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The Plan

Lecture 1: Analytical tools for a proof of Anderson localization
Lie-Schwinger rotations provide a graphical framework for stepwise diagonalization of
the Hamiltonian. Nonperturbative regions are controlled probabilistically with moment
estimates and the Markov inequality.
Lecture 2: Existence of an MBL phase
I will describe competing effects on the density of nonperturbative regions. In the RG,
isolated nonperturbative regions can be eliminated, while nearby ones have to be
merged. Percolation estimates ensure that these regions are compact and rare,
maintaining a minimum exponential decay rate and forestalling the avalanche
mechanism.
Lecture 3: The MBL transition
In order to understand the nature of the transition between the MBL and ETH phases,
I will use a series of approximations to develop RG flow equations based on elimination
and merging of nonperturbative regions. These equations resemble the
Kosterlitz-Thouless (KT) flow equations, but there are important differences that place
the MBL transition in a new universality class.



Outline of Lecture 21

1. Goals for a proof of MBL

2. Defining resonances

3. Perturbative analysis away from resonant regions

4. Effects of resonant regions on spins nearby

5. Preserving exponential decay

6. Conclusions

1Based on my paper “On many-body localization for quantum spin chains”, JSP2016



Phenomenology of MBL

For a many-body quantum system with disorder, we may observe the following, which
may be thought of as essential features of many-body localization (MBL):

1. Absence of transport

2. Anderson localization in configuration space (as in, e.g. IPR measures)

3. Area law entanglement

4. Violation of ETH (eigenstate thermalization hypothesis)

5. Absence of level repulsion

6. Logarithmic growth of entanglement for an initial product state



Typical example: disordered spin chain

Spin chain with random interactions and a weak transverse field on Λ = [−K ,K ] ∩ Z :

H =
K∑

i=−K
hiS

z
i +

K∑
i=−K

γiS
x
i +
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JiS
z
i S

z
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This operates on the Hilbert space H =
⊗

i∈Λ C2, with

Sz
i =

(
1 0
0 −1

)
,Sx

i =

(
0 1
1 0

)
operating on the i th variable.

Assume γi = γΓi with γ small. Random variables hi , Γi , Ji are independent and
bounded, with bounded probability densities.



Ergodicity breaking and the emergence of an extensive set of local
integrals of motion (LIOMs)

Loosely speaking, ergodicity should mean the spreading of wavepackets throughout the system.
In an extreme case, there may be a complete set of of conserved quantities (quasilocal in
nature) – a complete failure of ergodicity.

How do we know if a system has a complete set of quasilocal LIOMs? Can we construct them?

We seek a quasilocal unitary that diagonalizes H. That is, D = U?HU is diagonal, and
quasilocality means that the effect of U on a set of spins that span a distance L in the lattice
should be (identity) + (exponentially small in L). There may be rare, nonpercolating regions
where this property fails (resonant regions).

Then we may define LIOMs τi = USz
i U

?.

It is clear that [H, τi ] = [D,Sz
i ] = 0.

Likewise [τi , τj ] = 0.

Properties 1-6 listed above for MBL should follow if one can find a complete set of LIOMs2

2Huse, Nandkishore, Oganesyan, PRB ’14; Serbyn, Papic, Abanin, PRL ’13



One spin

For guidance, consider what happens for a single spin. Then

H =

(
h γ
γ −h

)
and for γ � h the eigenfunctions are close to ( 1

0 ) and ( 0
1 ). The eigenfunctions

resemble the basis vectors. This means the basis vectors can be used to label the
eigenfunctions.

At the other extreme, if γ � h the eigenfunctions are close to ( 1
1 ) and

(
1
−1

)
. With

complete hybridization, there is no meaningful way to associate eigenfunctions with
basis vectors.



Perturbative and non-perturbative approaches

One may construct LIOMs perturbatively3.

But rare regions where perturbation theory breaks down have the potential to spoil
MBL. I will outline a nonperturbative construction (which, however, depends on a
physically reasonable assumption on eigenvalue statistics – essentially that the level
spacings in a system of n spins are no smaller than some exponential in n.)

It is especially important to have a nonperturbative proof of an MBL phase, as some
are questioning the numerical evidence for MBL4.

