Many-body quantum chaos in mixtures of multiple species

Dibyendu Roy
Raman Research Institute, Bangalore

Vijay Kumar \& DR, arXiv:2310.06811 (2023)
January 24, 2024

Outline

Many-body quantum chaos

MBQC with single species MBQC with two species

1. Many body quantum chaos (MBQC)
2. MBQC with single species
3. MBQC with mixtures of two species

Quantum chaos: statistics of energy levels

Classical chaos: hypersensitivity of phase space trajectories to perturbations in initial conditions and long trajectories uniformly filling the available space.

Kicked top ${ }^{1}: \hat{H}(t)=\hat{H}_{0}+\sum_{n} \hat{H}_{1} \delta(t-n \tau), \hat{H}_{0}=\hbar \omega \hat{J}_{y}, \hat{H}_{1}=(\hbar k / 2 j) \hat{J}_{z}^{2}$

Many-body quantum chaos
MBQC with single species MBQC with two species $\hat{U}=e^{-i(k / 2 j) \hat{J}_{z}^{2}} e^{-i \omega \tau \hat{J}_{y}}, \hat{U}|m\rangle=e^{-i \phi_{m}}|m\rangle$, spacing $S_{m}=\phi_{m+1}-\phi_{m}$

Quantum systems with integrable (nonintegrable) classical counterpart have quantum levels showing clustering or level crossing (level repulsion) when a parameter in the Hamiltonian is varied.

Level spacing distribution $P(S)$ for a kicked top under conditions of classically regular motion $\left(e^{-S}\right)$ and chaos ($S^{\beta} e^{-c S^{2}}$ for $\beta=1,2,4$).

[^0]
Beyond one-particle: Many-body quantum chaos

Bohigas-Giannoni-Schmit (BGS) conjecture (1984) asserts that the spectral statistics of quantum systems whose classical counterparts exhibit chaotic behaviour are described by random matrix theory. Berry \& Tabor (1976), (1977)

Research over twenty years could explain BGS conjecture for single-particle systems whose corresponding classical dynamics are fully chaotic.

A series of recent works could further establish such relationship for nonintegrable, extended, many-body systems where local degrees of freedom, e.g., qubits, fermions have no classical limit. ${ }^{1}$

These studies have analytically computed the spectral form factor (SFF) characterizing spectral fluctuations, and the derived SFF shows a good agreement with the RMT form, e.g., $K(t)=2 t-t \log \left(1+2 t / t_{H}\right)$ for circular orthogonal ensemble (COE)

How (e.g., mechanism, nonuniversal behavior) \& when (timescales) many-body quantum systems acquire a universal RMT form?

[^1]
Periodically driven interacting single species

A 1D lattice of interacting spinless fermions or bosons with a time-periodic kicking in the nearest-neighbor coupling (hopping and pairing):

$$
\begin{aligned}
\hat{H}(t) & =\hat{H}_{0}+\hat{H}_{1} \sum_{m \in \mathbb{Z}} \delta(t-m) \\
\hat{H}_{0} & =\sum_{i=1}^{L} \epsilon_{i} \hat{n}_{i}+\sum_{i<j} U_{i j} \hat{n}_{i} \hat{n}_{j} \\
\hat{H}_{1} & =\sum_{i=1}^{L}\left(-J \hat{a}_{i}^{\dagger} \hat{a}_{i+1}+\Delta \hat{a}_{i}^{\dagger} \hat{a}_{i+1}^{\dagger}+\text { H.c. }\right),
\end{aligned}
$$

Number operator $\hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}$; creation operator of a fermion/boson \hat{a}_{i}^{\dagger}
$\Delta=0$ or $\neq 0$ corresponds respectively to conservation or violation of a total fermion/boson number $\hat{N}=\sum_{i=1}^{L} \hat{n}_{i}$.

Many-body quantum chaos

MBQC with single species

Spectral form factor (SFF) $K(t)$

Statistics of energy or quasienergy levels can be characterized by mean and fluctuations in the spectral density of energy or quasienergy.

