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• complex symplectic manifold M
2n

• n independent Poisson-commuting functions fi

• F (f1, . . . , fn) defines a Hamiltonian vector field

fi are constants of the motion

• e.g. geodesics on the ellipsoid
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A LITTLE HISTORY
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• Stony Brook 1983-84

NJH, A. Karlhede, U. Lindström & M. Roček) Hyperkähler

metrics and supersymmetry, Comm. Math. Phys. 108

(1987), 535–589.

• hyperkähler manifold:

complex structures I, J,K with I
2 = J

2 = K
2 = IJK = →1

Riemannian metric, Kähler forms ω1,ω2,ω3

• quotient construction:

G acting on M hyperkähler, preserving ωi i = 1,2,3
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• Oxford 1984-85

M.F.Atiyah & NJH, Low energy scattering of nonabelian

monopoles, Phys. Lett. A 107 (1985), 21–25.

• M infinite-dimensional hyperkähler manifold = {A,ω}

A connection on a G-bundle over R3, ω : R3 → g (Higgs field)

quaternionic a!ne space: ω+A1I +A2J +A3K

• G gauge transformations

moment map: Bogomolny equations FA = ↑dAω

• ↓ hyperkähler metric on monopole moduli space
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• on R4, A0 +A1i+A2j +A3k →

self-dual Yang-Mills equations FA = ↑FA

• on R3, ω+A1i+A2j +A3k →

Bogomolny equations FA = ↑dAω

• on R2, ω1 + ω2i+A1j +A2k →

Higgs bundle equations FA + [!,!↑] = 0, ε̄A! = 0

1



M.A.Lohe, Two- and three-dimensional instantons, Phys.Lett.
70B (1977) 325–328

Volume 70B, number 3 PHYSICS LETTERS 10 October 1977 

and the Lagrangian becomes 

£=~,' (Fi~)2 + ½ (D i :)2 
The self-dual equations (1) become 

IF] = +ei/kDk~ a , 

and imply the field equations. The action is 

S = f d 3 x £  

= f d 3 x  ! a + a 2 4 ( f  i~ _ 6i/kDk 4 ) -T- - -  
4rrNI41o 

e 

(5) 

(6) 

(7) 

where 

I fd3x ~aO/~ao/~bok~c N = ~ ei]k6abc~i 
is an integer, the topological quantum number. Here 
4: = ~a/141, and I¢10 is the value of 141 at infinity and 
is necessarily a constant because D i oa = 0 at infinity. 
The action is therefore bounded below, S >i 4rr1410 IN lie 
and this bound (due to Bogomolny) is saturated by 
solutions of  eqs. (6). The energy-momentum tensor is, 
from eqs. (4) 

1 ~ a  1 a a I a 
Tij = -71(Di - 2eiklF~l)(Dj4 + ~6/mnF~n) 

I a 
--'4(F~k -- eiklOl¢a)(F~k + elklDl 4a)  

+ (i ~ / ) ,  (8) 

and.again is zero. The only known solutions of  eqs. (6) 
are the spherically symmetric ones o f ' t  Hooft  and 
Polyakov [1 ], but which simplify for our case of  a 
zero potential in the Lagrangian (5). The first order 
equations, with appropriate boundary conditions, can 
be integrated to give [6] 

4 a = --Xa (1 - k r  coth Xr) 
er 2 

er 2 sinh Xr ] (9) 

andwe obtain N = 1, I¢10 = X/e, where X is an arbi- 
trary scale constant. The instanton action, or equiva- 
lently monopole mass, is therefore S = 4~rX/e 2. 

Let us continue down to two euclidean dimensions. 
The gauge and Higgs fields in the Lagrangian (5) now 
depend only o n x  1 a n d x 2 ,  and we set qja =A~,  to be 
interpreted as a second Higgs isotriplet field. We find 

F~3 = D i t~ a , 

and 

D3 4a = e e abc ~b(oc (i = 1,2,  a = 1,2,  3) .  

