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Quantum chaos : statistics of energy levels

Classical chaos : hypersensitivity of phase space trajectories to perturbations in
initial conditions and long trajectories uniformly filling the available space.

Kicked top1 : Ĥ(t) = Ĥ0 +
∑

n Ĥ1δ(t− nτ), Ĥ0 = ℏωĴy, Ĥ1 = (ℏk/2j)Ĵ2
z

Û = e−i(k/2j)Ĵ2
z e−iωτĴy , Û |m⟩ = e−iϕm |m⟩, spacing Sm = ϕm+1 − ϕm

Quantum systems with integrable (nonintegrable) classical counterpart have
quantum levels showing clustering or level crossing (level repulsion) when a pa-
rameter in the Hamiltonian is varied.

Level spacing distribution P (S) for a kicked top under conditions of classically

regular motion (e−S) and chaos (Sβe−cS2

for β = 1, 2, 4).

1Classical and quantum chaos for a kicked top, Haake, Kus & Scharf (1987)
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Beyond one-particle : Many-body quantum chaos

Bohigas-Giannoni-Schmit (BGS) conjecture (1984) asserts that the spectral
statistics of quantum systems whose classical counterparts exhibit chaotic be-
haviour are described by random matrix theory. Berry & Tabor (1976), (1977)

Research over twenty years could explain BGS conjecture for single-particle sys-
tems whose corresponding classical dynamics are fully chaotic.

A series of recent works could further establish such relationship for nonin-
tegrable, extended, many-body systems where local degrees of freedom, e.g.,
qubits, fermions have no classical limit. 1

These studies have analytically computed the spectral form factor (SFF) char-
acterizing spectral fluctuations, and the derived SFF shows a good agreement
with the RMT form, e.g., K(t) = 2t − t log(1 + 2t/tH) for circular orthogonal
ensemble (COE)

How (e.g., mechanism, nonuniversal behavior) & when (timescales)
many-body quantum systems acquire a universal RMT form?

1P. Kos, M. Ljubotina & T. Prosen, Phys. Rev. X 8, 021062 (2018)
A. Chan, A. De Luca & J. T. Chalker, Phys. Rev. Lett. 121, 060601 (2018)
B. Bertini, P. Kos & T. Prosen, Phys. Rev. Lett. 121, 264101 (2018)
A. J. Friedman, A. Chan, A. De Luca & J. T. Chalker, 123, 210603 (2019)
D. Roy & T. Prosen, Phys. Rev. E 102, 060202(R) (2020)
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Periodically driven interacting single species

A 1D lattice of interacting spinless fermions or bosons with a time-periodic kick-
ing in the nearest-neighbor coupling (hopping and pairing):

ε1
ε3

ε
5

ε4
ε

7ε
6ε2

12U U14

J

J

Ĥ(t) = Ĥ0 + Ĥ1

∑

m∈Z
δ(t−m),

Ĥ0 =

L∑

i=1

ϵin̂i +
∑

i<j

Uij n̂in̂j ,

Ĥ1 =

L∑

i=1

(−Jâ†i âi+1 +∆â†i â
†
i+1 +H.c.),

Number operator n̂i = â†i âi; creation operator of a fermion/boson â†i

∆ = 0 or ̸= 0 corresponds respectively to conservation or violation of a total
fermion/boson number N̂ =

∑L
i=1 n̂i.
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Spectral form factor (SFF) K(t)

Statistics of energy or quasienergy levels can be characterized by mean and
fluctuations in the spectral density of energy or quasienergy.

Quasienergies of interest are the eigenphases φm of a unitary Floquet propagator

Û of evolution after one cycle: Û = T exp(−i
∫ 1

0
dtĤ(t))

Û |m⟩ = e−iφm |m⟩ for m = 1, 2, . . . ,N (dimension of the Hilbert space)

Spectral density ρ(φ) = 2π
N

∑
m δ(φ− φm), ⟨ρ(φ)⟩φ ≡

∫ 2π

0
dφ
2π ρ(φ) = 1

Pair correlation function R(ϑ) = ⟨ρ(φ + ϑ/2)ρ(φ − ϑ/2)⟩φ − ⟨ρ(φ)⟩2φ provides
a measure of spectral fluctuations.

