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Quantum chaos : statistics of energy levels

Classical chaos : hypersensitivity of phase space trajectories to perturbations in
initial conditions and long trajectories uniformly filling the available space.
Kicked top' : H(t) = Ho + ., Hid(t — nr), Hy = hwl,, Hy = (hk/2j)J?
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Quantum systems with integrable (nonintegrable) classical counterpart have
quantum levels showing clustering or level crossing (level repulsion) when a pa-
rameter in the Hamiltonian is varied.

Level spacing distribution P(S) for a kicked top under conditions of classically
regular motion (¢~5) and chaos (575" for 8 = 1,2,4).

LClassical and quantum chaos for a kicked top, Haake, Kus & Scharf (1987)
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Beyond one-particle : Many-body quantum chaos

Bohigas-Giannoni-Schmit (BGS) conjecture (1984) asserts that the spectral
statistics of quantum systems whose classical counterparts exhibit chaotic be-
haviour are described by random matrix theory. Berry & Tabor (1976), (1977)

Research over twenty years could explain BGS conjecture for single-particle sys-
tems whose corresponding classical dynamics are fully chaotic.

A series of recent works could further establish such relationship for nonin-
tegrable, extended, many-body systems where local degrees of freedom, e.g.,
qubits, fermions have no classical limit. *

These studies have analytically computed the spectral form factor (SFF) char-
acterizing spectral fluctuations, and the derived SFF shows a good agreement
with the RMT form, e.g., K(t) = 2t — tlog(1 + 2t/ty) for circular orthogonal
ensemble (COE)

How (e.g., mechanism, nonuniversal behavior) & when (timescales)
many-body quantum systems acquire a universal RMT form?

LP. Kos, M. Ljubotina & T. Prosen, Phys. Rev. X 8, 021062 (2018)
A. Chan, A. De Luca & J. T. Chalker, Phys. Rev. Lett. 121, 060601 (2018)
B. Bertini, P. Kos & T. Prosen, Phys. Rev. Lett. 121, 264101 (2018)
A. J. Friedman, A. Chan, A. De Luca & J. T. Chalker, 123, 210603 (2019)
D. Roy & T. Prosen, Phys. Rev. E 102, 060202(R) (2020)
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Many-body quantum

Periodically driven interacting single species

multiple species
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A 1D lattice of interacting spinless fermions or bosons with a time-periodic kick- Many-body quantum

ing in the nearest-neighbor coupling (hopping and pairing):

J N

chaos
MBQC with single species

MBQC with two species
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H(t) = Ho+Hy Y 6(t—m),
meZ
L
I:IO = Z QTALi + Z Uijﬁiﬁj;
i=1 1<J
L
Hy = Y (=Jalai + Adlal,, +He),
i=1

Number operator n; = dldi;

creation operator of a fermion/boson dg

A = 0 or # 0 corresponds respectlvely to conservation or violation of a total

fermion /boson number N =

Zz lnZ



Spectral form factor (SFF) K (t)

Statistics of energy or quasienergy levels can be characterized by mean and
fluctuations in the spectral density of energy or quasienergy.

Quasienergies of interest are the eigenphases ¢,,, of a unitary Floquet propagator
U of evolution after one cycle: U = Texp(—i fol dtH (t))

U|m> = e “%m|m) form =1,2,..., N (dimension of the Hilbert space)

2
Spectral density p(¢) = 225" 6(p — ), (p(0))e = [o " 22p() =1

Pair correlation function R(d) = (p(¢ + 19/2)p(e —9/2)), — (p(¢))2 provides
a measure of spectral fluctuations.

NQ

dY(R(9)e™ ") = ((trU?) (trU ™)) — N5,

where trtU* = " e "=’ and (...) denotes an average over disorder.

U can be written as a two-step unitary Floquet propagator:

U= VW, W = e~tHo and 7 = ¢~
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Many-body quantum

Exact numerically computed K (t): fermions

multiple species
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Spectral form factor K (t) for different system sizes L of the kicked spinless
fermion chain with (A = 0) (a) and without (A = 1) (b) particle-number
conservation. Here, J = 1,Uy = 15, = 1.5, Ae = 0.3 and N/L = 1/2 for
A = 0. An averaging over 10? realizations of disorder is performed.
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Mechanism to reach universal RMT form of K (t)

Let's consider a set of eigenbasis |n) = |n1,na, ..., nL) of Hy and W

Using a random phase assumption (RPA) which essentially requires a long-range
nature of the interaction in Hy, the SFF can be written as

Kt) = 2ttrtM' —2f(M, V) + O(t?)
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Mo = Vow? = [ V|n))? = [(nle= " |n/)|? is a N x N Markov matrix
P;(n) = (n|M?*|n) is return probability to |n) after ¢ time steps
Pi(n) ~ 1 when t < t* and P,(n) ~ 1/N when t > t*
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Mapping M to effective Hamiltonian

A; are found by (a) numerically diagonalizing M, and (b) mapping M to an
effective Hamiltonian in the Trotter regime, i.e., at small J, A.