The latter term provides a potential in the Lagrangian 
(5) which becomes 

1-'(Ra~2 + l (D i~a)2  £ = 4v*'ii/ + ½(Di~a) 2 

+ ~-e2 ~2(b 2 -- ~-e2(#-d~)2 . (10) 

This model has been considered by Nielsen and Olesen 
[7]. We are led naturally in our approach to the intro- 
duction of  two iso-triplet Higgs fields, and we find ad- 
ditionally that the coupling constants in the potential 
term have acquired special values. One can obtain first 
order equations which imply the field equations, and 
these are deduced from eqs. (6): 

F~ = +-e e i j eabc~b¢  c , 

Dit) a +- ei/D/4 a = O. (1 I) 

Unfortunately, in this case the model is not interesting 
because the action is always zero. We obtain 

s = f d 2 x £  

1 2 a t~bdpc)2 = a f d  x(Fi~ +-e ei/e abc 

1 f d 2 x ( O i  ca  -T- ei/D/~a) 2 (12) +~ 

since the surface terms do not contribute when we 
apply the usual boundary conditions. Therefore S = 0 
when eqs. (11) are imposed. However, now we can see 
how to proceed to the Abelian model. 

We consider the Lagrangian (in two euclidean di- 
mensions): 

£= ¼(Fi/) 2 + ~(Di~/)2 + X(42 -02) 2 , (13) 

v > 0, where 4 = (~bl, ~2) is a two-component real 
field, and the covariant derivative is given by 

Di~j  = 3i~j  - e e j k A i 4  k . 

This Lagrangian can be obtained from eq. (10), but 
without the essential symmetry breaking term, by set- 
t ingA] = A  2 = 0 =  q~3 = ~b3,and 

~i  -+ 6ijdPj/N/~' ~i -+ +~i/N/~,  i = 1 , 2 .  

In addition, the coupling constant X acquires in this 
way the special value h = e2/8. We are forced to accept 
this value if we insist on a zero energy-momentum 
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• FA → [!,!↑] = 0 ↓ harmonic maps from a surface to U(n)

•

1

• FA → [!,!↑] = 0 ↓ harmonic maps from a surface to U(n)

↔ define equations on a compact Riemann surface C

•

1



NJH, The self-duality equations on a Riemann surface, Proc.
London Math. Soc. 55 (1987), 59–126.

influenced by:

M.F.Atiyah & R.Bott, The Yang-Mills equations over Riemann

surfaces, Phil. Trans. Roy. Soc. Lond. A, 308 (1983) 523–615.

S.K.Donaldson, A new proof of a theorem of Narasimhan and

Seshadri, J. Di!erential Geom. 18 (1983) 269–277

• C
→ hermitian vector bundle E, complex structure ω̄A ↑ A,

” ↑ #1,0(End0E) with ω̄A” = 0
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1• consider a minimizing sequence for →FA + [!,!↑]→2

on a complex gauge orbit

• consider a minimizing sequence for →FA + [!,!↑]→

on a complex gauge orbit

• Aim: Find an L
2 bound on FA

and apply Uhlenbeck weak compactness



• ω̄A! = 0 → Weitzenböck formula

→ (FA, [!,!↑]) + c↓!↓2 ↔ 0

• n↗ n matrix B, bound on spectrum + bound on ↓[B,B
↑]↓

→ bound on ↓B↓

• spectrum of ! invariant by gauge transformations

→ bound on ↓FA + [!,!↑]↓ + Weitzenböck + spectrum

→ bound on FA and !.

1



• moduli space M

det(x→!) = x
n + a1x

n→1 · · ·+ an, am ↑ H
0(C,K

m)

p(A,!) = (a1, . . . , an)

p : M ↓ H
0(C,K)↔ · · ·↔H

0(C,K
n) = CdimM/2

proper map

• generic fibre = Jac(S)

S = spectral curve x
n + a1x

n→1 · · ·+ an = 0

• completely integrable Hamiltonian system
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Christieville, St Sauveur, Québec
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AN EXAMPLE
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• C genus 2, Higgs bundle (E,!)

