group
invariant connection $\boxed{\nabla_A = \nabla_B + c}$, c section of $\pi^*T_B^*$
e.g. function h , $\nabla_A h = d_B h + \{c, h\}$ (Poisson bracket)

- ω_1 constant ($\nabla_B \omega_1 = 0$)

$$\nabla_B \{f, h\} = \{\nabla_B f, h\} + \{f, \nabla_B h\}$$

$$\Rightarrow (\mathcal{L}_X \nabla_B) h = \{\nabla_B f, h\} = \{\beta, h\}$$

- ω_1 constant ($\nabla_B \omega_1 = 0$)

$$\nabla_B \{f, h\} = \{\nabla_B f, h\} + \{f, \nabla_B h\}$$

$$\Rightarrow (\mathcal{L}_X \nabla_B) h = \{\nabla_B f, h\} = \{\beta, h\}$$

- $\varphi = \beta + i\gamma = -\frac{1}{2} \int_C \mu \operatorname{tr} \Phi^2$

$\Phi \mapsto e^{i\theta} \Phi$ acts as $e^{2i\theta}$ on φ

$$\Rightarrow \mathcal{L}_X \varphi = 2i\varphi \text{ and } \gamma = -2\mathcal{L}_X \beta$$

- ω_1 constant ($\nabla_B \omega_1 = 0$)

$$\nabla_B \{f, h\} = \{\nabla_B f, h\} + \{f, \nabla_B h\}$$

$$\Rightarrow (\mathcal{L}_X \nabla_B) h = \{\nabla_B f, h\} = \{\beta, h\}$$

- $\varphi = \beta + i\gamma = -\frac{1}{2} \int_C \mu \operatorname{tr} \Phi^2$

$\Phi \mapsto e^{i\theta} \Phi$ acts as $e^{2i\theta}$ on φ

$$\Rightarrow \mathcal{L}_X \varphi = 2i\varphi \text{ and } \gamma = -2\mathcal{L}_X \beta$$

- $\mathcal{L}_X \nabla_A = 0$ (invariance) $\Rightarrow \mathcal{L}_X (\nabla_B + c) = 0$

$$\Rightarrow \mathcal{L}_X c = -\beta = \mathcal{L}_X \gamma / 2$$

$c = \frac{1}{2}\gamma$

- $\nabla_B = \nabla_A + \frac{1}{2}\gamma = \nabla_A - \frac{i}{4}(\varphi - \bar{\varphi})$

- S^1 family of flat connections

$$\nabla_\theta = \nabla_A - \frac{i}{4}(e^{2i\theta}\varphi - e^{-2i\theta}\bar{\varphi}).$$

- Flatness:

$$d_A\varphi = 0, \quad \{\varphi, \varphi\} = 0, \quad F_A + \frac{1}{8}\{\varphi, \bar{\varphi}\} = 0$$

(ω_1 Poisson brackets)

THE HIGGS BUNDLE ANALOGY

- ∇_A – “unitary connection”
 Lie group – Hamiltonian diffeomorphisms of (\mathcal{M}, ω_1)
 Lie algebra – functions $h : \mathcal{M} \rightarrow \mathbf{R}$
- S^1 -invariance \Rightarrow
 ∇_A acting on functions commutes with $h \mapsto \{f, h\}$
 $\Rightarrow \nabla_A f = 0$
 \Rightarrow connection reduces to stabilizer of $S^1 \subset \text{Ham}(\mathcal{M})$
- $\bar{\partial}_A$ – holomorphic structure on complexification of adjoint bundle

- φ – “Higgs field”

$\{\varphi, \varphi\} = 0$, ω_1 Poisson bracket

- $\varphi = \sum \varphi_i dt_i$

I -holomorphic, ω_1 type $(1, 1)$

- g, h holomorphic

Hamiltonian vector field of g : $X_g = \sum \omega_1^{i\bar{j}} \frac{\partial g}{\partial z_i} \frac{\partial}{\partial \bar{z}_j}$

$$\{g, h\} = X_g(h) = 0$$

- S^1 -action $\varphi \mapsto e^{2i\theta}\varphi$

“variation of Hodge structure”

- invariant by $\varphi \mapsto -\varphi$

- Lie algebra $C^\infty(\mathcal{M}) \otimes \mathbf{C}$

$$= (f) \oplus \text{odd weights} \oplus \text{even weights}$$

But...

