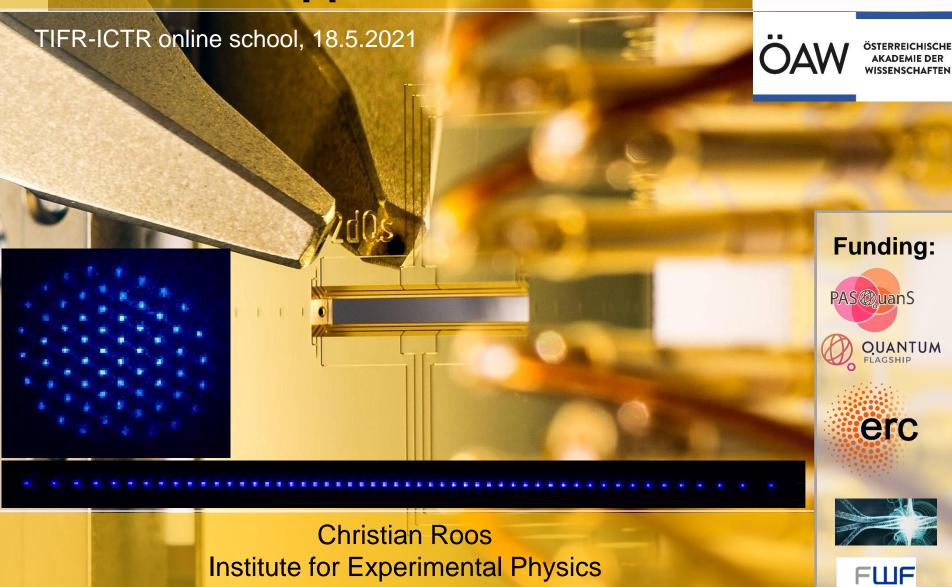
Quantum simulations with trapped ions



University of Innsbruck, Austria

Outline

- Quantum simulation approaches
 - Digital gate-based simulations
 - Crystal geometries
 - Analog simulations: engineering of long-range spin models
 - Detection and characterization of entangled states
 - Variational quantum simulation
 - Scaling quantum simulations to larger particle numbers

Simulating quantum physics

If there are quantum algorithms that run exponentially faster than their classical counterparts:

What stops us from simulating a quantum computer on a classical computer to find a solution in a much shorter time than with the classical algorithm?

Obstacle: There is no solution for simulating general quantum dynamics efficiently on a classical computer.

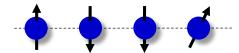
Maybe we should use a quantum processor to simulate the physics of quantum systems which is hard to simulate on classical computers

Quantum simulation

Quantum simulations with trapped ions

Simulating quantum many-body systems

How can we study the physics of quantum many-body systems?



Approaches:

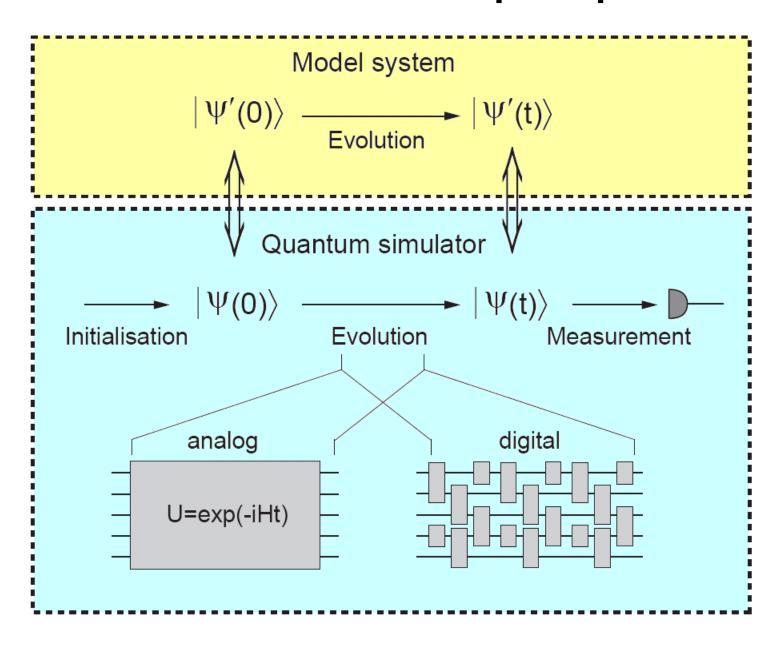
- In some cases: Analytical techniques
- Numerical simulation methods on a computer using approximations

But: Exponential scaling of resources with the system size severely restricts the number of particles that can be exactly simulated.

Interacting spins: exact diagonalization techniques limited to N ~ 40 spins

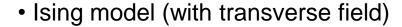
• Feynman (1982), Lloyd (1996): **Quantum simulators**Use a precisely controlled quantum system for simulating a model of interest

Quantum simulation principle

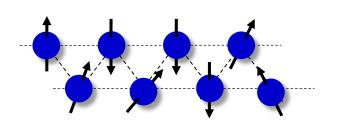


Simulating quantum spin systems

Hamiltonians:



$$H = \frac{1}{2} \sum_{i,j} J_{ij} \sigma_i^x \sigma_j^x + B \sum_i \sigma_i^z$$



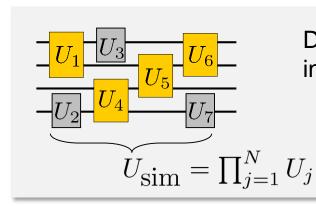
XY model

$$H = \frac{1}{2} \sum_{i,j} J_{ij}^x \sigma_i^x \sigma_j^x + \frac{1}{2} \sum_{i,j} J_{ij}^y \sigma_i^y \sigma_j^y + B \sum_i \sigma_i^z$$

Heisenberg model

$$H = \frac{1}{2} \sum_{i,j} J_{ij}^{x} \sigma_{i}^{x} \sigma_{j}^{x} + \frac{1}{2} \sum_{i,j} J_{ij}^{y} \sigma_{i}^{y} \sigma_{j}^{y} + \frac{1}{2} \sum_{i,j} J_{ij}^{z} \sigma_{i}^{z} \sigma_{j}^{z} + B \sum_{i} \sigma_{i}^{z}$$

Trapped-ion quantum simulations: Gate-based approach



Decompose dynamics induced by system Hamiltonian into sequence of quantum gates

$$U_{\rm sim} \propto U_{\rm sys}$$
 $U_{\rm sys} = e^{-\frac{i}{\hbar}H_{\rm sys} \, \tau}$

Quantum gate toolbox:

- Single qubit-gates
- Entangling two-qubit gates

Building up Hamiltonians

Spin-spin interaction
$$H_{xx} = J \sigma_x^{(1)} \sigma_x^{(2)}$$

Can we add a transverse field?

No... it would perturb the effective Hamiltonian H_{xx}

$$H = J \sigma_x^{(1)} \sigma_x^{(2)} + H_z$$
$$H_z = B \left(\sigma_z^{(1)} + \sigma_z^{(2)}\right)$$

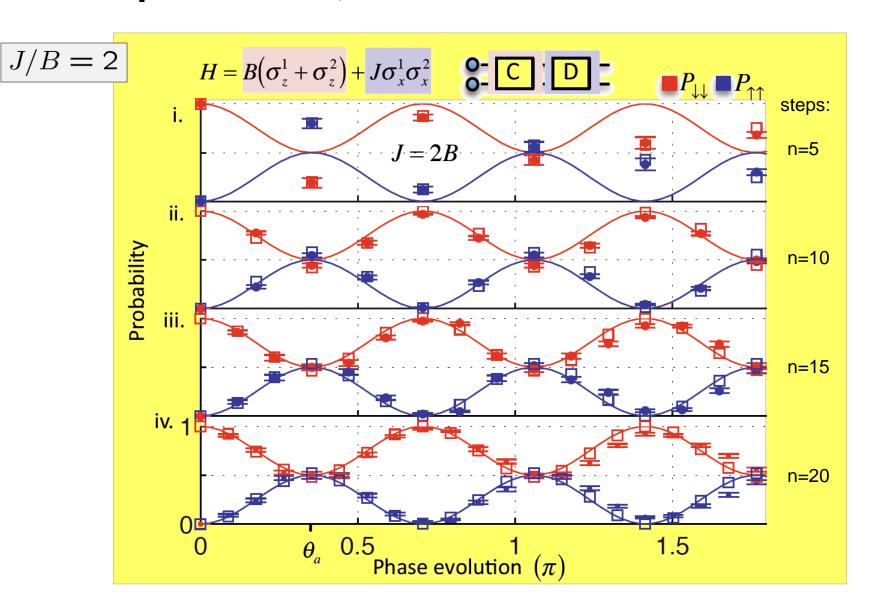
Solution: use ,Trotterization' to generate the dynamics corresponding to $H_{xx} + H_z$

$$U = e^{-i(H_{xx} + H_z)t} \approx e^{-iH_{xx}\Delta t} e^{-iH_z\Delta t} \dots e^{-iH_{xx}\Delta t} e^{-iH_z\Delta t}$$

How many steps?