E rank 2, ”2
E fixed, odd degree, tr! = 0

C : y2 = (z → µ1) . . . (z → µ6)

• moduli space N of stable bundles E

N = intersection of quadrics Q ↑Qµ (P.Newstead 1968)

q = x
2
1 + · · ·+ x

2
6 = 0, qµ = µ1x

2
1 + · · ·+ µ6x

2
6 = 0

• cotangent bundle T
↓N ↔ M open dense

2



• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1

• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1



• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1

• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1

• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1

• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1

• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1

• T
→
Q restricted to Qµ ↑Q, symplectic form degenerate

T
→(Qµ ↑Q) = quotient by degeneracy foliation

• x1y1 + · · ·+ x6y6 = 0, x
2
1 + · · ·+ x

2
6 = 0

x ↓ y ↔ so(6) ↗= so(6)→ coadjoint orbit ↘ T
→
Q

•

fi =
∑

j ≃=i

(xiyj ⇐ xjyi)2

µj ⇐ µi

=
∑

j ≃=i

X
2
ij

µj ⇐ µi

Xij ↔ so(6)

fi constant along the foliation

1
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• What has this to do with the hyperkähler metric?
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SEMI-FLAT METRICS
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ϑxjϑxk
dxj ↑ dεk

(ωij constant symplectic form)

• nonlinear equation for f :

0 =
∑

ωij ϑ2f

ϑxiϑxk

ϑ2f

ϑxjϑxϖ
dxk ↑ dxϖ
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• p : M2N → CN

space of spectral curves

hypersurface D ↑ CN of singular curves

• torus fibration over CN\D

flat symplectic connection (Gauss-Manin) on cohomology

H
1(Ms,R), s ↓ CN\D

•

f = ↔
i

4

∫

S

ω ↗ ω̄
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• spectral curve S → T
↑
C

x
n + a1x

n↓1 · · ·+ an = 0

ω : T ↑
C ↔ C, x ↗ H

0(T ↑
C,ω

↑
K) tautological section

• ω
↑
K → T

↑(T ↑
C), x ↘ canonical 1-form ε

•

f = ↓
i

4

∫

S

ε ≃ ε̄

D.Baraglia & Z.Huang, Special Kähler geometry of the Hitchin

system and topological recursion, Adv. Theor. Math. Phys. 23

(2019), 1981–2024.
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•
f = →

i

4

∫

S

ω ↑ ω̄

well-defined and C
1 for all spectral curves

• flat connection logarithmic on smooth part of D ↓ CN

• nodal spectral curves S: subintegrable system

NJH, Integrable systems and Special Kähler metrics, EMS Sur-
veys in Mathematical Sciences, 8 (2021) 163–178.

Z.Huang, S.Huang & B.Xu, Local models for special Kähler

metric singularities along the discriminant locus of the SL(2,C)
Hitchin base, arXiv 2601.0376
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THE P = W CONJECTURE
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• hyperkähler metric: complex structures I, J,K

I: Higgs bundles (E,!), J: character variety

= Hom(ω1(C), GL(n,C)) modulo conjugation

• C→ action x ↑ S
2
\{±1,0,0},

x1I + x2J + x3K
↓= character variety

• di”erent as algebraic varieties:

I = MDol has compact subvarieties, J = MB is a#ne

2



W = weight filtration on MB

•

0 → W0 → · · · → W2i = H
i(M,Q)

quotients Wj/Wj↑1 have the usual (p, q) decomposition for a
compact Kähler manifold.

• P = perverse Leray filtration on MDol

for p : M2N ↓ CN

•

0 → P0 → · · · → P2i = H
i(M,Q)
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Conjecture: These coincide

(de Cataldo, Hausel, Migliorini 2012)

Conjecture: These coincide

(de Cataldo, Hausel, Migliorini 2012)



perverse filtration for p : M2N → CN more concretely:

• P
i
H

j(M,Q) = ker(Hi(X,Q) → H
i(p↑1(Aj↑i↑1),Q))

where A
j↑i↑1 is a general a!ne subspace of CN of dimension

j ↑ i↑ 1

• = a shadow of the integrable system in the algebraic geom-
etry of the character variety

V. Hoskins, Two proofs of the P = W conjecture [after Maulik-

Shen and Hausel-Mellit-Minet-Schi!mann], Séminaire Bourbaki,
1213 (2023–2024).
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DEFORMATIONS OF THE METRIC