- S^1 -family of “unitary” connections

- involution on Lie algebra $h \mapsto \bar{h}$

$$F_A + \frac{1}{8}\{\varphi, \bar{\varphi}\} = 0 \sim F_A - [\Phi, \Phi^*] = 0$$

- \sim (pluri)harmonic map to compact G or symmetric space

THE CONNECTION ∇_A

- $\nabla_A f = 0$ and $\nabla_A X = 0$
- parallel translation: path $g : [0, 1] \rightarrow \mathcal{T}$
 integrate a time-dependent vector field to give a Hamiltonian isotopy from the fibre at $t = 0$ to $t = 1$
- \mathcal{M} noncompact but note: $|f| \leq N$ compact since f is proper
 $\nabla_A f = 0 \Rightarrow$ flow within a compact region,

- $\nabla_A f = 0$ and $\nabla_A X = 0$
- parallel translation: path $g : [0, 1] \rightarrow \mathcal{T}$
 integrate a time-dependent vector field to give a Hamiltonian isotopy from the fibre at $t = 0$ to $t = 1$
- \mathcal{M} noncompact but note: $|f| \leq N$ compact since f is proper
 $\nabla_A f = 0 \Rightarrow$ flow within a compact region,
- **Corollary:** fixed points of S^1 , or of a subgroup, are diffeomorphic on varying the complex structure
 e.g. cyclic Higgs bundles

- curvature F_A : section of $\pi^* \Lambda^2 T_B^* \subset \Lambda^2 T_{\mathcal{M} \times B}^*$

$$F_A + \frac{1}{8} \{ \varphi, \bar{\varphi} \} = 0 \quad \varphi = -\frac{1}{2} \int_C \mu \operatorname{tr}(\Phi^2)$$

- $[\mu] \in H^1(C, K^*) = T_B^{1,0} \Rightarrow \varphi \text{ type } (1, 0)$

$\Rightarrow F_A$ type $(1, 1)$

- curvature F_A : section of $\pi^* \Lambda^2 T_B^* \subset \Lambda^2 T_{\mathcal{M} \times B}^*$

$$F_A + \frac{1}{8} \{ \varphi, \bar{\varphi} \} = 0 \quad \varphi = -\frac{1}{2} \int_C \mu \operatorname{tr}(\Phi^2)$$

- $[\mu] \in H^1(C, K^*) = T_B^{1,0} \Rightarrow \varphi$ type $(1, 0)$

$\Rightarrow F_A$ type $(1, 1)$

- $0 = \underline{\{\varphi, \varphi\}} = \{\beta + i\gamma, \beta + i\gamma\}$
 $\Rightarrow \{\beta, \gamma\} = 0, \{\beta, \beta\} = \{\gamma, \gamma\}$
- $\underline{\{\varphi, \bar{\varphi}\}} = \{\beta + i\gamma, \beta - i\gamma\} = 2\{\gamma, \gamma\}$
 $\Rightarrow \underline{F_A} = -\{\gamma, \gamma\}/4$

$$\underline{d_A \varphi = 0}$$

- $d_B \varphi = \{\gamma, \varphi\}/2$

$$\Rightarrow d_B \gamma = \{\gamma, \gamma\}/2 = -2F_A$$

$$\underline{d_A \varphi = 0}$$

- $d_B \varphi = \{\gamma, \varphi\}/2$

$$\Rightarrow d_B \gamma = \{\gamma, \gamma\}/2 = -2F_A$$

- $I_B =$ complex structure on $B =$ Teichmüller space

$$I_B(\beta + i\gamma) = i(\beta + i\gamma) \Rightarrow d_B I_B d_B f = 2F_A$$

- $2F_A = d_B I_B d_B f = -2i \sum_{a,b} \frac{\partial^2 f}{\partial t_a \partial \bar{t}_b} dt_a \wedge d\bar{t}_b$

Levi form/ complex Hessian

$$F_A + \frac{1}{8}\{\varphi, \bar{\varphi}\} = 0$$

- $\{\varphi, \bar{\varphi}\} = \sum_{a,b,k,\ell} \omega_1^{k\bar{\ell}} \frac{\partial \varphi_a}{\partial z_k} \frac{\partial \bar{\varphi}_b}{\partial \bar{z}_\ell} dt_a \wedge d\bar{t}_b$
- ω_1 positive definite Hermitian form
complex matrix $J_{ak} = \frac{\partial \varphi_a}{\partial z_k}$
- $-2f = \|\Phi\|^2 \sim$ energy of equivariant harmonic map
 \Rightarrow Levi form is non-negative

D. Toledo, *Hermitian curvature and plurisubharmonicity of energy on Teichmüller space*, GAFA 22 (2012), 1015–1032.

D. Toledo, *Hermitian curvature and plurisubharmonicity of energy on Teichmüller space*, GAFA 22 (2012), 1015–1032.

O. Tošić, *Non-strict plurisubharmonicity of energy on Teichmüller space*, IMRN (2024)(9), 7820–7845.

- kernel of Levi form = null space of $J_{ak} = \frac{\partial \varphi_a}{\partial z_k}$

$$= \{Y \in T_B : i_Y X_\varphi = 0\}$$

(X_φ = Hamiltonian vector field of φ wrt ω_1)

= critical point of $i_Y \varphi$

(= quadratic function of the integrable system)

- **Thm:** (Tošic) Define $R : \mathcal{M} \times B \rightarrow \mathcal{M}$ by

$$R : (E, \Phi) = (E, i\Phi).$$

Then the kernel of the Levi form is the kernel of the derivative DR restricted to T_B .