N=2
$$H_{xx}$$
 H_z H_{xx} H_z

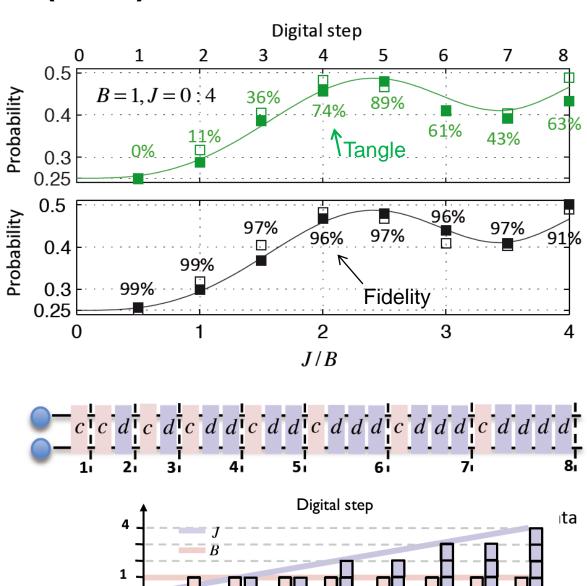
Experimental , Trotterization of $H_{xx} + H_z$



Trotterization of (non-)adiabatic evolution

$$H = B(\sigma_z^1 + \sigma_z^2) + J\sigma_x^1\sigma_x^2$$

$$J/B = 0 \rightarrow 4$$



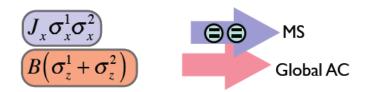
3

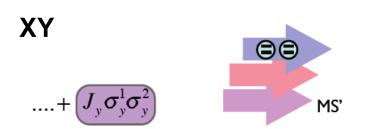
1

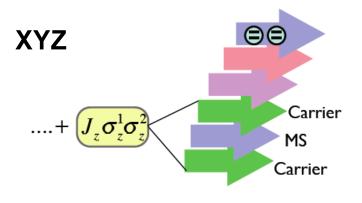
2

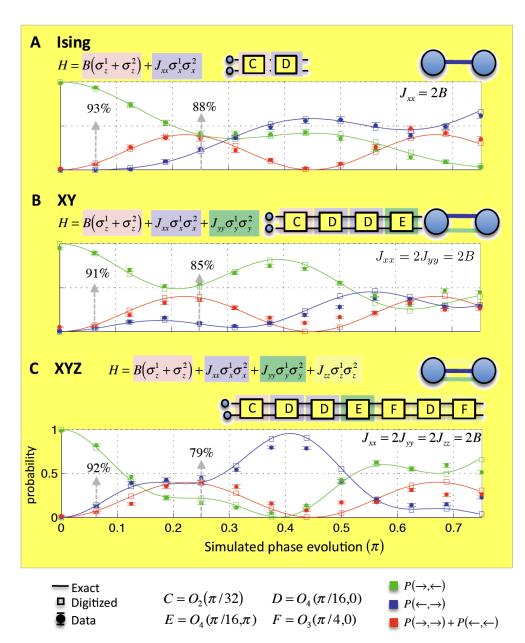
Building new interactions by Trotter technique

Ising



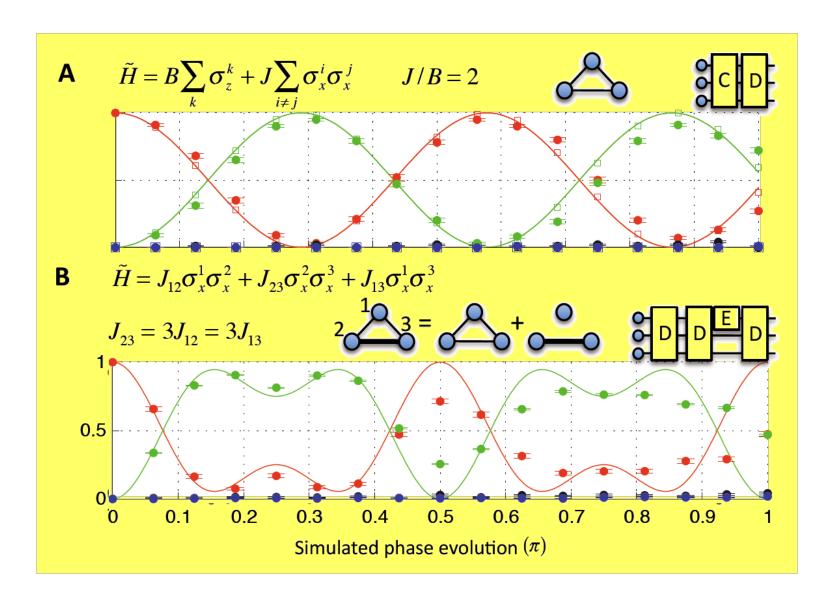






B. Lanyon *et al.*, Science **334**, 57 (2011)

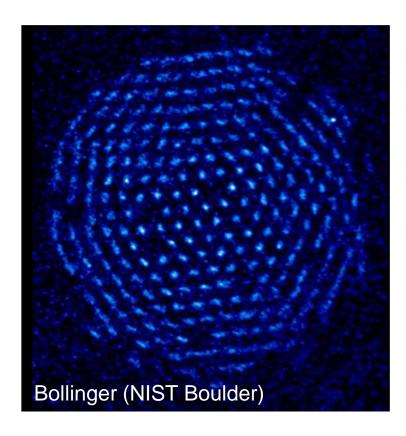
Increasing the number of spins



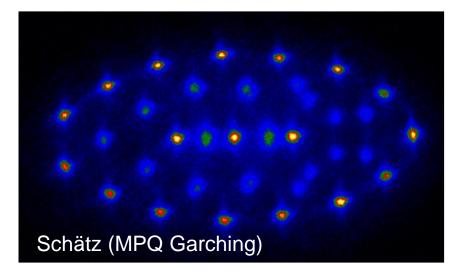
Trapped ions for simulating quantum magnetism

Innsbruck

Challenges:



- Controlling the geometry
- Keeping decoherence low
- Engineering interactions



Trapping geometries: rf traps

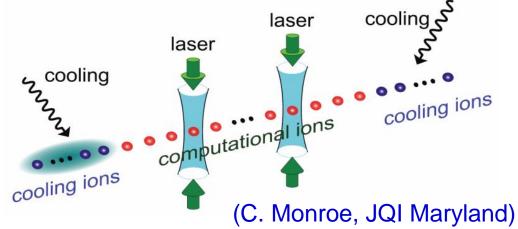
Linear traps: Harmonic anisotropic potentials

N = 2...100(?) ions in a one-dimensional crystal

$$\frac{\omega_r}{\omega_z} > 0.77 \frac{N}{\log N}$$
 longer crystals require very anisotropic potentials

Segmented microtraps: Anharmonic potentials for linear ion strings with equal spacing

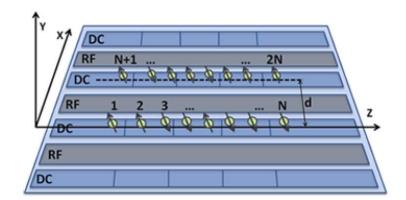
N > 100(?) ions in a one-dimensional crystal



G.-D. Lin, et al., Europhys. Lett. 86, 60004 (2009)

Trapping geometries: rf traps

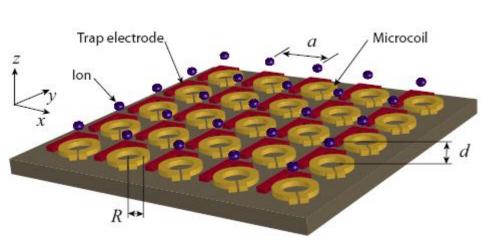
Segmented microtraps for Potentials with multipole trapping sites

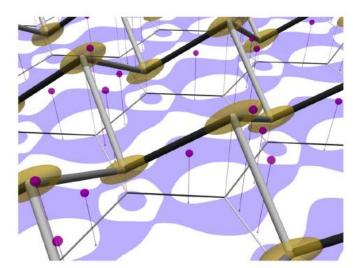


Multiple linear strings in close proximity

J. Welzel et al., EPJD 65, 285 (2011)

2d-lattices of trapping sites





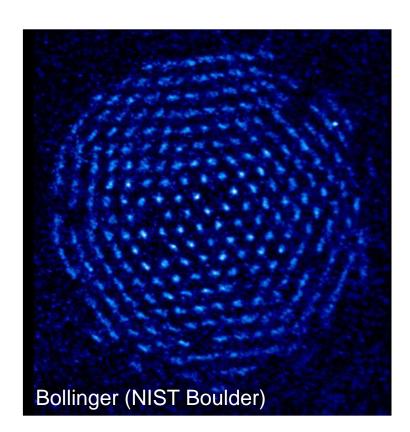
R Schmied et al, PRL 102, 233002 (2009)