3Integrals of motion in the many-body localized phase, Ros, Müller, Scardicchio NP ’15
4Quantum chaos challenges many-body localization, S̆untajs, Bonc̆a, Prosen, Vidmar arXiv:1905



What about the level spacing condition?

Assumption LLA(ν,C ). Consider the Hamiltonian H in boxes of size n. Its
eigenvalues satisfy

P

(
min
α 6=β
|Eα − Eβ| < δ

)
≤ δνCn,

for all δ > 0 and all n.

I have been developing tools for proving level-spacing conditions in simpler systems
(noninteracting).

But in this talk I will focus on explaining the key mechanisms at work in the proof.

In Lecture 3, I will connect these to recent work on the nature of the transition out of
the MBL phase.



Percolation picture validated for large disorder or weak interactions in 1d

Proof controls the probability of resonance for processes, and shows that the graph of
resonances is non-percolating.

Then is possible to define quasilocal similarity transformations on H that diagonalize
it, deforming the tensor product basis vectors into the exact eigenfunctions.



Results

Assume LLA(ν, c). Then MBL holds as follows:

(i) Existence of a labeling system for eigenstates by spin/metaspin configurations,
with metaspins needed only on a dilute collection of resonant blocks. (Spin
variables used to label basis vectors can also be used to label the exact
eigenstates, but the correspondence becomes somewhat arbitrary in resonant
regions, so we use the term “metaspin” instead.)

(ii) Faster-than-power-law decay of the probability of resonant blocks, which implies
their diluteness. (This is critical to the whole concept of a labeling system –
without it the labeling system would lose its meaning.)

(iii) Diagonalization of H via a sequence of local rotations defined via convergent
graphical expansions with exponential bounds. (Locality means that graphs
depend only on the random variables in their immediate vicinity.)



(iv) Bounds establishing closeness of expectations of local observables in any
eigenstate to their näıve (γ = 0) values, when observables are not in resonant
regions. (This makes precise the idea that eigenstates resemble the basis vectors.)

(v) Exponential decay of truncated expectations, except on a set of rapidly decaying
probability. (This shows the exponential loss of entanglement with distance for
the subsystems associated with the observables.)

(vi) Other good stuff...



Theorem
(c.f. (iv),(v) above) Assume LLA(ν,c) for some fixed ν, c . Then there exists a κ > 0
such that for γ sufficiently small,

E Avα |〈Sz
0 〉α| = 1− O(γκ), (1)

where 〈·〉α denotes the expectation in the eigenstate α, and Avα denotes an average
over α. Furthermore, for any i , j ,

max
α
|〈Oi ;Oj〉α| ≤ γ|i−j |/3 with probability 1− (γκ)1+c3(log(|i−j |/8∨1))2

,

for some constant c3 > 0. Here 〈Oi ;Oj〉α ≡ 〈OiOj〉α − 〈Oi 〉α〈Oj〉α, with Oi any
operator formed from products of Sx

i ′ or Sz
i ′ , for i ′ near i . All bounds are uniform in Λ.



No thermalization

Consider infinite temperature, so Avα is a uniform weighting of eigenstates. Then with
thermalization (ETH), averages of eigenstate expectations of Sz

0 should go to zero as
Λ→∞. This would contradict (1) above.

Another consequence of (iv) is that essentially all of the eigenstates have a nonuniform
spatial distribution of energy, which persists for all time. So in a basic sense, there is
no transport in the system.



Resonances in the first step
Initially, the only off-diagonal term is γiS

x
i , which is local, so we may start by looking

at single-flip resonances.

Let the spin configuration σ(i) be equal to σ with the spin at i flipped.
Let the associated change in energy be ∆Ei ≡ Eσ − Eσ(i)

We say that the site i is resonant if |∆Ei | < ε ≡ γ1/20 for at least once choice of
σi−1, σi+1. Then for nonresonant sites the ratio γi/∆Ei is ≤ γ19/20.

A site is resonant with probability ∼ 4ε. Hence resonant sites form a dilute set where
perturbation theory breaks down.