K(t) =
N 2

2π

∫ 2π

0

dϑ⟨R(ϑ)e−iϑt⟩ = ⟨(trÛ t)(trÛ−t)⟩ − N 2δt,0

where trÛ t =
∑

m e−iφmt, and ⟨. . . ⟩ denotes an average over disorder.

Û can be written as a two-step unitary Floquet propagator:

Û = V̂ Ŵ , Ŵ = e−iĤ0 and V̂ = e−iĤ1
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Exact numerically computed K(t): fermions
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Spectral form factor K(t) for different system sizes L of the kicked spinless
fermion chain with (∆ = 0) (a) and without (∆ = 1) (b) particle-number
conservation. Here, J = 1, U0 = 15, α = 1.5,∆ϵ = 0.3 and N/L = 1/2 for
∆ = 0. An averaging over 103 realizations of disorder is performed.
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Mechanism to reach universal RMT form of K(t)

Let’s consider a set of eigenbasis |n⟩ ≡ |n1, n2, . . . , nL⟩ of Ĥ0 and Ŵ

Using a random phase assumption (RPA) which essentially requires a long-range
nature of the interaction in Ĥ0, the SFF can be written as

K(t) = 2t trMt − t2f(M,V) +O(t3)

= 2t(1 +

N−1∑

j=1

λt
j)−

2t2

N +O(t3)

Mn,n′ = |Vn,n′ |2 = |⟨n|V̂ |n′⟩|2 = |⟨n|e−iH1 |n′⟩|2 is a N ×N Markov matrix

Pt(n) ≡ ⟨n|Mt|n⟩ is return probability to |n⟩ after t time steps

Pt(n) ∼ 1 when t ≪ t∗ and Pt(n) ∼ 1/N when t ≥ t∗

|n>
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Mapping M to effective Hamiltonian

λj are found by (a) numerically diagonalizing M, and (b) mapping M to an
effective Hamiltonian in the Trotter regime, i.e., at small J,∆.

Expand V̂ in the Trotter regime of the Hamiltonian Ĥ1
1:

M = e−iĤ1 • eiĤ1

= (1− iĤ1 −
1

2
Ĥ2

1 + . . . ) • (1+ iĤ1 −
1

2
Ĥ2

1 + . . . )

= 1+ Ĥ1 • Ĥ1 − Ĥ2
1 • 1+O(Ĥ4

1 ),

where Ĥ1 • Ĥ1 is an element-wise square of Ĥ1 in the Fock space basis.

For J,∆ → 0, M can be generated by anisotropic Heisenberg model.

M = (1− cxL)1N +

L∑

j=1

∑

ν=x,y,z

cνσ
ν
j σ

ν
j+1 +O(J4,∆4),

cx = (J2 +∆2)/2, cy = cz = (J2 −∆2)/2. σν
j : Pauli matrix at site j.

1D. Roy, D. Mishra & T. Prosen, Phys. Rev. E 106, 024208 (2022)
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Thouless time t∗ to reach RMT form of K(t)

Eigenvalues λj may or may not depend on the dimension N of M which itself
depends on L. Consider λj falls rapidly with increasing j and λ1 scales with
system size L as 1− 1/t∗(L) where t∗(L) ≃ Lβ/D1:

K(t) ≃ 2t(1 + λt
1) ≃ 2t(1 + (1− 1/t∗(L))t) ≃ 2t(1 + e−t/t∗(L)).

For ∆ = 0, isotropic Heisenberg model (SU(2) symmetry) whose eigenenergy
spectrum is gapless for any magnetization (any N). Eigenvalue of first “excited
state” λ1 = 1 − c1/L

2 (one x-polarized magnon excitation with momentum
k = 2π/L). β = 2 and Thouless time, t∗ ≃ L2/c1. JHEP 7, 124 (2018), PRL
123, 210603 (2019)

For ∆ ̸= J ̸= 0, anisotropic Heisenberg model which has a finite and system-size
independent gap in the energy spectrum between the ground and first excited
state. β = 0 and L-independent Thouless time.