Quasienergies of interest are the eigenphases φ_{m} of a unitary Floquet propagator \hat{U} of evolution after one cycle: $\hat{U}=\mathcal{T} \exp \left(-i \int_{0}^{1} d t \hat{H}(t)\right)$
$\hat{U}|m\rangle=e^{-i \varphi_{m}}|m\rangle$ for $m=1,2, \ldots, \mathcal{N}$ (dimension of the Hilbert space)
Spectral density $\rho(\varphi)=\frac{2 \pi}{\mathcal{N}} \sum_{m} \delta\left(\varphi-\varphi_{m}\right),\langle\rho(\varphi)\rangle_{\varphi} \equiv \int_{0}^{2 \pi} \frac{d \varphi}{2 \pi} \rho(\varphi)=1$
Pair correlation function $R(\vartheta)=\langle\rho(\varphi+\vartheta / 2) \rho(\varphi-\vartheta / 2)\rangle_{\varphi}-\langle\rho(\varphi)\rangle_{\varphi}^{2}$ provides a measure of spectral fluctuations.

$$
K(t)=\frac{\mathcal{N}^{2}}{2 \pi} \int_{0}^{2 \pi} d \vartheta\left\langle R(\vartheta) e^{-i \vartheta t}\right\rangle=\left\langle\left(\operatorname{tr} \hat{U}^{t}\right)\left(\operatorname{tr} \hat{U}^{-t}\right)\right\rangle-\mathcal{N}^{2} \delta_{t, 0}
$$

where $\operatorname{tr} \hat{U}^{t}=\sum_{m} e^{-i \varphi_{m} t}$, and $\langle\ldots\rangle$ denotes an average over disorder.
\hat{U} can be written as a two-step unitary Floquet propagator:

$$
\hat{U}=\hat{V} \hat{W}, \quad \hat{W}=e^{-i \hat{H}_{0}} \text { and } \hat{V}=e^{-i \hat{H}_{1}}
$$

Exact numerically computed $K(t)$: fermions

Spectral form factor $K(t)$ for different system sizes L of the kicked spinless fermion chain with ($\Delta=0$) (a) and without $(\Delta=1$) (b) particle-number conservation. Here, $J=1, U_{0}=15, \alpha=1.5, \Delta \epsilon=0.3$ and $N / L=1 / 2$ for $\Delta=0$. An averaging over 10^{3} realizations of disorder is performed.

Mechanism to reach universal RMT form of $K(t)$

Let's consider a set of eigenbasis $|\underline{n}\rangle \equiv\left|n_{1}, n_{2}, \ldots, n_{L}\right\rangle$ of \hat{H}_{0} and \hat{W}
Using a random phase assumption (RPA) which essentially requires a long-range nature of the interaction in \hat{H}_{0}, the SFF can be written as

$$
\begin{aligned}
K(t) & =2 t \operatorname{tr} \mathcal{M}^{t}-t^{2} f(\mathcal{M}, \mathcal{V})+\mathcal{O}\left(t^{3}\right) \\
& =2 t\left(1+\sum_{j=1}^{\mathcal{N}-1} \lambda_{j}^{t}\right)-\frac{2 t^{2}}{\mathcal{N}}+\mathcal{O}\left(t^{3}\right)
\end{aligned}
$$

$\left.\left.\mathcal{M}_{\underline{n}, \underline{n}^{\prime}}=\left|\mathcal{V}_{\underline{n}, \underline{n}^{\prime}}\right|^{2}=|\langle\underline{n}| \hat{V}| \underline{n}^{\prime}\right\rangle\left.\right|^{2}=\left|\langle\underline{n}| e^{-i H_{1}}\right| \underline{n}^{\prime}\right\rangle\left.\right|^{2}$ is a $\mathcal{N} \times \mathcal{N}$ Markov matrix $P_{t}(n) \equiv\langle\underline{n}| \mathcal{M}^{t}|\underline{n}\rangle$ is return probability to $|\underline{n}\rangle$ after t time steps $P_{t}(n) \sim 1$ when $t \ll t^{*}$ and $P_{t}(n) \sim 1 / \mathcal{N}$ when $t \geq t^{*}$