2



• hyperkähler metric:

complex structures I, J,K, symplectic forms ω1,ω2,ω3

• first order deformation ω̇1, ω̇2, ω̇3

ω̇i closed, type (1,1) with respect to all I, J,K

• T
→ ↑C ↓= E ↑H, H = quaternions ↑C

E = complex symplectic vector bundle,

S
2
E ↑ !2

H ↔ !2
T
→

• S
2
T ↑ S

2
H ↔ S

2
T
→, S

2
H = su(2)↑C
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variation of metric: ġ = ω̇1 → i+ ω̇2 → j + ω̇3 → k
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• moduli space of Higgs bundles M on C

vary complex structure on C

→ deformation of hyperkähler metric

• ↑A +!+!↓ flat connection

→ MB = complex structure J = character variety

only depends on ω1(C)

• Goldman symplectic form ε3 + iε1 fixed

→ ε̇3 = 0 = ε̇1
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• isometric circle action ! →↑ e
iω!

• holomorphic on (M, I), preserves Kähler form ε1

vector field X, moment map f = ↓↔!↔2/2

• on (M, J) ε2 = Kähler form ε2 = ↓dJdf

• ↗ f : (M, J) ↑ R determines the metric.

and ε̇2 = ↓dJdḟ
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• flat connection →A + ω

f = ↑
1

2

∫

C

tr ω ↓ ↔ω

• fix gauge equivalence class of the flat connection

... and vary the complex structure on C

• infinitesimal complex gauge transformation:

→A(ε1 + ε2) + [ω,ε1 + ε2]

ε1 is skew-Hermitian and ε2 Hermitian
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ḟ = →
1

2

∫

C

tr(ω̇ ↑ ↓ω+ ω ↑ ↓̇ω+ ω ↑ ↓ω̇).

ω̇ = ↔Aε2 + [ω,ε1]
∫

C

tr(ω ↑ ↓[ω,ε1])

∫

C

tr((↔Aε2 + [ω,ε1]) ↑ ↓ω) =
∫

C

tr([ω,ε1] ↑ ↓ω)

(Stokes + dA ↓ ω = 0 and dAω = 0)

• fix gauge equivalence class of the flat connection

... and vary the complex structure on C

1

•
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ḟ = →
1

2

∫

C

tr(ω ↑ ↓̇ω).
1

•
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ḟ = →
1

2

∫

C

tr(ω̇ ↑ ↓ω+ ω ↑ ↓̇ω+ ω ↑ ↓ω̇).

ω̇ = ↔Aε2 + [ω,ε1]
∫

C

tr(ω ↑ ↓[ω,ε1])

∫

C

tr((↔Aε2 + [ω,ε1]) ↑ ↓ω) =
∫

C

tr([ω,ε1] ↑ ↓ω)

Stokes + dA ↓ ω = 0 and dAω = 0 ↗

•
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ḟ = real part of
∫

C

µ tr(ω1,0)2

• tr”2 ↓ H
0(C,K

2), [µ] ↓ H
1(C,K

→) Kodaira-Spencer class

• →2 = ↑1 so →̇ →+ → →̇ = 0 and →̇ = µ ↓ !0,1(K→)
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→ ω̇2 = d(Jdḟ) = 2Re id(iZω1)

• [iZω1] ↑ H
1(M,O)

1

•
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ḟ + iġ =
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→ d(ḟ + iġ) = iZ(ω2 + iω3)

Z holomorphic Hamiltonian ector field

• iZω2 = i(iZω3) → d(ḟ + iġ) = 2i(iZω3)

→ Jd(ḟ + iġ) = 2iJ(iZω3) = 2i(iZω1) ↑ ”0,1
I
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∫

C

µ tr!2

= a Hamiltonian function of the integrable system
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Kodaira-Spencer class H
1(M,O) ω

→ H
1(M, T

↑) ε
→ H

1(M, T )

ε = (ϑ2 + iϑ3)↓1 Poisson tensor

Kodaira-Spencer class H
1(M,O) ω

→ H
1(M, T

↑) ε
→ H

1(M, T )

ε = (ϑ2 + iϑ3)↓1 Poisson tensor



Remark:

• ω closed type (1,1) wrt I, J,K

holomorphic Poisson tensor ε : T →
↑ T

• ω ↓ C
↔(T →

↗ T̄
→),ε(ω) ↓ C

↔(T ↗ T̄
→)