For ∆ = J ̸= 0, Ising model which has a finite and system-size independent gap
in the energy spectrum between the ground and highly degenerate first excited
state. K(t) ≃ 2t(1 +

∑L
j=1 λ

t
j) and Thouless time t∗ ≃ logL : PRX 8, 021062

(2018), PRL 121, 060601 (2018)

1D. Roy & T. Prosen, Phys. Rev. E 102, 060202(R) (2020)
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Exact numerically computed K(t): fermions
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Spectral form factor K(t) for different system sizes L of the kicked spinless
fermion chain with (∆ = 0) (a,b) and without (∆ = 1) (c) particle-number
conservation. Here, J = 1, U0 = 15, α = 1.5,∆ϵ = 0.3 and N/L = 1/2 for
∆ = 0. An averaging over 103 realizations of disorder is performed. In (b) we
show data collapse in scaled time t/L2.

Temporal growth of K(t) for ∆ = 1 at t ≪ tH is independent of L which
confirms our analytical prediction based on the RPA.

For ∆ = 0, we find a nice data collapse for various L and t < tH which confirms
our above predicted L-dependence of K(t) using the RPA.
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Periodically driven mixtures of two species
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A 1D lattice of fermions/bosons and qubits: mixing between two species and
nearest-neighbor hopping of fermions/bosons are periodically modulated.
Ĥ(t) = Ĥ0 + ĤJC/R

∑
m∈Z δ(t−m)

Ĥ0 =

L∑

i=1

(ϵin̂i +Ωiσ̂
†
i σ̂i) +

∑

i<j

Uij n̂in̂j ,

ĤJC =

L∑

i=1

g(â†i σ̂i + σ̂†
i âi) +

L∑

i=1

(−Jâ†i âi+1 +H.c.),

ĤR =

L∑

i=1

g(â†i + âi)(σ̂i + σ̂†
i ) +

L∑

i=1

(−Jâ†i âi+1 +H.c.),

Total excitation number N̂ =
∑L

i=1(n̂i + σ̂†
i σ̂i) is conserved for Jaynes-

Cummings (JC) mixing but not for Rabi (R) mixing.
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JC mixing : crossover in system-size scaling of t∗
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(d)

strong JC mixing

K(t) for different system sizes L with JC mixing between fermions and qubits
for g = 0.1, J = 0.4 in (a,b), and g = 0.4, J = 0.1 in (c,d). We take half-filling
N/L = 1/2. (b) and (d) show data collapse in scaled time t/ logL and t/L1.85.

MF
JC has SU(2) symmetry, and its eigenvalues (excluding largest) for N = 1:

λi = 1− g2 − J2
(
1− cos

2iπ

L

)
+

√
J4

(
1− cos

2iπ

L

)2
+ g4, i = 1, 2 . . . , L− 1

For (1−cos 2π
L

)
≪ ( gJ )

2 ⇒ L > lc =
π

sin−1( g√
2J

)
, λ1 ≈ 1− 2π2J2

L2 ⇒ t∗ ∝ O(L2)

For (1− cos 2iπ
L

)
≫ ( gJ )

2 at finite L (< lc), λi ≈ 1− g2 + (g2/2J)2 csc2(iπ/L)
for i = 1, 2 . . . , L−1. Second largest eigenvalues for small g/J are approximately
L− 1 fold degenerate ⇒ t∗ ≈ O(logL)
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L-scaling of t∗ & emergent symmetry of M

For periodically driven (Floquet) models with homogeneous kicking in the Trotter
regime:1

Ĥ(t) U(1) symmetric/JC-mixing U(1) broken/R-mixing
species t∗ M symmetry t∗ M symmetry
Fermion L2 SU(2) L0, logL U(1), Ising
Qubit L2 SU(2) L0, logL U(1), Ising
Boson L2 SU(1, 1) ∼ L0.7 U(1)

Fermion & qubit logL to L2 SU(2) logL U(1)⊗ u⊗L(1)
Boson & qubit logL to L2 ∼ SU(1, 1) ∼ logL u⊗L(1)

1V. Kumar & D. Roy, arXiv:2310.06811 (2023)
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Spectral form factor: exact vs. RPA
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Comparison of the exact numerically computed SFF, K(t) vs. t with that ob-
tained using the RPA for Rabi mixing between fermions and qubits.
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Summary

Study of spectral form factor infers how (e.g., mechanism, nonuniversal behavior)
& when (timescales) many-body quantum systems acquire a universal RMT form.

L-dependence of Thouless time t∗ crosses over from logL to L2 with an in-
creasing Jaynes-Cummings mixing between qubits and fermions or bosons in a
finite-sized chain, and it finally settles to t∗ ∝ O(L2) in the thermodynamic limit
for any mixing strength.