Many-body quantum chaos
MBQC with single species MBQC with two species

Mapping \mathcal{M} to effective Hamiltonian

λ_{j} are found by (a) numerically diagonalizing \mathcal{M}, and (b) mapping \mathcal{M} to an effective Hamiltonian in the Trotter regime, i.e., at small J, Δ.
Expand \hat{V} in the Trotter regime of the Hamiltonian $\hat{H}_{1}{ }^{1}$:

$$
\begin{aligned}
\mathcal{M} & =e^{-i \hat{H}_{1}} \bullet e^{i \hat{H}_{1}} \\
& =\left(\mathbb{1}-i \hat{H}_{1}-\frac{1}{2} \hat{H}_{1}^{2}+\ldots\right) \bullet\left(\mathbb{1}+i \hat{H}_{1}-\frac{1}{2} \hat{H}_{1}^{2}+\ldots\right) \\
& =\mathbb{1}+\hat{H}_{1} \bullet \hat{H}_{1}-\hat{H}_{1}^{2} \bullet \mathbb{1}+\mathcal{O}\left(\hat{H}_{1}^{4}\right),
\end{aligned}
$$

where $\hat{H}_{1} \bullet \hat{H}_{1}$ is an element-wise square of \hat{H}_{1} in the Fock space basis.
For $J, \Delta \rightarrow 0, \mathcal{M}$ can be generated by anisotropic Heisenberg model.

$$
\mathcal{M}=\left(1-c_{x} L\right) \mathbb{1}_{\mathcal{N}}+\sum_{j=1}^{L} \sum_{\nu=x, y, z} c_{\nu} \sigma_{j}^{\nu} \sigma_{j+1}^{\nu}+\mathcal{O}\left(J^{4}, \Delta^{4}\right)
$$

$c_{x}=\left(J^{2}+\Delta^{2}\right) / 2, c_{y}=c_{z}=\left(J^{2}-\Delta^{2}\right) / 2 . \sigma_{j}^{\nu}$: Pauli matrix at site j.

[^2]
Thouless time t^{*} to reach RMT form of $K(t)$

Eigenvalues λ_{j} may or may not depend on the dimension \mathcal{N} of \mathcal{M} which itself depends on L. Consider λ_{j} falls rapidly with increasing j and λ_{1} scales with system size L as $1-1 / t^{*}(L)$ where $t^{*}(L) \simeq L^{\beta} / D^{1}$:

$$
K(t) \simeq 2 t\left(1+\lambda_{1}^{t}\right) \simeq 2 t\left(1+\left(1-1 / t^{*}(L)\right)^{t}\right) \simeq 2 t\left(1+e^{-t / t^{*}(L)}\right)
$$

For $\Delta=0$, isotropic Heisenberg model $(S U(2)$ symmetry) whose eigenenergy spectrum is gapless for any magnetization (any N). Eigenvalue of first "excited state" $\lambda_{1}=1-c_{1} / L^{2}$ (one x-polarized magnon excitation with momentum $k=2 \pi / L) . \beta=2$ and Thouless time, $t^{*} \simeq L^{2} / c_{1}$. JHEP 7, 124 (2018), PRL 123, 210603 (2019)

For $\Delta \neq J \neq 0$, anisotropic Heisenberg model which has a finite and system-size independent gap in the energy spectrum between the ground and first excited state. $\beta=0$ and L-independent Thouless time.

For $\Delta=J \neq 0$, Ising model which has a finite and system-size independent gap in the energy spectrum between the ground and highly degenerate first excited state. $K(t) \simeq 2 t\left(1+\sum_{j=1}^{L} \lambda_{j}^{t}\right)$ and Thouless time $t^{*} \simeq \log L: \operatorname{PRX} 8,021062$ (2018), PRL 121, 060601 (2018)

[^3]
Exact numerically computed $K(t)$: fermions

Spectral form factor $K(t)$ for different system sizes L of the kicked spinless fermion chain with $(\Delta=0)(\mathrm{a}, \mathrm{b})$ and without $(\Delta=1)$ (c) particle-number conservation. Here, $J=1, U_{0}=15, \alpha=1.5, \Delta \epsilon=0.3$ and $N / L=1 / 2$ for $\Delta=0$. An averaging over 10^{3} realizations of disorder is performed. In (b) we show data collapse in scaled time t / L^{2}.

Temporal growth of $K(t)$ for $\Delta=1$ at $t \ll t_{H}$ is independent of L which confirms our analytical prediction based on the RPA.

For $\Delta=0$, we find a nice data collapse for various L and $t<t_{H}$ which confirms our above predicted L-dependence of $K(t)$ using the RPA.