- **Thm:** (Tošic) Define $R : \mathcal{M} \times B \rightarrow \mathcal{M}$ by

$$R : (E, \Phi) = (E, i\Phi).$$

Then the kernel of the Levi form is the kernel of the derivative DR restricted to T_B .

- **Prf:** The kernel of DR is the intersection of the horizontal space of $\nabla_B = \nabla_A + \gamma/2 = \nabla_A - \frac{i}{4}(\varphi - \bar{\varphi})$ and its transform by $e^{i\theta} = i$.

- **Thm:** (Tošić) Define $R : \mathcal{M} \times B \rightarrow \mathcal{M}$ by

$$R : (E, \Phi) = (E, i\Phi).$$

Then the kernel of the Levi form is the kernel of the derivative DR restricted to T_B .

- **Prf:** The kernel of DR is the intersection of the horizontal space of $\nabla_B = \nabla_A + \gamma/2 = \nabla_A - \frac{i}{4}(\varphi - \bar{\varphi})$ and its transform by $e^{i\theta} = i$.

$$\nabla_A - \frac{i}{4}(e^{2i\theta}\varphi - e^{-2i\theta}\bar{\varphi}).$$

Transform = $\nabla_A - \gamma/2$

\Rightarrow intersection is defined by $i_Y X_\gamma = 0$.

$\mathcal{M} \times \mathcal{T}$ AS A COMPLEX MANIFOLD

- complex structure I on fibres
complex structure I_B on base $B = \mathcal{T}$
- horizontal subbundle $H \cong \pi^*T_B$, $T_{\mathcal{M} \times B} \cong T_F \oplus H$
almost complex structure (I, π^*I_B)

Thm: This almost complex structure is integrable.

- $\pi : \mathcal{M} \times B \rightarrow$ is holomorphic
- $S^1 \subset \mathbf{C}^*$ -action is holomorphic
- φ is a holomorphic 1-form

Prf:

- $\bar{\partial}_{\mathcal{M} \times B} = \bar{\partial}_F + \bar{\partial}_A$: we need $\bar{\partial}_{\mathcal{M} \times B}^2 = 0$
 $\bar{\partial}_F^2 = 0$ (fibres holomorphic)
 $\bar{\partial}_B^2 = 0$ (B holomorphic and F_A type $(1, 1)$)
- $\omega^c = \omega_2 + i\omega_3$ defines complex structure on fibres
(θ type $(1, 0)$ iff $(\omega^c)^n \wedge \theta = 0$)
- $\bar{\partial}_F \bar{\partial}_A + \bar{\partial}_A \bar{\partial}_F = 0$ if $\bar{\partial}_A \omega^c = 0$

- tangent direction Y on B , $i_Y \beta = b$

variation of $\omega_2 + i\omega_3 = \dot{\omega}_2$ (ω_3 fixed)

$$\omega_2 = -dJdf \Rightarrow \dot{\omega}_2 = -dJdb$$

- $\nabla_A = \nabla_B + \frac{1}{2}\mathcal{L}_{X_c}$ where $i_Y \gamma = c$

- $\nabla_Y \omega^c = -dJdb + \frac{1}{2}dJd(b + ic) = \frac{1}{2}dJd(-b + ic)$

(0, 1) component vanishes

EXAMPLE

- E rank 2, $\Lambda^2 E$ fixed, odd degree

$$C \text{ genus 2: } y^2 = (z - \mu_1) \cdots (z - \mu_6)$$

- moduli space of stable bundles $\mathcal{N} = Q \cap Q_\mu$

$$\sum_{i=1}^6 x_i^2 = 0 = \sum_{i=1}^6 \mu_i x_i^2$$

$T^* \mathcal{N} \subset \mathcal{M}$ moduli space of Higgs bundles

- moduli of complex structures on $C \sim$

$$\{\mu_1, \dots, \mu_6\} \text{ modulo } PSL(2, \mathbb{C}) \sim \{\mu_1, \mu_2, \mu_3, 0, 1, \infty\}$$

- $\varphi = 4 \sum_{i=1}^6 \sum_{j \neq i} \frac{(x_i y_j - x_j y_i)^2}{\mu_j - \mu_i} d\mu_i$