Chiaverini and Lybarger, Phys. Rev. A 77, 022324 (2008)

Trapping geometries: Penning traps

Penning trap: anisotropic potential for trapping 2d crystals

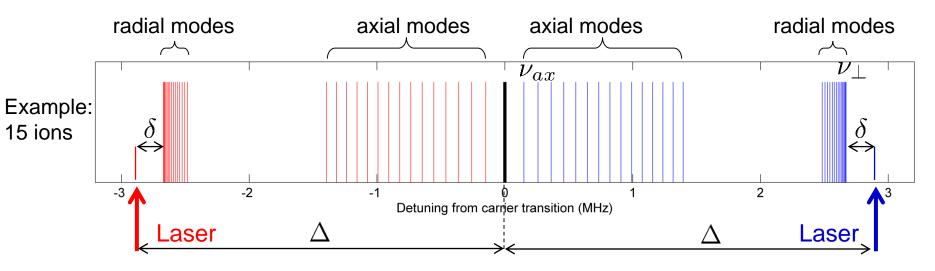
- N≈ 100 300 ions possible
- low internal state decoherence
- challenge: demonstrate same kind of quantum control as in rf-traps

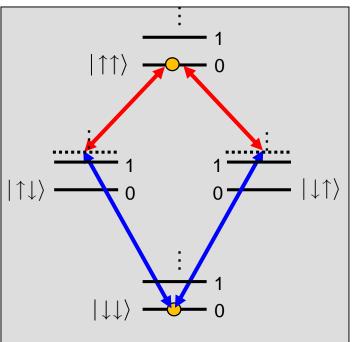


Geometry of laser-ion interaction

Features:

- Long strings \Rightarrow strongly anistropic trapping potentials: $\omega_{\perp}/\omega_{ax} \approx 15-20$
- weak axial confinement \Rightarrow 'hot' axial modes \Rightarrow all laser beams \bot to ion string





$$H=\sum_{i< j}J_{ij}\sigma_i^x\sigma_j^x$$
 with
$$J_{ij}=\Omega^2\frac{(\hbar k)^2}{2m}\sum_m\frac{b_{i,m}b_{j,m}}{\Delta^2-\nu_m^2}$$

Example: 11 ions

vibrational mode

'Tilt'

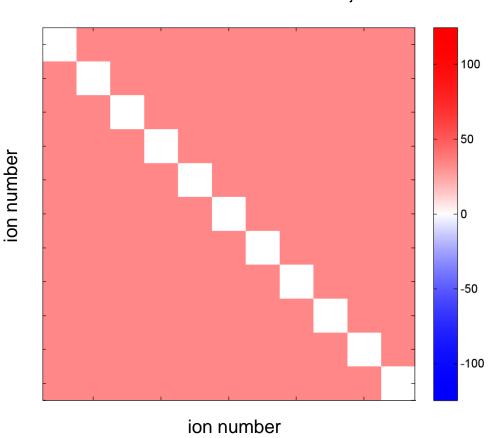
'COM'

:

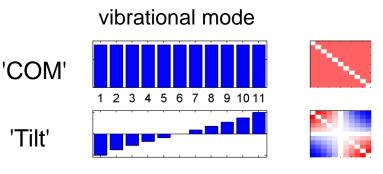
:

$$J_{ij} = \Omega^2 \frac{(\hbar k)^2}{2m} \sum_{m} \frac{b_{i,m} b_{j,m}}{\Delta^2 - \nu_m^2}$$

Spin-spin coupling matrix J_{ii} (Hz)



Example: 11 ions

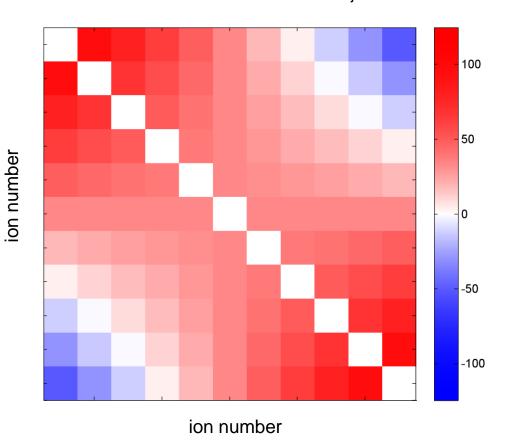


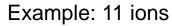
:

:

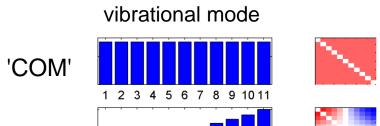
$$J_{ij} = \Omega^2 \frac{(\hbar k)^2}{2m} \sum_{m} \frac{b_{i,m} b_{j,m}}{\Delta^2 - \nu_m^2}$$

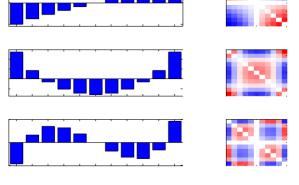
Spin-spin coupling matrix J_{ii} (Hz)

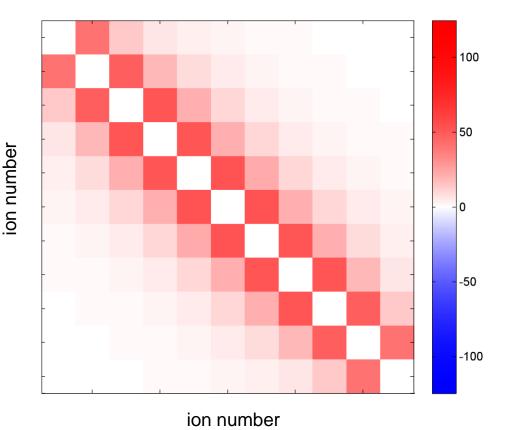


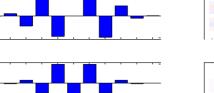


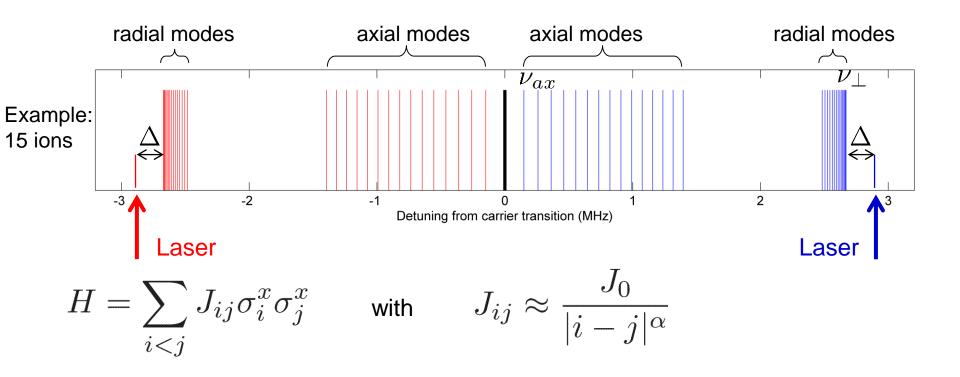
$$J_{ij} = \Omega^2 \frac{(\hbar k)^2}{2m} \sum_{m} \frac{b_{i,m} b_{j,m}}{\Delta^2 - \nu_m^2}$$











Interaction range: $0<\alpha<3$ couple only to couple to all modes center-of-mass

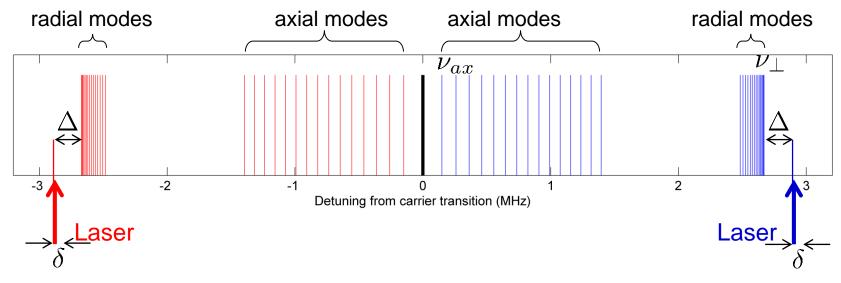
K. Kim et al, PRL **103**, 120502 (2009)

J. Britton et al, Nature **484**, 489 (2012)

Knobs to turn:

- laser detuning Δ
- · spread of radial modes

Ising model with transverse field



$$H = \sum_{i < j} J_{ij} \sigma_i^x \sigma_j^x + B \sum_i \sigma_i^z \qquad B = \delta/2$$

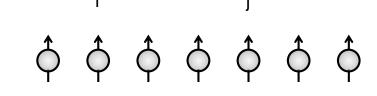
$$pprox \sum_{i < j} J_{ij} (\sigma_i^+ \sigma_j^- + h.c.) + B \sum_i \sigma_i^z$$
 for $B \gg J$