Expand V in the Trotter regime of the Hamiltonian Hy !

M = e i gt

1. 1
(]l—z'H1—§H12+...)o(]l+iH1—§H12+...)

= 1+ H eH —H}el+O(HY,
where ﬁl . ﬁl is an element-wise square of ﬁl in the Fock space basis.

For J,A — 0, M can be generated by anisotropic Heisenberg model.

L
M=(1-c, L)+ Z Z CLojoy g+ O(J*, A%,

j=lv=x,y,z

e = (J2+A%)/2, ¢, = c. = (J? = A?)/2. 0%: Pauli matrix at site j.

ID. Roy, D. Mishra & T. Prosen, Phys. Rev. E 106, 024208 (2022)
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Thouless time t* to reach RMT form of K (t)

Eigenvalues \; may or may not depend on the dimension A of M which itself
depends on L. Consider \; falls rapidly with increasing j and \; scales with
system size L as 1 — 1/t*(L) where t*(L) ~ L”/D*:

K(t) ~ 201+ M) = 261+ (1 — 1/t*(L))!) ~ 2t(1 4 e7H/1 (1),

For A = 0, isotropic Heisenberg model (SU(2) symmetry) whose eigenenergy
spectrum is gapless for any magnetization (any N). Eigenvalue of first “excited
state” Ay = 1 — ¢;/L” (one x-polarized magnon excitation with momentum
k =2r/L). B =2 and Thouless time, t* ~ L?/c;. JHEP 7, 124 (2018), PRL
123, 210603 (2019)

For A # J # 0, anisotropic Heisenberg model which has a finite and system-size
independent gap in the energy spectrum between the ground and first excited
state. 5 =0 and L-independent Thouless time.

For A = J # 0, Ising model which has a finite and system-size independent gap
in the energy spectrum between the ground and highly degenerate first excited
state. K (t) ~2t(1+ Zle A) and Thouless time t* ~ log L : PRX 8, 021062
(2018), PRL 121, 060601 (2018)

ID. Roy & T. Prosen, Phys. Rev. E 102, 060202(R) (2020)
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Exact numerically computed K (t): fermions

10t
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Spectral form factor K (t) for different system sizes L of the kicked spinless
fermion chain with (A = 0) (a,b) and without (A = 1) (c) particle-number
conservation. Here, J = 1,Uy = 15, = 1.5, Ae = 0.3 and N/L = 1/2 for
A = 0. An averaging over 10? realizations of disorder is performed. In (b) we
show data collapse in scaled time ¢/L2.

Temporal growth of K(t) for A = 1 at t < ty is independent of L which
confirms our analytical prediction based on the RPA.

For A = 0, we find a nice data collapse for various L and t < tg which confirms
our above predicted L-dependence of K () using the RPA.
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Many-body quantum

Periodically driven mixtures of two species

multiple species
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A 1D lattice of fermions/bosons and qubits: mixing between two species and
nearest-neighbor hopping of fermions/bosons are periodically modulated.

H(t)=Ho+ Hyc/r X pen 0(t —m)

L
i=1 i<j
L L

He = Y glalei+6la) +) (=Jala +He),
i=1 i=1
L L

Hr = Y gla} +a) @ +60) + > (~Jalair, +He),
=1 i=1

Total excitation number N = Zle(ﬁi + &Z&i) is conserved for Jaynes-

Cummings (JC) mixing but not for Rabi (R) mixing.



JC mixing : crossover in system-size scaling of ¢*

weak JC mixing weak JC mixing strong JC mixing strong JC mixing

K(t)/log L

- - - 10!
10" 10! 10? 10° 10" 10! 10% 10% 10 10! 10? 10° 107! 10 10!
t t/log L t t/L

K (t) for different system sizes L with JC mixing between fermions and qubits
forg=0.1,J =0.4in (a,b), and g = 0.4,J = 0.1 in (c,d). We take half-filling
N/L =1/2. (b) and (d) show data collapse in scaled time ¢/log L and t/L'-85.

M- has SU(2) symmetry, and its eigenvalues (excluding largest) for N = 1:

)\i1g2J2(1COS2ZT)+\/J4(1COSQZT)2+Q4, i=1,2...,L—1

For (1—cos2™) < (4)? = L > I. = /\1%1—2”‘] = t* oc O(L?)

Sin_l(ﬁ)'
For (1 —cos 2%) > (4)? at finite L (< L), A\; & 1 — g%+ (¢?/2J)* csc?(im /L)
forie=1,2...,L—1. Second largest eigenvalues for small g/.J are approximately
L —1 fold degenerate = t* =~ O(log L)
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L-scaling of t* & emergent symmetry of M

For periodically driven (Floquet) models with homogeneous kicking in the Trotter

regime:!