Rotate away interaction terms J(i) ≡ γiSx
i for nonresonant sites i by defining

A ≡
∑

nonresonant i

A(i) with A(i)σσ(i) =
J(i)σσ(i)

Eσ − Eσ(i)

and a renormalized Hamiltonian:

H(1) = eAHe−A = H + [A,H] +
[A, [A,H]]

2!
+ . . . = H0 + Jres + J(1).



Properties of the new Hamiltonian:

The new interaction J(1) is quadratic and higher order in γ – the leading-order term
has been eliminated.

Note that A(i) commutes with A(j) or J(j) if |i − j | > 1.

Thus we preserve quasi-locality of J(1); it can be written as
∑

g J
(1)(g), where g is a

sum of connected graphs involving spin flips J(i) and associated energy denominators.

Define resonant blocks by taking connected components of the set of sites belonging
to resonant graphs.

As in the last lecture on the Anderson model, we follow the procedures of
quasidegenerate perturbation theory and perform exact rotations O in small, isolated
resonant blocks to diagonalize the Hamiltonian there.



Graph-based notion of resonance. Moment bounds control probability.
Use a sequence of length scales Lk = (15/8)k , and continue rotating away interactions
of lower order than γLk .

J(k) is a sum of connected graphs J
(k)
σσ̃ (g); quasilocality is preserved.

(Each graph g is a walk in spin-configuration space, whose trace in physical space is connected)

Denominators

A graph of order Lk is resonant if A
(k)
σσ̃ (g) ≡ J

(k)
σσ̃(g)

E
(k)
σ −E

(k)
σ̃

> (γ/ε)Lk .

Fractional moment bounds on graphs and the Markov inequality imply that the
probability that g is resonant is < εLk ; then it is OK to sum over exp(O(Lk)) graphs in
the associated percolation problem.



Fractional moment bounds and Markov inequality

Use fractional moment bounds to control the probability of a resonant graph, i.e.

E
∣∣∣A(k)
σσ̃ (g)

∣∣∣s ≤ γ|g |∏
I

∫
dhi∣∣∣E (k)

σ − E
(k)
σ̃

∣∣∣s ≤ |Cγ||g |.
Here s is the fractional moment, it must be less than 1 for finiteness of the integral.

Note: E
(k)
σ − E

(k)
σ̃ is essentially the sum of the hi ’s for sites flipped between σ and σ̃.

Then the Markov inequality implies that∣∣∣A(k)
σσ̃ (g)

∣∣∣s ≤ |Cγ/ε||g | with probability 1− ε|g |

However, this assumes each site is different (forward approximation).



Backtracking
The moment method breaks down for walks that return to previously visited sites in
physical space.

As in yesterday’s discussion of the Anderson model, there are complications if the
graph g involves a significant number of repeated spin flips. With repeated spin flips,
energy denominators can appear to a high power, or there can be a large number of
relations between them. If this is the case, then the fractional moment will no longer
be finite, because of the lack of integrability of |h|−sp for p ≥ 1/s.

But backtracking sections can be handled with L∞ bounds as they have a greater
decay rate, which arises from the greater degree of connectivity of such graphs.

looping segments

1

Figure 6: Timeline of the walk. Arches connect pairs of times where the walk is at the
same site/block.

This is because the spatial graph of the looping portion of the walk is triply connected.
That is, any surface separating u (the starting point of the looping section) from v (the
final point) will be crossed at least three times by the walk. (Topologically, the number
of crossing must be odd, and a singlet crossing would disconnect the segment.) As a
result, the length of the graph within the looping segment must be at least three times
the distance from u to v, so 2

3
of the steps are “wasted”. We can conclude that the sum

of the lengths of the looping segments cannot be greater than 3
2
· 1

8
|gj′| = 3

16
|gj′|.

1

Figure 7: A walk executing loops exhibits triple connectivity.

The next step is to identify certain time intervals containing the looping segments
where inductive bounds (non-probabilistic) will be used in place of Markov inequality
bounds. We will need to keep a reasonable fraction of the timeline out of the covering
intervals, otherwise we will not get the needed probability decay with |gj′|. The denom-
inator graph has long-range links, so looping segments will affect the character of the
denominator graph in some neighborhood.