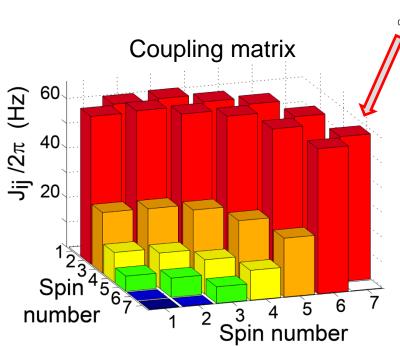
"XY model": hopping of spin excitations

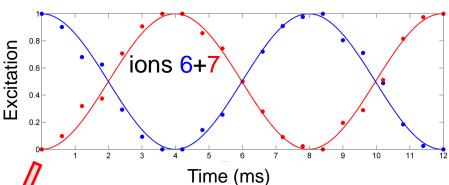
Measurement of the coupling matrix

Protocol:

- 1. Initialize ions in state $|\uparrow\rangle_i|\downarrow\rangle_j$
- 2. Switch on Ising Hamiltonian $|\uparrow\rangle_i|\downarrow\rangle_j\longleftrightarrow |\downarrow\rangle_i|\uparrow\rangle_j$
- 3. Measure coherent hopping rate



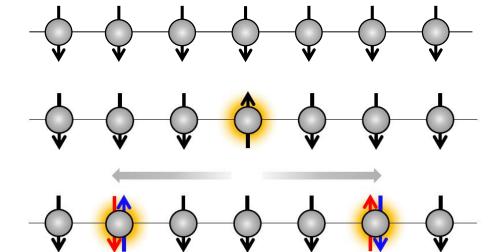




Spread of correlations after local quenches

$$H_{XY} = \sum_{i < j} J_{ij} (\sigma_i^+ \sigma_j^- + h.c.) + B \sum_i \sigma_i^z$$

Ground state: all spins aligned with transverse field

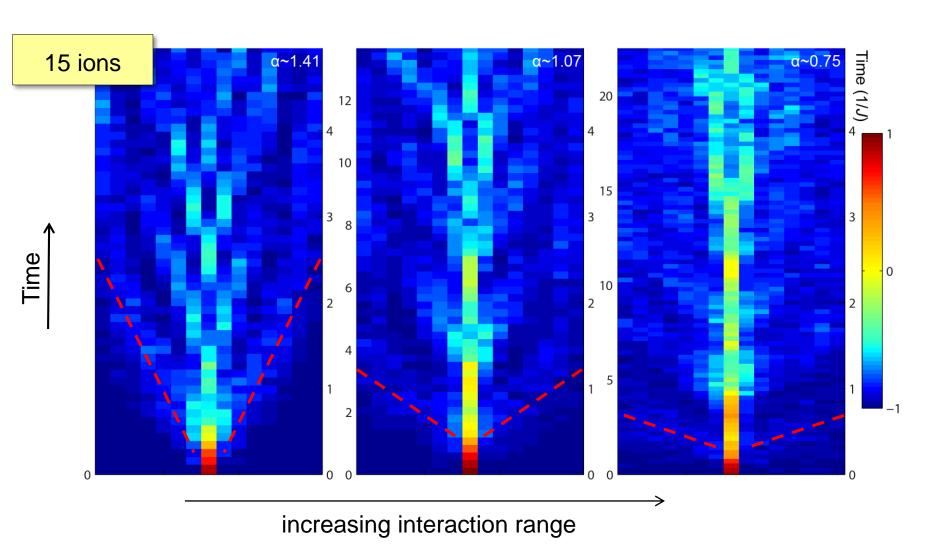


1. Local quench: flip one spin

2. Spread of entanglement

3. Measure magnetization or spin-spin correlations

Magnetization dynamics after a local quench

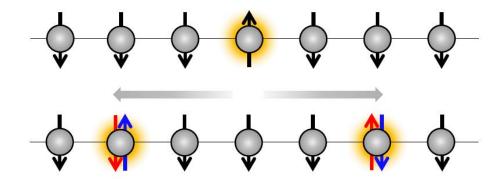


P. Jurcevic et al., Nature **511**, 202 (2014)

 $J_{ij} pprox J_0 rac{1}{|i-j|^{lpha}}$

see also: P. Richerme et al., Nature 511, 198 (2014)

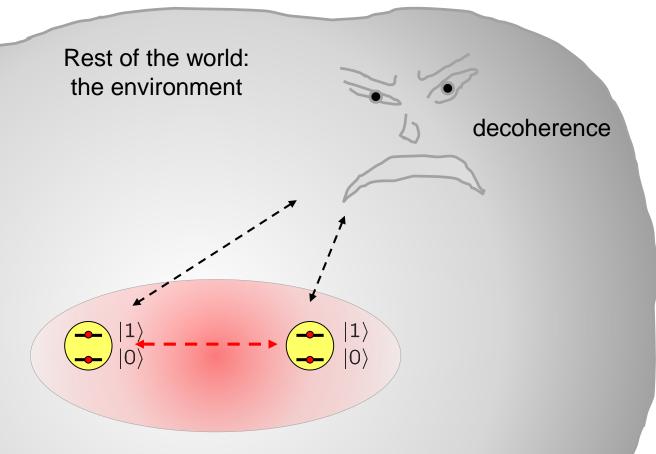
Entanglement generation in many-body dynamics



The quantum dynamics induced by a many-body Hamiltonian creates entanglement.

How can we demonstrates that this really happens in our experiment?

Classical vs quantum correlations



Coupling to the environment

- can create classical correlations
- turns quantum correlations into classical correlations.

Classical vs quantum correlations

Example: Comparison of two different states

$$\Psi_{-} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \qquad \qquad |\uparrow\downarrow\rangle \text{ or } |\downarrow\uparrow\rangle$$
50%

Both state have the same expectation values when measured in z-basis:

$$\langle \sigma_z^{(i)} \rangle = 0$$

 $\langle \sigma_z^{(1)} \sigma_z^{(2)} \rangle = -1$

Only measurements along x or y reveal the difference:

$$\langle \sigma_x^{(1)} \sigma_x^{(2)} \rangle = -1 \qquad \langle \sigma_x^{(1)} \sigma_x^{(2)} \rangle = 0$$
$$\langle \sigma_y^{(1)} \sigma_y^{(2)} \rangle = -1 \qquad \langle \sigma_y^{(1)} \sigma_y^{(2)} \rangle = 0$$

Detecting entanglement

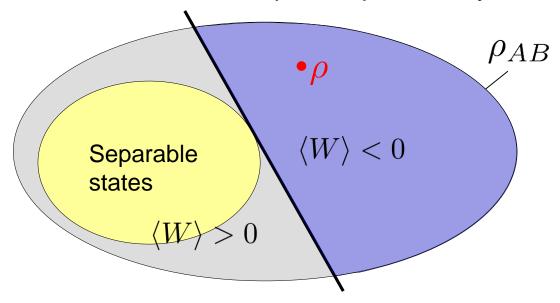
Deciding whether a state is entangled or not is a hard task.

Entanglement detection techniques:

- Positive partial trace (PPT) cryterion: check whether a density matrix after partial transposition has negative eigenvalues.
- Entanglement witnesses: Particular observables that have negative expectation value for some entangled states, but are positive for separable states.
- Entanglement measures (for example: concurrence):
 - Nonlinear functions of the density matrix that are zero for separable mixed states and positive for entangled states.
 - Entanglement measures quantify entanglement but can be hard to calculate even if the density matrix is known; for two qubits, closed expressions exist.

Detecting entanglement by witness operators

Quantum states of a composite quantum system

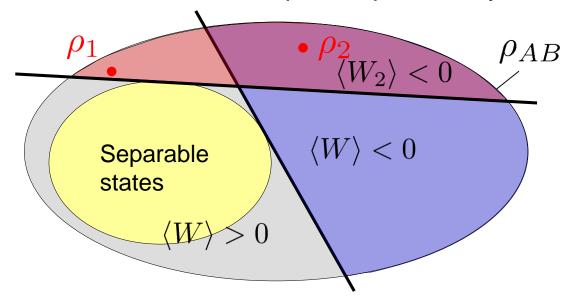


<u>Witness:</u> An observable W whose expectation value is positive for all separable states $\langle W \rangle = {\rm Tr}(\rho W) \geq 0$

If we measure $\langle W \rangle < 0$ in an experiment, we can conclude that the state is entangled.