H(t) U(1) symmetric/JC-mixing | U(1) broken/R-mixing
species t* t*

Fermion L? SU(2) L% log L U(1), Ising
Qubit L? SU(2) L% log L U(1), Ising
Boson L? SU(1,1) ~ LO7 U(1)

Fermion & qubit | log L to L? SU(2) log L U(1) ® u®L(1)
Boson & qubit | logL to L? | ~ SU(1,1) ~log L u®L(1)

1y, Kumar & D. Roy, arXiv:2510.06811 (2025)
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Spectral form factor: exact vs. RPA
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Comparison of the exact numerically computed SFF, K(¢) vs. ¢ with that ob-
tained using the RPA for Rabi mixing between fermions and qubits.
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Summary

Study of spectral form factor infers how (e.g., mechanism, nonuniversal behavior)
& when (timescales) many-body quantum systems acquire a universal RMT form.

L-dependence of Thouless time t* crosses over from log L to L? with an in-
creasing Jaynes-Cummings mixing between qubits and fermions or bosons in a
finite-sized chain, and it finally settles to t* oc O(L?) in the thermodynamic limit
for any mixing strength.

Rabi mixing between qubits and fermions leads to t* o< O(log L)

V. Kumar & D. Roy, arXiv:2310.06811 (2023)
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Mapping M to effective Hamiltonian : Bosons

Generating Hamiltonian in the Trotter regime of small J when A = 0:

1
—1+ Z (FORT Ky + KK = 202 (ROKY,, i)) +O(JY

in terms of K0 = —(n; +1/2), K = a;v/n, K; = \/ﬁjdl which satisfy the
commutation relations of SU(1, 1) algebra

[Ki—i_vf(j_] = 72[%1951']" [f{i)?f(;l:] = :l:f(;t(slj
We have [K, M] = 0, where K* = S"% | K2, a € {+,—,0} satisfy SU(1,1)
algebra.

Generating Hamiltonian of the Markov matrix M has SU(1,1) symmetry in the
particle-number conserving case.

Numerics shows M has SU(1,1) symmetry for arbitrary values of J

Due to SU(1,1) symmetry of the generating Hamiltonian, its lowest excited
states can be obtained as degenerate descendants of the single-particle (N = 1)
states, i.e., by applying the operator K.
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L-dependence of Thouless time (A = 0): Bosons

Therefore, the L-dependence of \; is independent of N when A = 0.

L
MNZS = @=27%)+ ) J(alain +al,,a:) + 0.

[
i=1

“Ground state” of/\/l|g§é is a state with eigenvalue 1 and with zero momentum.
Eigenenergy spectrum is gapless, and first "excited state” (with momentum k =
2w /L) goes as Ay = 1 — ca/L?.

Thouless time, t* ~ L?/cy, for single boson and, due to SU(1,1) symmetry, for
any number of bosons in the particle number conserving model.

J=1,A=0,N/L=1/2 J=1,A=0,N/L=1/4
L] M X2 X3 | L A X2 X3
8 [ 0.8526 | 0.7486 | 0.6680 | 8 | 0.8526 | 0.7486 | 0.4847
10 | 0.9042 | 0.8283 | 0.7658 | 12 | 0.9329 | 0.8764 | 0.8278
12 | 0.9329 | 0.8764 | 0.8278 | 16 | 0.9619 | 0.9278 | 0.8970
14 | 0.9504 | 0.9071 | 0.8688 | 20 | 0.9755 | 0.9529 | 0.9320

J=1,A=0: \ ~1—829/L"% (or Ay ~ e 1142 for N/L = 1/2, and
A1 ~1—=9.0/LY9 (or Ay ~ 6’10'5/L2'02) for N/L=1/4
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L-dependence of Thouless time (A # 0): Bosons

Generating Hamiltonian of M lacks SU(1,1) symmetry when A # 0. Conse-
quently, A\; changes with N or Ny, .5 for a fixed L.

0.80 J=1,A=0.7
0.75
0.70
_ 0.65]
~<
0.601
0.55] L=6
) —— [ =
0504 —— L =10

0.00 005 010 015 020 0.5
]-/Nm(u

Dashed lines indicate a linear extrapolation of the last few Iarg7e Nmax points.
These linear extrapolations give A\; ~ 1—1.43/L%58 or e—2:89/L7" 44 1/Nmax —
0, which predicts a finite system-size dependence of the Thouless time (e.g.,
t*=0O(LY), y=0.7+0.1 when J =1,A =0.7)
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Second-order contributions

Single and double crossing diagrams for non-repeated basis states. Zero and
single crossing diagrams for repeated basis states (|n,,) = |n,,))

n+2 Tl o
i T+ 1 i T+ 1
T
T
T+ 1 ™ T+ 1 n
oM+l T2

Ke(t) = t*(Zx+Zxx — Zor — ZxR)
t—3 2 N t—5 2 A3
— t2 “ 3 R = 3
(% +N;1—)\i+ N +N§1—)\i
t—1 2 i t—5 2 A3
A Dy
_oe
N
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