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The Plan

Lecture 1: Analytical tools for a proof of Anderson localization
Lie-Schwinger rotations provide a graphical framework for stepwise diagonalization of
the Hamiltonian. Nonperturbative regions are controlled probabilistically with moment
estimates and the Markov inequality.
Lecture 2: Existence of an MBL phase
I will describe competing effects on the density of nonperturbative regions. In the RG,
isolated nonperturbative regions can be eliminated, while nearby ones have to be
merged. Percolation estimates ensure that these regions are compact and rare,
maintaining a minimum exponential decay rate and forestalling the avalanche
mechanism.
Lecture 3: The MBL transition
In order to understand the nature of the transition between the MBL and ETH phases,
I will use a series of approximations to develop RG flow equations based on elimination
and merging of nonperturbative regions. These equations resemble the
Kosterlitz-Thouless (KT) flow equations, but there are important differences that place
the MBL transition in a new universality class.
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1Based on my paper “Multi-scale Jacobi method for Anderson localization”, CMP2016



The Anderson Model

On a rectangle Λ ⊂ Zd we define

H = H0 + J

H0,xy = vxδxy ≡ Exδxy

where vx is a random potential ≡ “unperturbed energies” on the lattice, iid, with
smooth distribution.

Jxy =

{
−J0, |x − y | = 1;

0, otherwise.

We take J0 � 1.



Resonant Set

In the first step we put

S1 = {x ∈ Λ : x is in a resonant pair, i.e. |vx − vy | < ε},

where
ε = J

1/20
0 .

We can see that S1 is a dilute subset of Λ. We don’t do Schrieffer-Wolff rotations in
S1, at least initially.



Schrieffer-Wolff rotation

We put
Ω = exp(−A)

where

Axy =
Jperxy

Ex − Ey
,

where Jperxy is Jxy if both x and y are outside S1, and 0 otherwise. It represents the
“perturbative” hopping terms that move between nonresonant sites.

Note that |Axy | ≤ J
19/20
0

We may put J = J res + Jper, the sum of resonant and perturbative pieces.



Schrieffer-Wolff rotation, cont.

Then, using H = H0 + J, we have [A,H] = −Jper + [A, J], and so

H(1) = eAHe−A = H + [A,H] +
[A, [A,H]]

2!
+ . . .

= H0 + Jres + Jper − Jper + [A, J] +
[A,−Jper + [A, J]]

2!
+ . . .

= H0 + Jres +
∞∑
n=1

(adA)n

n!
J −

∞∑
n=1

(adA)n

(n + 1)!
Jper

= H0 + Jres +
∞∑
n=1

n

(n + 1)!
(adA)nJper +

∞∑
n=1

(adA)n

n!
Jres

= H0 + Jres + J(1). (1)

Here adA = [A, ·].



Graphical analysis

Graphically, we obtain a walk g in Zd along with energy denominators 1/(vx − vy ),
here drawn as arches (in the first step only nearest-neighbor denominators appear):

Denominators

We obtain that
|J(1)

xy (g1)| ≤ J0(J0/ε)|g1|−1

“Renormalized” interactions are no longer nearest-neighbor, but they decay
exponentially.



Block Rotations
Let S̄1 be S1 plus its first neighbors in the lattice.
Divide its components into small (volume ≤ exp(M22/3)) and large (≥ exp(M22/3)).

As in quasidegenerate perturbation theory, we apply rotations in small blocks to
diagonalize the Hamiltonian there.

large block B
(1′)
α and its core B(1′)

small blocks b
(1)

α

1

The shaded region is S1, the resonant set. S1 includes the collar regions.



Blocks in later steps; buffer zones
In subsequent steps, small blocks will have volume ≤ exp(ML

2/3
k ) with Lk = (15/8)k .

This will ensure that the exponential decay (J0/ε)Lk will keep the sum over states in
the block under control.

