

Andrea Signori

University of Turin and INFN

Introduction to transverse momentum imaging

lecture 3

International school on probing hadron structure at the EIC

ICTS, Bangalore February 1, 2024

Plan of these lectures

- 1. Breaking hadrons
- 2. Non-collinear partons
- 3. Symmetries & spin
- 4. Factorization, evolution, matching
- 5. Phenomenology

3. Symmetries & spin

Gauge symmetry

Quark correlator

$$\Phi_{ij}(k,P,S) = \int rac{d^4\xi}{\left(2\pi
ight)^4} \, e^{i\,k\cdot\,\xi} ig\langle PS \Big|\, \overline{\psi}_j(0)\,\psi_i(\xi) \Big| PS
angle$$

Quark correlator

$$\Phi_{ij}(k,P,S) = \int rac{d^4 \xi}{\left(2\pi
ight)^4} \, e^{i\,k\cdot\,\xi} \, \langle PS \Big| \overline{oldsymbol{\psi}_j(0)\,oldsymbol{\psi}_i(\xi)} \Big| PS
angle$$

 ${\cal U}(x)=\,e^{i\,lpha^a(x)\,t^a}$

 $\overline{\psi}_j(0)\,\psi_i(\xi)\,
ightarrow\,\overline{\psi}_j(0)\,\mathcal{U}^\dagger(0)\,\mathcal{U}(\xi)\,\psi_i(\xi)$

We need to "correct" the operator to make it gauge invariant

Close the non locality with a "gauge link" (or Wilson line)

Geometric interpretation

 $D_{\dot{c}} \ \psi(x(t)) = 0 \ , \ t \in I \subset \mathbb{R}$ "Parallel transport" to close the non-locality $D_{\mu} = \partial_{\mu} - ig_s T^a A^a_{\mu}$

Gauge invariant quark correlator

See Collins book

$$\Phi_{ij}(k,P,S) = \int rac{d^4 \xi}{\left(2\pi
ight)^4} \, e^{i\,k\cdot\,\xi} \, \langle PS \Big| \overline{\psi_j(0)\,U(0,\xi)\,\psi_i(\xi)} \Big| PS
angle$$

GAUGE INVARIANT!

 ${\cal U}(x)=\,e^{i\,lpha^a(x)\,t^a}$

The Wilson line "bridges" the non-locality and makes the operator gauge invariant

 $U(0,\xi)\,
ightarrow\,\mathcal{U}(0)\,U(0,\xi)\,\mathcal{U}^{\dagger}(\xi)$

 $\overline{\psi}_j(0)\,U(0,\xi)\,\psi_i(\xi)\,
ightarrow\,\overline{\psi}_j(0)\,\mathcal{U}^\dagger(0)\,\mathcal{U}(0)\,U(0,\xi)\,\mathcal{U}^\dagger(\xi)\,\mathcal{U}(\xi)\,\psi_i(\xi)\,=\,\overline{\psi}_j(0)\,U(0,\xi)\,\psi_i(\xi)$

Eventually the correlator and the (TMD) PDFs **depend on the** gauge link and its path in spacetime

Discrete symmetries: parity

$$a^{\mu} = \left(a^{0},\,ec{a}
ight), \qquad ilde{a}^{\mu} = \left(a^{0},\,\,-ec{a}
ight) \qquad \leftarrow \,$$
 let's consider this definition

$$\begin{split} z^{\mu} &\longrightarrow \tilde{z}^{\mu} \\ P^{\mu} &\longrightarrow \tilde{P}^{\mu} \\ S^{\mu} &\longrightarrow S^{\mu} \equiv -\tilde{S}^{\mu} \quad (\text{since } S^{\mu} = (0, \vec{S}) \text{ by definition} \\ n_{\pm} &\longrightarrow n_{\mp} \\ \psi(\xi) &\longrightarrow \mathscr{P} \, \psi(\xi) \, \mathscr{P}^{\dagger} = \Lambda_{\mathscr{P}} \, \psi(\tilde{\xi}) \,, \quad \Lambda_{\mathscr{P}} = \gamma^{0} \\ \gamma^{\mu} &\longrightarrow \mathscr{P} \, \gamma^{\mu} \, \mathscr{P}^{\dagger} = \Lambda_{\mathscr{P}} \, \gamma^{\mu} \, \Lambda_{\mathscr{P}}^{\dagger} \end{split}$$

The action on the quark field is the one that leaves the QCD lagrangian invariant under parity transformation (symmetry)

Discrete symmetries: time reversal

$$a^{\mu} = \left(a^{0},\,ec{a}
ight), \qquad ilde{a}^{\mu} = \left(a^{0},\,\,-ec{a}
ight) \qquad \leftarrow ext{ let's consider this definition}$$

$$\begin{split} z^{\mu} &\longrightarrow -\tilde{z}^{\mu} \\ P^{\mu} &\longrightarrow \tilde{P}^{\mu} \\ S^{\mu} &\longrightarrow \tilde{S}^{\mu} \\ n_{\pm} &\longrightarrow -n_{\mp} \\ \psi(\xi) &\longrightarrow \mathscr{T} \psi(\xi) \mathscr{T}^{\dagger} = \Lambda_{\mathscr{T}} \psi(-\tilde{\xi}) \,, \quad \Lambda_{\mathscr{T}} = -i\gamma_5 C = i\gamma^1 \gamma^3 \\ \gamma^{\mu} &\longrightarrow \mathscr{T} \gamma^{\mu} \mathscr{T}^{\dagger} = \Lambda_{\mathscr{T}} \gamma^{\mu} \Lambda^{\dagger}_{\mathscr{T}} = \gamma^*_{\mu} \end{split}$$