$x \wedge y \in \Lambda^2 \mathbf{C}^6 \in T^*Q$ coadjoint orbit of $SO(6, \mathbf{C})$

A.Beauville, A.Höring, J.Liu & C.Voisin, *Symmetric tensors on the intersection of two quadrics and Lagrangian fibration*, Moduli (2024)

REAL FORMS

- G real form of G^c
- character variety: $\text{Hom}(\pi_1(C), G)/G$
 Higgs bundles: $H \subset G$, maximal compact $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$
 principal H^c -bundle, $\Phi \in H^0(C, \mathfrak{m}^c \otimes K)$
- circle action $\Phi \mapsto e^{i\theta}\Phi$
- $\mathcal{M}^r \times B$, average connection etc.

EXAMPLE: $G = SL(2, \mathbf{R})$

- $\text{Hom}(\pi_1(C), SL(2, \mathbf{R}))$ uniformizing representation

- Higgs bundle:

$$K^{1/2} \oplus K^{-1/2}, \Phi(u, v) = (qv, u), q \in H^0(C, K^2)$$

- holomorphic fibration: $H^0(C, K^2) \rightarrow \mathcal{M}^r \times B \rightarrow B \cong \mathcal{T}$

EXAMPLE: $G = SL(2, \mathbf{R})$

- $\text{Hom}(\pi_1(C), SL(2, \mathbf{R}))$ uniformizing representation

- Higgs bundle:

$$K^{1/2} \oplus K^{-1/2}, \Phi(u, v) = (qv, u), q \in H^0(C, K^2)$$

- holomorphic fibration: $H^0(C, K^2) \rightarrow \mathcal{M}^r \times B \rightarrow B \cong \mathcal{T}$

- $\varphi \in H^0(\mathcal{M}^r \times B, \pi^* T_B^*)$ defines $\mathcal{M}^r \times B \cong T^* B$

= cotangent bundle of Teichmüller space

(φ becomes the canonical 1-form)

A HERMITIAN METRIC

- $T(\mathcal{M} \times B) \cong T_F \oplus H$

define a Hermitian metric so that these are orthogonal

- $T(\mathcal{M} \times B) \cong T_F \oplus H$

define a Hermitian metric so that these are orthogonal

- $\Lambda^2 T_F^* \cong \Lambda^2 H^*$ $\omega_1 \mapsto \omega_1 - \frac{1}{2} d_F \gamma$

- Kähler forms ω_1 on T_F , $\pi^* \omega$ on H

ω Weil-Petersson form

$$\tilde{\omega} = \pi^* \omega + \omega_1 - \frac{1}{2} d_F \gamma$$

- $T(\mathcal{M} \times B) \cong T_F \oplus H$

define a Hermitian metric so that these are orthogonal

- $\Lambda^2 T_F^* \cong \Lambda^2 H^*$ $\omega_1 \mapsto \omega_1 - \frac{1}{2} d_F \gamma$

- Kähler forms ω_1 on T_F , $\pi^* \omega$ on H

ω Weil-Petersson form

$$\tilde{\omega} = \pi^* \omega + \omega_1 - \frac{1}{2} d_F \gamma$$

- $d\tilde{\omega} \neq 0$, $\partial\bar{\partial}\tilde{\omega} \neq 0\dots$

THE QUANTUM LINE BUNDLE

- $\omega_1 - \frac{1}{2}d\gamma$ is closed and
$$= \omega_1 - \frac{1}{2}d_F\gamma - \frac{1}{2}d_B\gamma$$
- $\frac{1}{2}d_B\gamma = -F_A$ type $(1, 1)$
- $\Rightarrow \omega_1 - \frac{1}{2}d\gamma$ = curvature of a unitary connection
on a holomorphic line bundle L

- ω_1 = curvature of prequantum line bundle on \mathcal{M}
connection ∇ independent of complex structure
- $d_B + \nabla - \frac{1}{2}\gamma$ = connection on L
restricts to ∇ on each fibre $\mathcal{M} \subset \mathcal{M} \times B$
- L = holomorphic extension of prequantum line bundle

- ∇ on prequantum line bundle
invariant under action of Hamiltonian functions

$$h \cdot s = \nabla_{X_h} s + ihs$$

- ∇ on prequantum line bundle
invariant under action of Hamiltonian functions

$$h \cdot s = \nabla_{X_h} s + ihs$$

- symplectic connection $\nabla_A = \nabla_B - \frac{1}{2}\gamma$

Lie algebra of Hamiltonian functions on \mathcal{M}

- preserves ∇ on L

- $\nabla_L^{0,1} = \bar{\partial}_A + \nabla^{0,1}$

holomorphic sections $\nabla^{0,1}s = 0, \bar{\partial}_A s = 0$