Many-body quantum chaos
MBQC with single species MBQC with two species

Periodically driven mixtures of two species

A 1D lattice of fermions/bosons and qubits: mixing between two species and nearest-neighbor hopping of fermions/bosons are periodically modulated.
$\hat{H}(t)=\hat{H}_{0}+\hat{H}_{J C / R} \sum_{m \in \mathbb{Z}} \delta(t-m)$

$$
\begin{aligned}
\hat{H}_{0} & =\sum_{i=1}^{L}\left(\epsilon_{i} \hat{n}_{i}+\Omega_{i} \hat{\sigma}_{i}^{\dagger} \hat{\sigma}_{i}\right)+\sum_{i<j} U_{i j} \hat{n}_{i} \hat{n}_{j} \\
\hat{H}_{\mathrm{JC}} & =\sum_{i=1}^{L} g\left(\hat{a}_{i}^{\dagger} \hat{\sigma}_{i}+\hat{\sigma}_{i}^{\dagger} \hat{a}_{i}\right)+\sum_{i=1}^{L}\left(-J \hat{a}_{i}^{\dagger} \hat{a}_{i+1}+\text { H.c. }\right) \\
\hat{H}_{\mathrm{R}} & =\sum_{i=1}^{L} g\left(\hat{a}_{i}^{\dagger}+\hat{a}_{i}\right)\left(\hat{\sigma}_{i}+\hat{\sigma}_{i}^{\dagger}\right)+\sum_{i=1}^{L}\left(-J \hat{a}_{i}^{\dagger} \hat{a}_{i+1}+\text { H.c. }\right)
\end{aligned}
$$

Total excitation number $\hat{N}=\sum_{i=1}^{L}\left(\hat{n}_{i}+\hat{\sigma}_{i}^{\dagger} \hat{\sigma}_{i}\right)$ is conserved for JaynesCummings (JC) mixing but not for Rabi (R) mixing.

JC mixing : crossover in system-size scaling of t^{*}

$K(t)$ for different system sizes L with $J C$ mixing between fermions and qubits for $g=0.1, J=0.4$ in (a,b), and $g=0.4, J=0.1$ in (c,d). We take half-filling $N / L=1 / 2$. (b) and (d) show data collapse in scaled time $t / \log L$ and $t / L^{1.85}$. $\mathcal{M}_{\mathrm{JC}}^{\mathrm{F}}$ has $S U(2)$ symmetry, and its eigenvalues (excluding largest) for $N=1$: $\lambda_{i}=1-g^{2}-J^{2}\left(1-\cos \frac{2 i \pi}{L}\right)+\sqrt{J^{4}\left(1-\cos \frac{2 i \pi}{L}\right)^{2}+g^{4}}, i=1,2 \ldots, L-1$ For $\left(1-\cos \frac{2 \pi}{L}\right) \ll\left(\frac{g}{J}\right)^{2} \Rightarrow L>l_{c}=\frac{\pi}{\sin ^{-1}\left(\frac{g}{\sqrt{2 . J}}\right)}, \lambda_{1} \approx 1-\frac{2 \pi^{2} J^{2}}{L^{2}} \Rightarrow t^{*} \propto \mathcal{O}\left(L^{2}\right)$ For $\left(1-\cos \frac{2 i \pi}{L}\right) \gg\left(\frac{g}{J}\right)^{2}$ at finite $L\left(<l_{c}\right), \lambda_{i} \approx 1-g^{2}+\left(g^{2} / 2 J\right)^{2} \csc ^{2}(i \pi / L)$ for $i=1,2 \ldots, L-1$. Second largest eigenvalues for small g / J are approximately $L-1$ fold degenerate $\Rightarrow t^{*} \approx \mathcal{O}(\log L)$

L-scaling of $t^{*} \&$ emergent symmetry of \mathcal{M}

For periodically driven (Floquet) models with homogeneous kicking in the Trotter regime: ${ }^{1}$

$\hat{H}(t)$	$\mathrm{U}(1)$ symmetric/JC-mixing		$\mathrm{U}(1)$ broken/R-mixing	
species	t^{*}	\mathcal{M} symmetry	t^{*}	\mathcal{M} symmetry
Fermion	L^{2}	$S U(2)$	$L^{0}, \log L$	$U(1)$, Ising
Qubit	L^{2}	$S U(2)$	$L^{0}, \log L$	$U(1), \operatorname{Ising}$
Boson	L^{2}	$S U(1,1)$	$\sim L^{0.7}$	$U(1)$
Fermion \& qubit	$\log L$ to L^{2}	$S U(2)$	$\log L$	$U(1) \otimes u^{\otimes L}(1)$
Boson \& qubit	$\log L$ to L^{2}	$\sim S U(1,1)$	$\sim \log L$	$u^{\otimes L}(1)$

[^4]
Spectral form factor: exact vs. RPA

Comparison of the exact numerically computed SFF, $K(t)$ vs. t with that obtained using the RPA for Rabi mixing between fermions and qubits.