Detecting entanglement by witness operators

Quantum states of a composite quantum system



Not every entangled state is detected by a witness

$$\longrightarrow \rho_1$$

$$\operatorname{Tr}(\rho_1 W) \geq 0$$

• An entangled state can be detected by more than one witness $\longrightarrow \rho_2$

$$\operatorname{Tr}(\rho_2 W) < 0 \quad \operatorname{Tr}(\rho_2 W_2) < 0$$

Tomographic reconstruction of the density matrix

Representation of ρ as a sum of orthogonal observables A_i :

$$\rho = \sum_{i} \lambda_{i} A_{i} \text{ with } Tr(A_{i} A_{j}) = \delta_{ij}$$

 ρ is completely determined by the expectation values $<A_i>$:

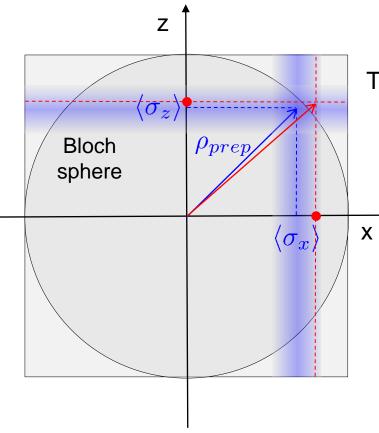
$$\langle A_j \rangle = Tr(\rho A_j) = \sum_i \lambda_i Tr(A_i A_j) = \lambda_j$$

For a two-ion system : $A_i \in \{\sigma_i^{(1)} \otimes \sigma_j^{(2)}, \sigma_i \in \{I, \sigma_x, \sigma_y, \sigma_z\}\}$

Joint measurements of all spin components $\sigma_i^{(1)} \otimes \sigma_j^{(2)}$

$$\rho_R = \sum_{i=1}^{16} \langle A_i \rangle A_i$$

Example: Tomography of a qubit



The experimental procedure prepares the state ρ_{prep}

$$\rho_{prep} = \frac{1}{2} (I + \langle \sigma_x \rangle \sigma_x + \langle \sigma_y \rangle \sigma_y + \langle \sigma_z \rangle \sigma_z)$$

Reconstruction by estimation of $\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle$ using a finite number of copies of the state:

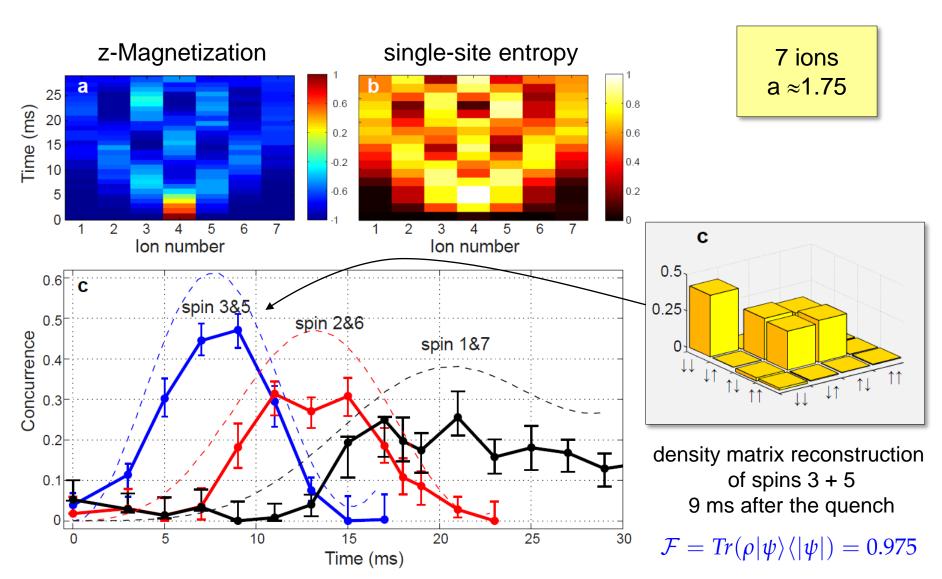
$$s_z = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$
, $s_x = \dots$, $s_y = \dots$

$$\rho_{tomo} = \frac{1}{2}(I + s_x \sigma_x + s_y \sigma_y + s_z \sigma_z) \neq \rho_{prep}$$

Ptomo might not be within the Bloch sphere!

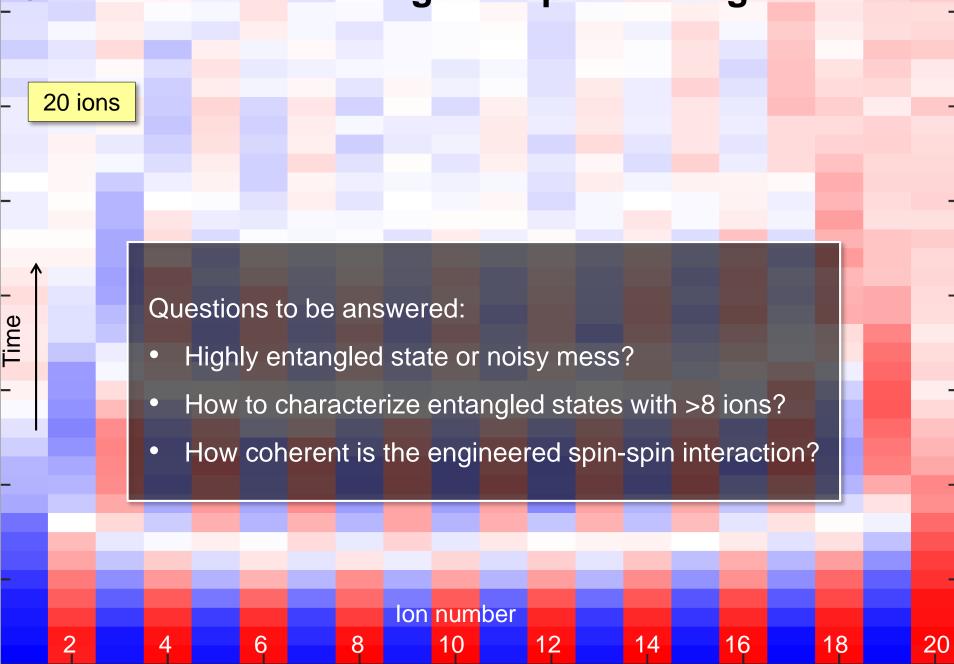
DISASTER !!!

Spread of entanglement after a local quench

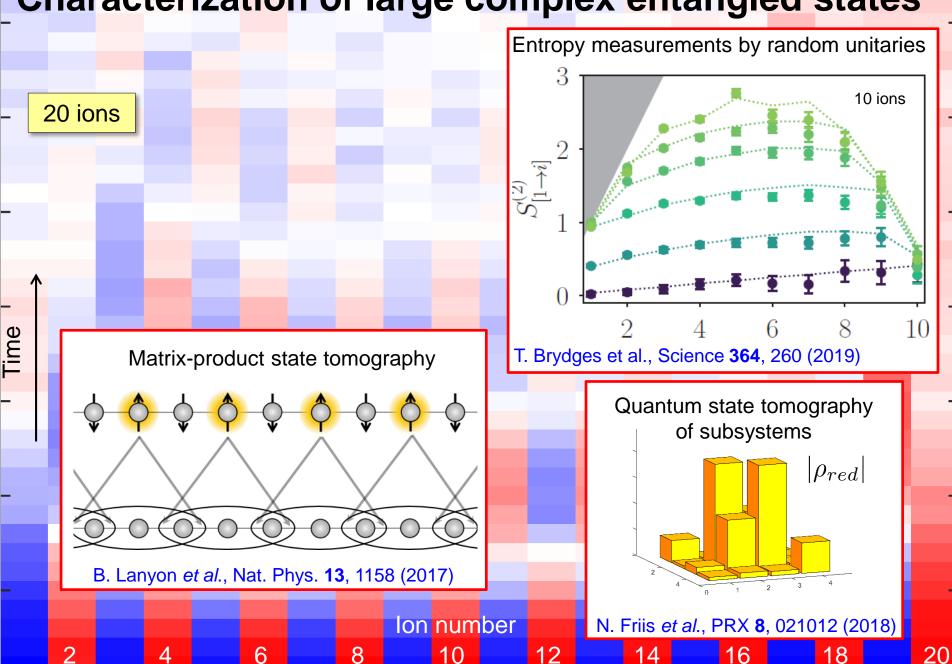


P. Jurcevic et al., Nature **511**, 202 (2014)

Characterization of large complex entangled states



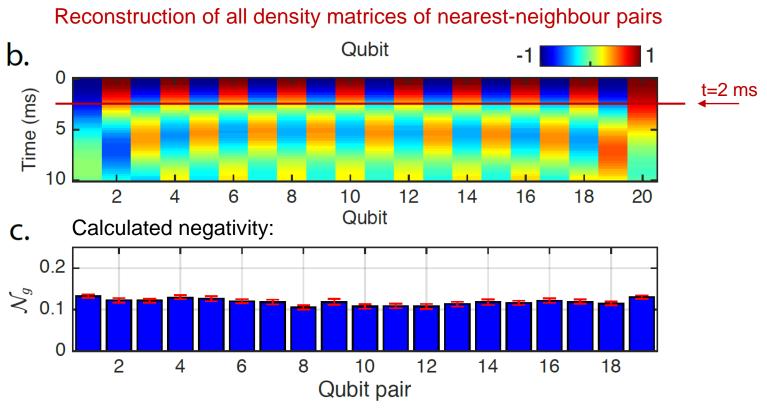
Characterization of large complex entangled states