The action on the quark field is the one that leaves the QCD lagrangian invariant under time reversal transformation (symmetry)

Generalized universality

Geometric structure

$$\Phi(k,P) = F.T.\langle P|\overline{\psi_j}(0) \ U \ \psi_i(\xi)|P\rangle \longrightarrow f_1^{a \ [U]}(x,k_T^2) \ \not\!\!\!P + \cdots$$

Distributions defined with *U* gauge link:

$$f_{1}^{\left[U^{-}
ight] }\left(x,k_{T}^{2}
ight)$$

Distributions defined with *U*⁺ gauge link:

$$f_{1}^{\left[U^{+}
ight] }\left(x,k_{T}^{2}
ight)$$

Gauge links for TMD PDFs

$$\Phi_{ij}^{[U]}(x, \mathbf{p}_{T}, S) = \int dp^{+} dp^{-} \,\delta(p^{+} - xP^{+}) \Phi^{[U]}(p, P, S) =$$

$$= \int \frac{d\xi^{-} d^{2}\xi_{T}}{2\pi} e^{i p \cdot \xi} \langle PS | \overline{\psi}_{j}(0) U(0, \xi) \psi_{i}(\xi) | PS \rangle_{\xi^{+} = 0}$$

$$T$$

$$\xi_{T}$$

 $U^{[+]}$ Future pointing (SIDIS)

 $U^{[-]}$ Past pointing (Drell-Yan)

 ε^{-}

T †

Gauge links for collinear PDFs (simpler)

In the collinear limit the two gauge links reduce to the same object

Process dependence

The hard process determines the path of the link U, and the **distributions are process dependent**.

What happens to the concept of *universal* hadron structure?

The Sivers function

$$\Phi_{\Gamma}^{[U]}(x,\vec{k}_T) = \frac{1}{2} \operatorname{Tr} \left[\Phi^{[U]}(x,\vec{k}_T) \Gamma \right]$$

orojection
$$~\Gamma=\gamma^+$$

 $\Phi_{\gamma^+}^{[U]}(x,\vec{k}_T) = \frac{1}{2} f_1^{[U]}(x,k_T^2) \not h_+ +$

Unpolarized TMD PDF

$$\frac{1}{2M} \underbrace{f_{1T}^{[U]\perp}(x,k_T^2)}_{} \epsilon_T^{\alpha\beta} S_{T\alpha} k_{T\beta} \not h_+$$

Sivers function (**spin-dependent** term): correlation between transverse spin and momentum

Process dependence

The interplay between **time reversal** and **gauge symmetry** generates **relations** between the two configurations:

$$f_1^{a \ [+]}(x, k_T^2) = f_1^{a \ [-]}(x, k_T^2)$$

striking consequence of the symmetries of QCD

$$f_{1T}^{a\perp \ [+]}(x,k_T^2) = -f_{1T}^{a\perp \ [-]}(x,k_T^2)$$

T-odd distribution

Sign-change relation for the Sivers function : not yet confirmed experimentally

Implications of discrete symmetries

$$U_{\pm}(a,b)^{\dagger} = U_{\pm}(b,a)$$
$$\mathscr{P}U_{\pm}(a,b)\mathscr{P}^{\dagger} = U_{\pm}(\tilde{a},\tilde{b})$$
$$\mathscr{T}U_{\pm}(a,b)\mathscr{T}^{\dagger} = U_{\mp}(-\tilde{a},-\tilde{b})$$

Hermiticity:
$$\begin{split} \Phi^{[\pm]\dagger}(k;P,S) &= \gamma^0 \Phi^{[\pm]}(k;P,S)\gamma^0 \\ \text{Parity:} \quad \Phi^{[\pm]}(k;P,S) &= \gamma^0 \Phi^{[\pm]}(\tilde{k};\tilde{P},-\tilde{S})\gamma^0 \\ \text{Time reversal:} \quad \Phi^{[\pm]*}(k;P,S) &= i\gamma^1\gamma^3 \Phi^{[\mp]}(\tilde{k};\tilde{P},\tilde{S})i\gamma^1\gamma^3 \end{split}$$

Single-spin asymmetries

Sivers asymmetry: SIDIS and Drell-Yan

$$\begin{split} A_{UT}^{\sin(\phi_h - \phi_S)} &\sim F_{UT,T}^{\sin(\phi_h - \phi_S)} = \mathcal{C} \Big[-\frac{\hat{h} \cdot p_T}{M} f_{1T}^{\perp} D_1 \Big], \qquad \ell N^{\uparrow} \to \ell h X \\ \downarrow \\ \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \qquad \text{Do we need a sign change in the Sivers function between the two processes to describe simultaneously these asymmetries?} \\ \uparrow \\ A_{UT} \sim F_{UT}^1 = \mathcal{C} \Big[\frac{\vec{h} \cdot \vec{k}_{bT}}{M_h} f_1 \bar{f}_{1T}^1 \Big], \qquad p N^{\uparrow} \to \ell^+ \ell^- X \end{split}$$

Uncertainties are still very large both in the theory and in the measurements

Gauge links for gluon TMDs (more complicated)

 $F^{\mu
u}(0)\,U(0,\xi)\,F^{
ho\sigma}(\xi)\,U'(\xi,\,0)$

← more complicated operator with two gauge links

The process dependence for these TMDs amounts to more complicated relations than a minus sign (but still calculable!)

For more details see <u>https://inspirehep.net/literature/1391461</u>