Many-body quantum chaos

MBQC with single species MBQC with two species

Summary

Study of spectral form factor infers how (e.g., mechanism, nonuniversal behavior) \& when (timescales) many-body quantum systems acquire a universal RMT form.
L-dependence of Thouless time t^{*} crosses over from $\log L$ to L^{2} with an increasing Jaynes-Cummings mixing between qubits and fermions or bosons in a finite-sized chain, and it finally settles to $t^{*} \propto \mathcal{O}\left(L^{2}\right)$ in the thermodynamic limit for any mixing strength.

Rabi mixing between qubits and fermions leads to $t^{*} \propto \mathcal{O}(\log L)$
V. Kumar \& D. Roy, arXiv:2310.06811 (2023)

Mapping \mathcal{M} to effective Hamiltonian: Bosons

Generating Hamiltonian in the Trotter regime of small J when $\Delta=0$:
$\mathcal{M}=\mathbb{1}+\sum_{i=1}^{L}\left(J^{2}\left(\hat{K}_{i}^{-} \hat{K}_{i+1}^{+}+\hat{K}_{i+1}^{-} \hat{K}_{i}^{+}\right)-2 J^{2}\left(\hat{K}_{i}^{0} \hat{K}_{i+1}^{0}-\frac{1}{4}\right)\right)+\mathcal{O}\left(J^{4}\right)$
in terms of $\hat{K}_{i}^{0}=-\left(\hat{n}_{i}+1 / 2\right), \hat{K}_{i}^{+}=\hat{a}_{i} \sqrt{\hat{n}_{i}}, \hat{K}_{i}^{-}=\sqrt{\hat{n}_{i}} \hat{a}_{i}^{\dagger}$, which satisfy the commutation relations of $\operatorname{SU}(1,1)$ algebra

$$
\left[\hat{K}_{i}^{+}, \hat{K}_{j}^{-}\right]=-2 \hat{K}_{i}^{0} \delta_{i j},\left[\hat{K}_{i}^{0}, \hat{K}_{j}^{ \pm}\right]= \pm \hat{K}_{i}^{ \pm} \delta_{i j}
$$

We have $\left[\hat{K}^{\alpha}, \mathcal{M}\right]=0$, where $\hat{K}^{\alpha}=\sum_{i=1}^{L} \hat{K}_{i}^{\alpha}, \alpha \in\{+,-, 0\}$ satisfy $\operatorname{SU}(1,1)$ algebra.

Generating Hamiltonian of the Markov matrix \mathcal{M} has $S U(1,1)$ symmetry in the particle-number conserving case.
Numerics shows \mathcal{M} has $S U(1,1)$ symmetry for arbitrary values of J
Due to $S U(1,1)$ symmetry of the generating Hamiltonian, its lowest excited states can be obtained as degenerate descendants of the single-particle $(N=1)$ states, i.e., by applying the operator \hat{K}^{-}.

L-dependence of Thouless time $(\Delta=0)$: Bosons

Therefore, the L-dependence of λ_{1} is independent of N when $\Delta=0$.

$$
\left.\mathcal{M}\right|_{\Delta=0} ^{N=1}=\left(\mathbb{1}-2 J^{2}\right)+\sum_{i=1}^{L} J^{2}\left(\hat{a}_{i}^{\dagger} \hat{a}_{i+1}+\hat{a}_{i+1}^{\dagger} \hat{a}_{i}\right)+\mathcal{O}\left(J^{4}\right) .
$$

"Ground state" of $\left.\mathcal{M}\right|_{\Delta=0} ^{N=1}$ is a state with eigenvalue 1 and with zero momentum. Eigenenergy spectrum is gapless, and first "excited state" (with momentum $k=$ $2 \pi / L)$ goes as $\lambda_{1}=1-c_{2} / L^{2}$.

Thouless time, $t^{*} \simeq L^{2} / c_{2}$, for single boson and, due to $\operatorname{SU}(1,1)$ symmetry, for any number of bosons in the particle number conserving model.