Entanglement detection in multi-ion experiments

Local characterization of the beginning of entanglement spreading

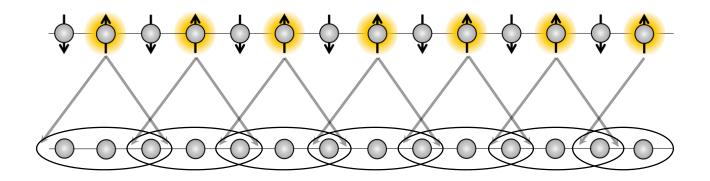
Option 1: Quantum state tomography to reconstruct the density matrix of subsystems



→ After 2 ms of time evolution, all ions are entangled with their neighbours

Entanglement detection in multi-ion experiments

Local characterization of the beginning of entanglement spreading

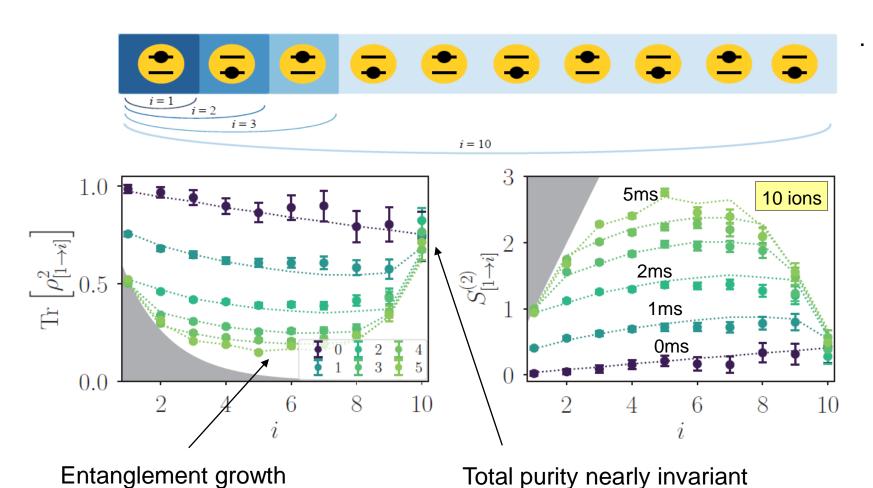


Option 2: Measure all correlation functions between groups of neighbouring ions (pairs, triplets,...) and try to build up a global representation of the quantum state using a suitable parametrization of the state

Matrix product state tomography

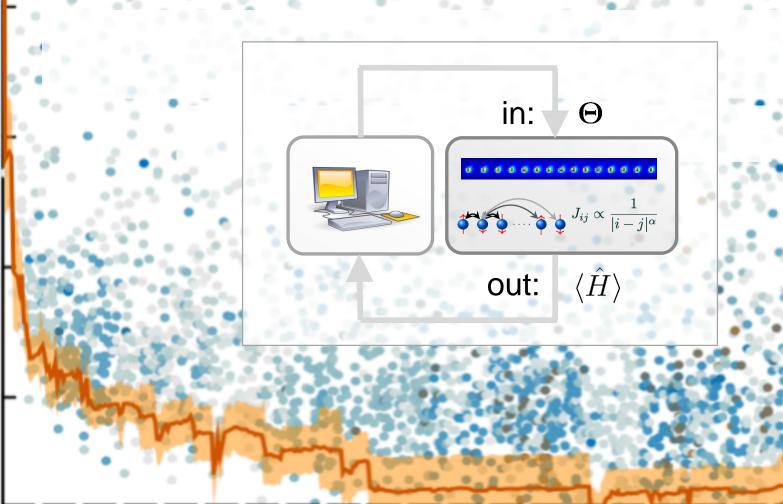
Entanglement detection in multi-ion experiments

Option 3: Compare the purity of density matrices describing subsystems to the purity of the overall density matrix



T. Brydges, A. Elben et al., Science 364, 260 (2019)

Entanglement as a computational resource: Variational quantum simulation



Target |

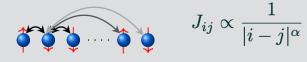
spin Hamiltonian

$$\hat{H}_T = \sum_{n=1}^M \hat{h}_n$$

$$\hat{h}_n = \frac{\mathbf{a_n}}{\mathbf{a_n}} \hat{\sigma}_i^x \hat{\sigma}_j^y \hat{\sigma}_k^z \cdots$$

→ sums of Pauli products:

Quantum Resource

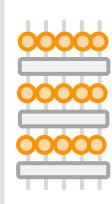


$$J_{ij} \propto rac{1}{|i-j|^{lpha}}$$

$$U_1(\Theta) = \exp\left(-i\Theta\sum_{i < j} J_{ij}(\sigma_i^+ \sigma_j^- + \text{h.c.})\right)$$

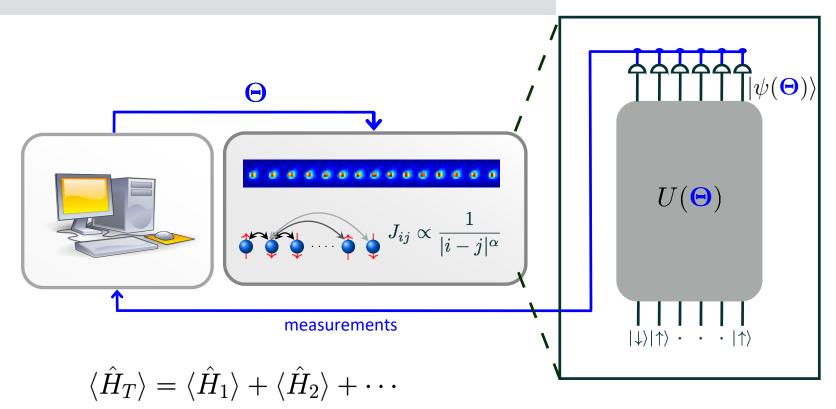
$$U_{2,i}(\Theta) = \exp\left(-\mathrm{i}\Theta\sigma_i^z\right)$$

$$|\psi(\Theta)\rangle = \hat{U}_N(\Theta_N) \cdots \hat{U}_2(\Theta_2) \hat{U}_1(\Theta_1) |\psi_0\rangle$$



The goal of Variational Quantum Simulation

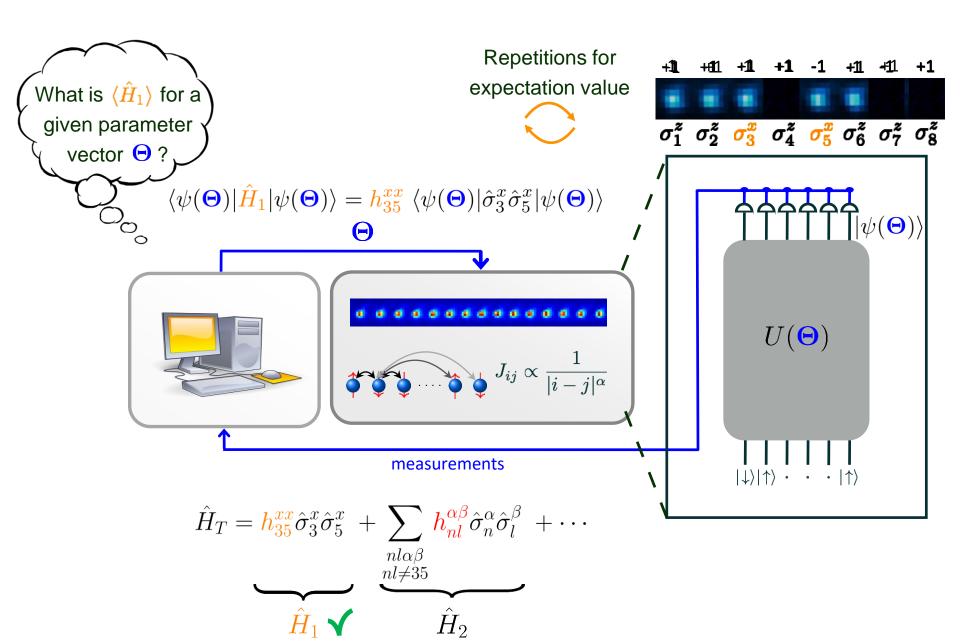
Prepare ground state of \hat{H}_T by minimising $\langle \psi(\mathbf{\Theta})|\hat{H}_T|\psi(\mathbf{\Theta})\rangle$