↘ Kodaira-Spencer class in H
1(M, T )

• [ε(ω),ε(ω)] ↓ H
2(M, T ) obstruction

[ε(ω),ε(ω)] = εϑ≃ε, ω ⇐ ω⇒ = 0

since ≃ε, ω ⇐ ω⇒ = 0 (ε = (ϖ2 + iϖ3)⇑1)
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MIRROR SYMMETRY

1



• SYZ mirror symmetry:

Calabi-Yau manifold M + special Lagrangian torus fibration

mirror M
→ = fibration by dual tori

• Higgs bundle moduli space M for simple group G

I - holomorphic Lagrangians = special

M
→ = moduli space for Langlands dual group

• for smooth fibres:

R.Donagi & T.Pantev, Langlands duality for Hitchin systems,
Invent. Math. 189 (2012), 653–735.
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• BAA-brane

= I-holomorphic Lagrangian submanifold + flat line bundle

BBB-brane

= hyperholomorphic bundle on a hyperkähler submanifold

= connection with curvature of type (1,1) wrt I, J,K

• mirror symmetry is supposed to interchange these two

2



Issues:

• hyperkähler submanifolds:

. subgroups H → G (but can be singular locus)

. fixed points of automorphisms of C

• hyperholomorphic bundles:

. hypercohomology H1 of O(V ) !
↑ O(V ↓K)

for some representation of G

(e.g. adjoint representation = tangent bundle)

. universal bundle over p ↔ C

1



• simplest example:

one fibre of p : M → CN + line bundle

↑ point in M
↓ = hyperkähler submanifold

• Lagrangian = character variety for a real form

split real form = section M0 ↔ M of p : M → CN

↗ mirror = trivial line bundle over M
↓

• real form SU(n, n)

↗ mirror supported on Sp(n,C) moduli space

hyperholomorphic bundle
4
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↔ mirror supported on Sp(n,C) moduli space

hyperholomorphic bundle
1

= exterior powers of H1 for the representation on C2n

NJH, Higgs bundles and characteristic classes, in “Arbeitsta-
gung Bonn 2013” Birkhäuser Progress in Mathematics 319

(2016) 373–382.

• data on smooth fibres corresponds,

hyperholomorphic bundle well-defined everywhere

= exterior powers of H1 for the representation on C2n

NJH, Higgs bundles and characteristic classes, in “Arbeitsta-
gung Bonn 2013” Birkhäuser Progress in Mathematics 319

(2016) 373–382.

• data on smooth fibres corresponds,

hyperholomorphic bundle well-defined everywhere

= exterior powers of H1 for the representation on C2n

NJH, Higgs bundles and characteristic classes, in “Arbeitsta-
gung Bonn 2013” Birkhäuser Progress in Mathematics 319

(2016) 373–382.

• data on smooth fibres corresponds,

hyperholomorphic bundle well-defined everywhere

Justification:

= translate of the Hitchin section
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NJH & T.Hausel, Very stable Higgs bundles, equivariant multi-
plicity and mirror symmetry, Invent. math. 228 (2022) 893–
989.

D.Fang,On Fourier-Mukai transforms of upward flows for Hitchin
systems, arXiv:2504.04309

• Lagrangian = upward flow from a fixed point of C→-action

• Hecke transforms of section M0 ↑ hyperholomorphic bundle

= tensor products of exterior powers of universal bundle
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• deformation ω̇2 = dJdḟ

= exact 2-form of type (1,1) wrt I, J,K

→ hyperholomorphic line bundle L, c1(L) = 0

What Lagrangian is its mirror?

1

ANOTHER EXAMPLE

• deformation ω̇2 = dJdḟ

= exact 2-form of type (1,1) wrt I, J,K

→ hyperholomorphic line bundle L, c1(L) = 0

What Lagrangian is its mirror?
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• (Jdḟ)0,1 = i(iZω1)

Z tangential to fibres, ω1 Kähler form

• ε̄ + iZω1 holomorphic structure on trivial line bundle

• integrate the vector field Z to time t = 1

→ holomorphic Hamiltonian di!eomorphism h : M↑
↓ M

↑

• Lagrangian submanifold = h(M↑
0)

1
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= translate of the Hitchin section
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