If we consider the denominator graph prior to the identification of vertices on the
timeline, it is devoid of loops. This is because each time a denominator is produced, it
connects one or more loop-free graphs A to a disconnected, loop-free graph J . (More
precisely, for a graph gj′ of J that goes from x to y, gd

j′ does not connect x to y, so the
new denominator cannot create a loop.) Some denominators are dropped when they
are incorporated into jump steps, but this does not spoil the loop-free property. (It is
useful to keep in mind the “nested” character of the denominator links. Graphs are
constructed as “walks of walks,” so the denominator xy in A

(i+1)
xy (gi′) encompasses all
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Resonances with blocks and the LLA

In later steps, graphs may connect resonant blocks with nearby sites or with other
blocks. For graphs connecting different blocks, the fractional-moment bound depends
on having some control over the probability that an energy difference in a block is
close to that of a given nearby transition. One can obtain the necessary bounds using
the LLA level-spacing assumption.

∆E ∆E

1

A block-block resonance.



Resonant regions (= Griffiths regions) need buffer zones

These are regions where we have failure of the bounds needed to control the rotations.

Buffer zones are needed so that the smallness ∼ γL of a graph crossing the buffer is
much smaller than the typical ∆E = 2−L in the resonant region.

Resonant Region

L

Buffer zoneBuffer zone

The buffer zone is expected to be thermalized by the resonant region.

In 1-d the buffer zone has volume comparable to that of the resonant block, so we can
diagonalize H in the combined region, eliminating internal interactions while keeping
the level-spacing larger than the interactions with spins outside.



Preserving exponential decay
Resonant blocks interrupt or short-circuit the exponential decay along graphs, which
leads to a reduction in the overall decay rate (“Rule of Halted Decay”5). Following
FS836 this effect is kept under control by gathering blocks into loosely connected
groups separated by large gaps with uninterrupted decay. The loss of decay rate in
each step forms a convergent series, ensuring that | · |(j) remains comparable with | · |.
Thus if the initial decay rate is high enough, exponential decay is preserved uniformly
in the RG. Furthermore, resonant blocks are rare and their percolation connectivity
function has faster-than-power-law decay.

5Thierry, Huveneers, Müller, de Roeck, Many-Body Delocalization as a Quantum Avalanche, 2018
6Fröhlich, Spencer: Absence of diffusion in the Anderson tight binding model, CMP 1983



Renormalization group picture
In RG terms, the rotations removing terms in the Hamiltonian up to order γL is
analogous to “integrating out” short distance degrees of freedom in traditional RG.

At the same time, resonant regions up to some size R are “eliminated” once L is large
enough so that the remaining interaction terms are smaller than the level spacing in
the region (with its buffer zone, total size R + 2L). At that point, the region hosts a
“metaspin” which takes 2R+2L values, but the interactions are so small that there is
little hybridization with spins elsewhere.

Deep in the localized region, this RG has the property that the density of remaining
resonant regions (including their buffer zones with width given by the running RG
length L) goes to zero with L.

Note two effects are in play:
(1) Elimination of smaller resonant regions reduces the density.
(2) Fattening of the buffer zones on the remaining regions increases the density.
The proof shows that (1) dominates (2) deep in the weak coupling/strong disorder
region, and the density goes to zero as L→∞.



Conclusion of proof; LIOMs

We have established that the resonant regions are rare and that the rotation generators
exhibit exponential decay away from resonant regions, This implies that with high
probability, local observables take values close to what they would be in the original
tensor product basis.

LIOMs are defined by applying the rotations to the original spin variables. Large
rotations are required only on a dilute set of sites; elsewhere the rotations are small
with exponential tails.



How small is small?

The MBL theorem states only that an infinite volume MBL phase exists for γ
sufficiently small. It does not say how small. However, it should be clear from the
constructions that the resonant regions create short-circuits that depress the decay
rate. Consequently, the initial decay rate must be quite large, so that the RG flow does
not push it below the threshold for avalanches. Recent studies have confirmed this
quantitatively.7,8

The mutual interaction between the decay rate and the density of resonant regions has
implications for the nature of the MBL transition. This will be probed in greater detail
in lecture 3.

7Morningstar, Colmenarez, Khemani, Luitz, Huse, PRB2022
8Sels, PRB2022
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