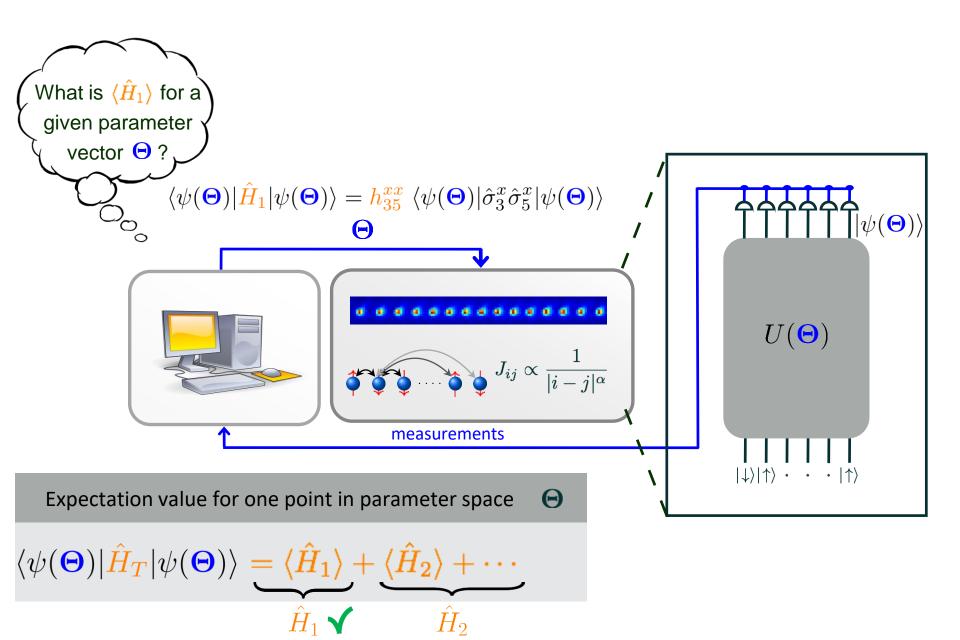


Peruzzo et al., Nature Comm. 5, 4213 (2014)

Farhi et al., arXiv:1411.4028 (2014)

McClean et al., NJP 18, 023023 (2016)





Quantum resources for variational search: ground state energy of Schwinger lattice model

Entangling operations

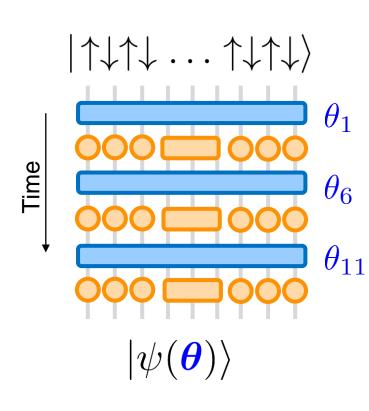
$$U(\theta) = \exp(i\theta \sum_{i < j} J_{ij} (\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+))$$

Single-qubit rotations

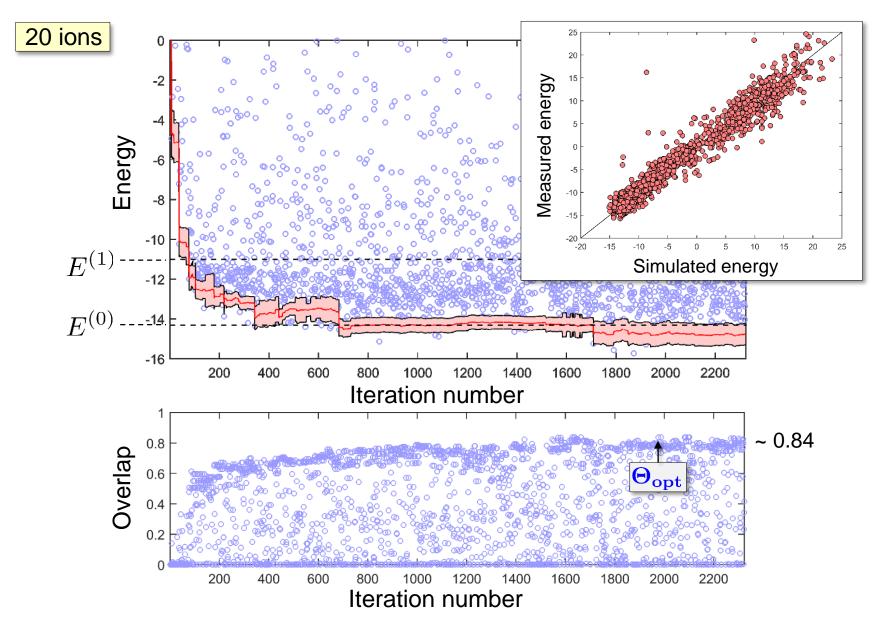
$$U(\theta) = \exp(i\theta \,\sigma_i^z)$$

Collective qubit rotations

$$U(\theta) = \exp(i\theta \sum_{i} \sigma_{i}^{x})$$



Experimental results: energy minimization



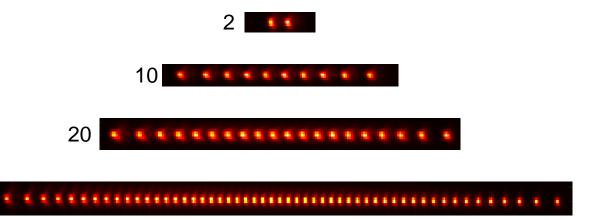
C. Kokail, C. Maier et al., Nature **569**, 355 (2019)

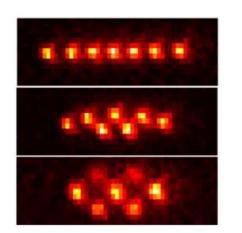
Scaling up trapped-ion quantum simulations

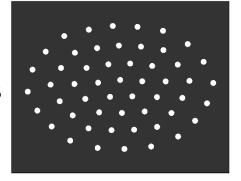
Options for experimenting with larger ion crystals:

Longer linear ion strings

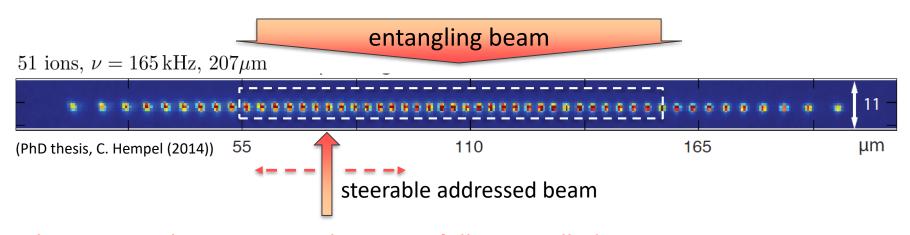
Two-dimensional crystals







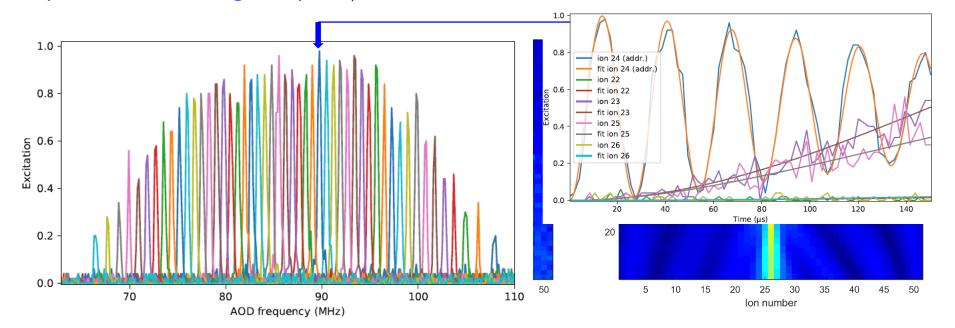
Ion strings with larger ion numbers:



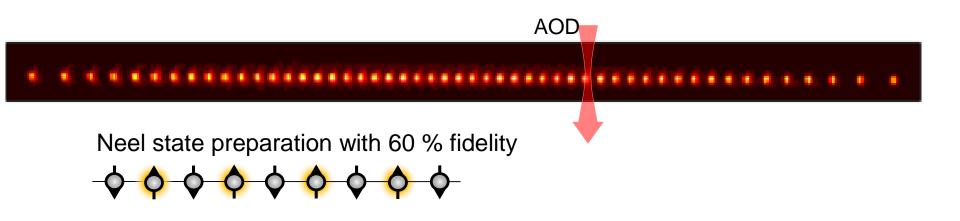
Until very recently:

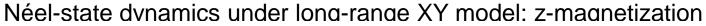
Only 20 ions fully controlled ions

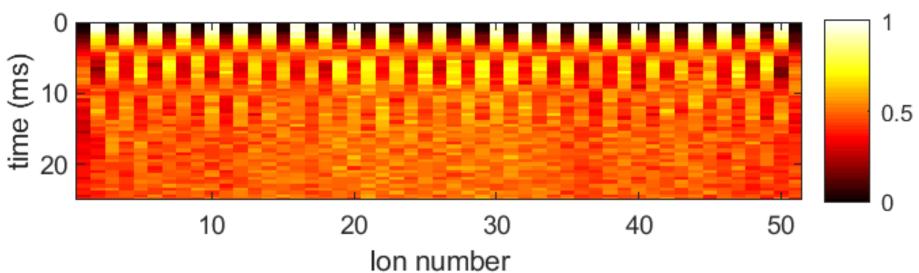
Improved addressing setup 50 addressable ions