Residual interactions between a block and its collar are not under perturbative control
(this is the reason for the collar). In the many-body context, it is connected to the
thermalization of collar neighborhoods of resonant regions.

B(j′)

B
(j′)

1

Leftover interaction terms couple the core B(j′) to its collar.



Graphical analysis in the k th step.

We use a sequence of length scales Lk = (15/8)k , and in each step we rotate away
interactions of lower order than JLk0 .

This is Newton’s method in action; if a term of order Lk is rotated away, it creates new
terms of order 2Lk or more.



Graphical analysis in the k th step., cont.
In each step J(k)per is a sum of connected graphs J

(k)
xy (g); with exponential decay.

Each graph g is a walk in Zd with associated energy denominators.

Denominators

A graph of order Lk is said to be resonant if two conditions hold:

1. A
(k)
xy (g) ≡ J

(k)
xy (g)

E
(k)
x −E

(k)
y

is larger in magnitude than (J9/ε)|g |.

2. |x − y |(j) ≥ 7
8 |g |, where | · |(j) is the metric where blocks on scales up through j

are contracted to points.

It is important to maintain comparability of this metric with the usual one throughout
the procedure.



Fractional moment bounds and Markov inequality

Use fractional moment bounds to control the probability of a resonant graph, i.e.

E
∣∣∣A(k)

xy (g)
∣∣∣s ≤ J

|g |
0

∏
I

∫
dvi

|vi − vj |s
≤ |CJ0||g |.

Here s is the fractional moment, it must be less than 1 for finiteness of the integral.

Then the Markov inequality implies that∣∣∣A(k)
xy (g)

∣∣∣s ≤ |CJ0/ε||g | with probability 1− ε|g |

However, this assumes each site is different (forward approximation).



Long graphs and the forward approximation

If there is significant backtracking, we don’t use Markov inequality; instead we get
extra decay compared with |x − y | (a walk with repeated sites can’t travel as far – see
next slide).

With this bound on the probability of a resonant graph, it is OK to sum over
exp(O(Lk)) graphs in the associated percolation problem with Lk−1 < |g | ≤ Lk .

Percolation clusters = new resonant blocks:
They are the connected components of the set of resonant graphs in space



Backtracking graphs

looping segments

1

Timeline of the walk. Arches connect pairs of times where the walk is at the same site/block.

1

A walk executing loops exhibits triple connectivity.



Result on exponential localization
We prove exponential decay of the eigenfunction correlator for small J0.

Theorem
The eigenvalues of H(Λ) are nondegenerate, with probability 1. Let {ψα(x)}α=1,...,|Λ|
denote the associated eigenvectors. There is a κ > 0 such that if J0 is sufficiently small,
the following bounds hold for any rectangle Λ. The eigenfunction correlator satisfies

E
∑
α

∣∣ψα(x)ψα(y)
∣∣ ≤ J

κ|x−y |
0 , and consequently

∑
α

∣∣ψα(x)ψα(y)
∣∣ ≤ J

κ|x−y |/2
0 with probability 1− J

κ|x−y |/2
0 .

Proof: Concatenate the rotation matrices produced in the course of the analysis. We
know the graphs exhibit exponential bounds outside the resonant regions. The resonant
regions are based on graphs that don’t obey exponential bounds, but we obtain
exponential decay under the expectation, as their probabilities decay exponentially.
The result follows by combining the “probability graphs” with the rotation graphs.



Conclusion

This paper was developed as a warm-up exercise for the MBL problem. We will see in
my next lecture how the ideas are adapted for the MBL proof.

The key issue that I needed to address was the lack of exponential bounds on
probabilities in multi-scale analysis (MSA) proofs of localization. The best MSA
bounds prior to this work gave at best stretched exponential, which clearly would never
be sufficient to control exponential state sums in the MBL problem.

Note: exponential bounds such as the above theorem were previously proven using the
fractional moment method of Aizenman-Molchanov. However, that method did not
appear flexible enough to use in the MBL problem.
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