$J=1, \Delta=0, N / L=1 / 2$				$J=1, \Delta=0, N / L=1 / 4$			
L	λ_{1}	λ_{2}	λ_{3}	L	λ_{1}	λ_{2}	λ_{3}
8	0.8526	0.7486	0.6680	8	0.8526	0.7486	0.4847
10	0.9042	0.8283	0.7658	12	0.9329	0.8764	0.8278
12	0.9329	0.8764	0.8278	16	0.9619	0.9278	0.8970
14	0.9504	0.9071	0.8688	20	0.9755	0.9529	0.9320

$J=1, \Delta=0: \lambda_{1} \sim 1-8.29 / L^{1.94}\left(\right.$ or $\lambda_{1} \sim e^{-11.4 / L^{2.05}}$) for $N / L=1 / 2$, and $\lambda_{1} \sim 1-9.0 / L^{1.97}\left(\right.$ or $\lambda_{1} \sim e^{-10.5 / L^{2.02}}$) for $N / L=1 / 4$

Many-body quantum chaos
MBQC with single species MBQC with two species

L-dependence of Thouless time $(\Delta \neq 0)$: Bosons

Generating Hamiltonian of \mathcal{M} lacks $S U(1,1)$ symmetry when $\Delta \neq 0$. Consequently, λ_{1} changes with N or $N_{\max }$ for a fixed L.

Dashed lines indicate a linear extrapolation of the last few large $N_{\text {max }}$ points. These linear extrapolations give $\lambda_{1} \sim 1-1.43 / L^{0.58}$ or $e^{-2.89 / L^{0.79}}$ at $1 / N_{\max } \rightarrow$ 0 , which predicts a finite system-size dependence of the Thouless time (e.g., $t^{*}=\mathcal{O}\left(L^{\gamma}\right), \gamma=0.7 \pm 0.1$ when $\left.J=1, \Delta=0.7\right)$

Many-body quantum chaos
MBQC with single species MBQC with two species

Second-order contributions

Single and double crossing diagrams for non-repeated basis states. Zero and single crossing diagrams for repeated basis states $\left(\left|\underline{n}_{\tau_{1}}\right\rangle=\left|\underline{n}_{\tau_{2}}\right\rangle\right)$

Many-body quantum chaos
MBQC with single species MBQC with two species

$$
\begin{aligned}
K_{c}(t)= & t^{2}\left(Z_{X}+Z_{X X}-Z_{O R}-Z_{X R}\right) \\
= & t^{2}\left(\frac{t-3}{\mathcal{N}}+\frac{2}{\mathcal{N}} \sum_{i \neq 0} \frac{\lambda_{i}}{1-\lambda_{i}}+\frac{t-5}{\mathcal{N}}+\frac{2}{\mathcal{N}} \sum_{i \neq 0} \frac{\lambda_{i}^{3}}{1-\lambda_{i}}\right. \\
& \left.-\frac{t-1}{\mathcal{N}}+\frac{2}{\mathcal{N}} \sum_{i \neq 0} \frac{\lambda_{i}}{1-\lambda_{i}}-\frac{t-5}{\mathcal{N}}-\frac{2}{\mathcal{N}} \sum_{i \neq 0} \frac{\lambda_{i}^{3}}{1-\lambda_{i}}\right) \\
= & -\frac{2 t^{2}}{\mathcal{N}}
\end{aligned}
$$

[^0]: ${ }^{1}$ Classical and quantum chaos for a kicked top, Haake, Kus \& Scharf (1987)

[^1]: ${ }^{1}$ P. Kos, M. Ljubotina \& T. Prosen, Phys. Rev. X 8, 021062 (2018)
 A. Chan, A. De Luca \& J. T. Chalker, Phys. Rev. Lett. 121, 060601 (2018)
 B. Bertini, P. Kos \& T. Prosen, Phys. Rev. Lett. 121, 264101 (2018)
 A. J. Friedman, A. Chan, A. De Luca \& J. T. Chalker, 123, 210603 (2019)
 D. Roy \& T. Prosen, Phys. Rev. E 102, 060202(R) (2020)

[^2]: ${ }^{1}$ D. Roy, D. Mishra \& T. Prosen, Phys. Rev. E 106, 024208 (2022)

[^3]: ${ }^{1}$ D. Roy \& T. Prosen, Phys. Rev. E 102, 060202(R) (2020)

[^4]: ${ }^{1}$ V. Kumar \& D. Roy, arXiv:2310.06811 (2023)