Rabi mixing between qubits and fermions leads to t∗ ∝ O(logL)

V. Kumar & D. Roy, arXiv:2310.06811 (2023)
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Mapping M to effective Hamiltonian : Bosons

Generating Hamiltonian in the Trotter regime of small J when ∆ = 0:

M = 1+

L∑

i=1

(
J2(K̂−

i K̂+
i+1 + K̂−

i+1K̂
+
i )− 2J2(K̂0

i K̂
0
i+1 −

1

4
)
)
+O(J4)

in terms of K̂0
i = −(n̂i + 1/2), K̂+

i = âi
√
n̂i, K̂−

i =
√
n̂iâ

†
i , which satisfy the

commutation relations of SU(1, 1) algebra

[K̂+
i , K̂−

j ] = −2K̂0
i δij , [K̂0

i , K̂
±
j ] = ±K̂±

i δij .

We have [K̂α,M] = 0, where K̂α =
∑L

i=1 K̂
α
i , α ∈ {+,−, 0} satisfy SU(1, 1)

algebra.

Generating Hamiltonian of the Markov matrix M has SU(1, 1) symmetry in the
particle-number conserving case.

Numerics shows M has SU(1, 1) symmetry for arbitrary values of J

Due to SU(1, 1) symmetry of the generating Hamiltonian, its lowest excited
states can be obtained as degenerate descendants of the single-particle (N = 1)
states, i.e., by applying the operator K̂−.
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L-dependence of Thouless time (∆ = 0): Bosons

Therefore, the L-dependence of λ1 is independent of N when ∆ = 0.

M|N=1
∆=0 = (1− 2J2) +

L∑

i=1

J2(â†i âi+1 + â†i+1âi) +O(J4).

“Ground state” of M|N=1
∆=0 is a state with eigenvalue 1 and with zero momentum.

Eigenenergy spectrum is gapless, and first “excited state” (with momentum k =
2π/L) goes as λ1 = 1− c2/L

2.

Thouless time, t∗ ≃ L2/c2, for single boson and, due to SU(1, 1) symmetry, for
any number of bosons in the particle number conserving model.

J = 1,∆ = 0, N/L = 1/2 J = 1,∆ = 0, N/L = 1/4
L λ1 λ2 λ3 L λ1 λ2 λ3

8 0.8526 0.7486 0.6680 8 0.8526 0.7486 0.4847
10 0.9042 0.8283 0.7658 12 0.9329 0.8764 0.8278
12 0.9329 0.8764 0.8278 16 0.9619 0.9278 0.8970
14 0.9504 0.9071 0.8688 20 0.9755 0.9529 0.9320

J = 1,∆ = 0: λ1 ∼ 1− 8.29/L1.94 (or λ1 ∼ e−11.4/L2.05

) for N/L = 1/2, and

λ1 ∼ 1− 9.0/L1.97 (or λ1 ∼ e−10.5/L2.02

) for N/L = 1/4
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L-dependence of Thouless time (∆ ̸= 0): Bosons

Generating Hamiltonian of M lacks SU(1, 1) symmetry when ∆ ̸= 0. Conse-
quently, λ1 changes with N or Nmax for a fixed L.

0.00 0.05 0.10 0.15 0.20 0.25
1/Nmax
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0.60
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λ
1

J = 1,∆ = 0.7

L = 6
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L = 10

Dashed lines indicate a linear extrapolation of the last few large Nmax points.
These linear extrapolations give λ1 ∼ 1−1.43/L0.58 or e−2.89/L0.79

at 1/Nmax →
0, which predicts a finite system-size dependence of the Thouless time (e.g.,
t∗ = O(Lγ), γ = 0.7± 0.1 when J = 1,∆ = 0.7)
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Second-order contributions

Single and double crossing diagrams for non-repeated basis states. Zero and
single crossing diagrams for repeated basis states (|nτ1⟩ = |nτ2⟩)

Kc(t) = t2(ZX + ZXX − ZOR − ZXR)

= t2
( t− 3

N +
2

N
∑

i̸=0

λi

1− λi
+

t− 5

N +
2

N
∑

i ̸=0

λ3
i

1− λi

− t− 1

N +
2

N
∑

i̸=0

λi

1− λi
− t− 5

N − 2

N
∑

i ̸=0

λ3
i

1− λi

)

= −2t2

N