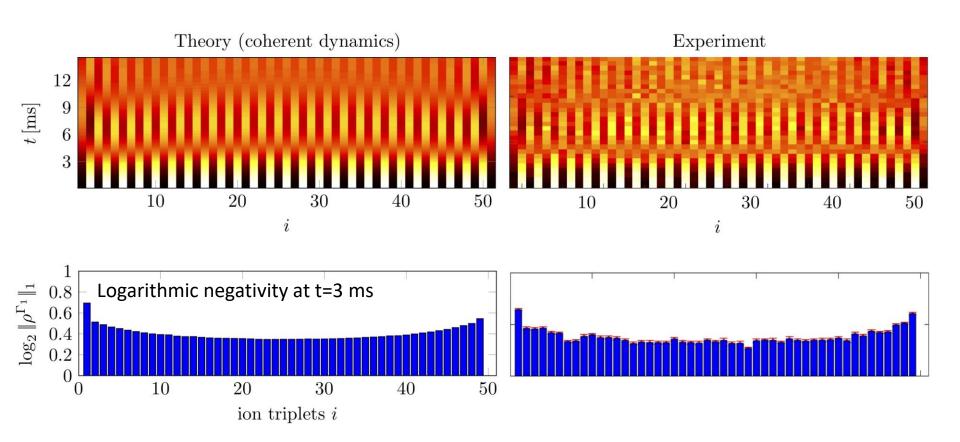
Entanglement in 50-ion strings







Entanglement in 50-ion strings



in collaboration with P. Zoller and co-workers

Scaling up trapped-ion quantum simulations

1d ion crystals:

 Very anistropic trapping potentials needed for keeping the ion string linear:

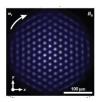
$$\nu_{\perp}/\nu_{axial} > N \log N$$

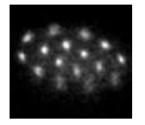
- → low axial confinement
 - tricky to control axial motion
 - length of string complicates addressing

u_{axial}

2d ion crystals:

rf linear trap → micromotion



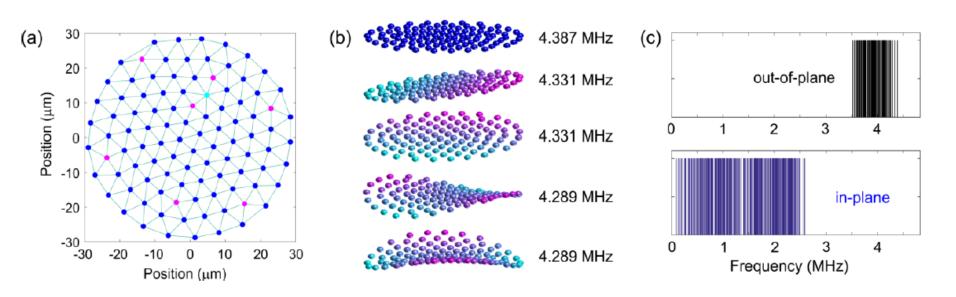


Planar ion crystals

(Campbell group, UCLA)

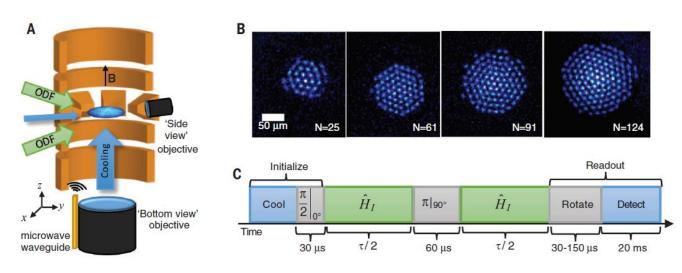
M. Block et al.J. Phys. B **33**, L375 (2000)

lons form triangular lattices with defects



Effective long-range spin-spin interactions by lasers coupling to the out-of-plane modes of vibration

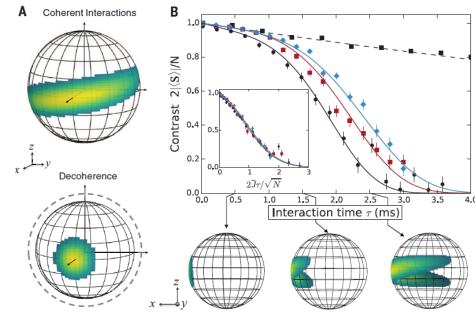
Penning trap: spin dynamics in planar crystals



Experiment at NIST, Boulder (USA):

Quantum spin dynamics with >100 ions:

- Optical dipole force inducing spin squeezing
- Measurement of collective spin operators (rotating crystals)



J. G. Bohnet et al, Science 253, 1297 (2016)

ig. 2. Depolarization of the collective spin from spin-spin interactions and decoherence. (A) The

Planar ion crystals in rf-traps: Micromotion

in-plane 2

250

300

Z

20

10

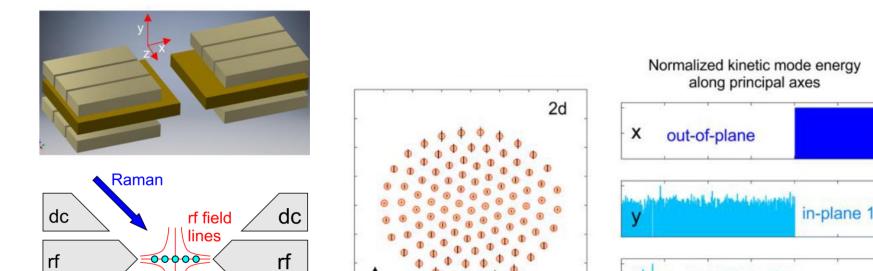
30

50

150

Mode number

200



no micromotion in direction of out-of-plane normal modes

-30

-20

-10

Doppler cooling normal to image

plane

Raman

dc

dc

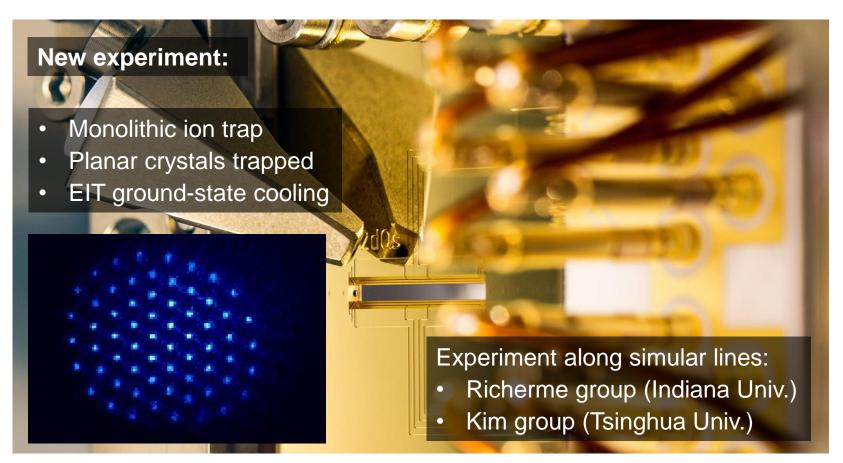
for certain geometries, laser cooling of in-plane modes not affected by MM

Position (µm)

Spin-spin simulations with planar crystals in rf-traps

Challenges:

- melting of crystals by background gas collisions + recrystallization
- Laser cooling of in-plane modes
- Motional heating



Summary and outlook

Trapped-ion quantum simulations

- Quantum simulation approaches: digital vs analog
- Realization of long range spin models in trapped ions
- Entanglement creation and characterization in multi-ion strings
- Scaling up quantum simulations to larger ion numbers
- Variational quantum simulation

Outlook:

- Exploration of non-equilibrium quantum dynamics in systems with >50 qubits
- Experiments with planar ion crystals with single-ion control
- J. I.Cirac, P. Zoller, "Goals and opportunities in quantum simulation", Nat. Phys. 8, 264 (2012)
- R. Blatt, C. F. Roos, "Quantum simulations with trapped ions", Nat. Phys. 8, 277 (2012)
- C. Monroe et al., "Programmable quantum simulations of spin systems with trapped ions" Rev. Mod. Phys. 93, 025001 (2021)

Acknowledgements

Christine Maier

Tiffany Brydges

Florian Kranzl

Manoj Joshi

Helene Hainzer

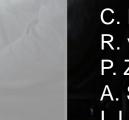
Dominik Kiesenhofer

Tuomas Ollikainen

Matthias Bock

Johannes Franke

Lukas Pernthaler



In collaboration with:

A. Elben,

B. Vermersch

C. Kokail

R. van Bijnen

P. Zoller

A. Schuckert

I. Lovas

M. Knap

R. Blatt

B. Lanyon

Experiment

Theory

Theory

(Munich)

(Innsbruck)