

Weak solutions  $\mathcal{L}^1$  data

**Existence** 

**Uniqueness** 

# Renormalized solutions for elliptic equations with $L^1$ data

Olivier Guibé LMRS CNRS-Université de Rouen, France

February 2021 – ICTS – Bengaluru – Online Conference



 $1^{1}$  data

**Existence** 

Uniqueness

### **Outline**

- L<sup>1</sup> data (incomplete history)
  - motivations
  - solutions in the sense of distributions
  - renormalized solutions, entropy solutions, SOLA
  - some results.
- Renormalized solution for a quasilinear elliptic equation with L<sup>1</sup> data: existence
  - definition of a renormalized solution
  - proof of the existence of a solution
  - stability result
  - extension
- Renormalized solution for a quasilinear elliptic equation with L<sup>1</sup> data: uniqueness
  - uniqueness in the variational case :  $\lambda>0$  and  $\lambda=0$
  - uniqueness of the renormalized solution :  $\lambda > 0$
  - uniqueness of the renormalized solution :  $\lambda = 0$
- Extension to another boundary conditions



 $1^{1}$  data

**Existence** 

Uniqueness

# **Quasilinear elliptic equations**

Let us consider the quasilinear elliptic equation in divergence form

$$\begin{cases} \lambda u - \operatorname{div} \big( A(x,u) \nabla u \big) \big) = f \ \text{in } \Omega, \\ u = 0 \ \text{on } \partial \Omega. \end{cases}$$

where  $\Omega$  is an open subset of  $\mathbb{R}^N$  and

- λ ≥ 0
- $A(x,s): \Omega \times \mathbb{R} \mapsto \mathbb{R}^{N^2}$  is a Carathéodory function (measurable in x, continuous in s) such that

(2) 
$$A(x,s)\xi \cdot \xi \ge \alpha |\xi|^2,$$
(3) 
$$\exists M > 0, \quad |A(x,s)| \le M, \quad \forall s \in \mathbb{R}, \text{ a.e. in } \Omega$$

•  $f \in H^{-1}(\Omega)$  (the dual space of  $H_0^1(\Omega)$ )



 $1^{1}$  data

**Existence** 

**Uniqueness** 

The notion of weak solution is a convenient framework

(4) 
$$\begin{cases} \text{Find } u \in H_0^1(\Omega) \text{ such that: } \forall v \in H_0^1(\Omega) \\ \lambda \int_{\Omega} uv + \int_{\Omega} A(x, u) \nabla u \cdot \nabla v = \langle f, v \rangle_{H^{-1}, H_0^1} \end{cases}$$

Under the previous hypotheses, such a weak solution exists. It is sufficient to combine Lax-Milgram Theorem and Leray-Schauder fixed point Theorem.

#### However if

- $f \in L^1(\Omega)$  (and  $f \notin H^{-1}(\Omega)$ ): the term  $\int_{\Omega} fv$  may not exist
- A(x,s) is not uniformly bounded with respect to s: we cannot expect to have  $A(x,u)\nabla u \cdot \nabla v \in L^1(\Omega)$
- ⇒ solving (1) in the sense of (4) is not possible (in general). We need an appropriate extension of the notion of weak solution.



 $L^1$  data

**Existence** 

Uniqueness

- Mathematical question : can we have a convenient framework for elliptic (or parabolic) equations with  $L^1$  data ?
- Some models in fluid-mechanic (Bousinessq system type,  $k-\varepsilon$  model), in solid mechanic, thermistor problem, etc give PDE with  $L^1$  expected term. For example, the Kelvin-Voigt thermo-visco-elasticity type model couples the movement equation and the energy balance equation

$$\frac{\partial^{2} u}{\partial t^{2}} - \operatorname{div}\left[B_{1}\mathcal{E}\left(\frac{\partial u}{\partial t}\right) + B_{2}\mathcal{E}\left(u\right)\right] + Df(\theta) = g$$

$$\frac{\partial b(\theta)}{\partial t} - \operatorname{div}(AD\theta) = B_{1}\mathcal{E}\left(\frac{\partial u}{\partial t}\right) \cdot \mathcal{E}\left(\frac{\partial u}{\partial t}\right) - f(\theta)\operatorname{tr}(\mathcal{E}\left(\frac{\partial u}{\partial t}\right))$$

 $B_1\mathcal{E}\left(\frac{\partial u}{\partial t}\right)\cdot\mathcal{E}\left(\frac{\partial u}{\partial t}\right)$  (the mechanical dissipation) is expected to belong to  $L^1$ .

- Mixing homogenization and L<sup>1</sup> data
- From a mathematical point of view or for some models, considering a matrix A(x,s) which is not bounded with respect to s is interesting (with a control of the growth or a possible blow-up).



 $1^{1}$  data

**Existence** 

Uniqueness

### Solutions in the sense of distributions

#### Boccardo-Gallouët (1989, 1992) – in the particular quasilinear case

Assume that the matrix A is bounded. For any  $f \in L^1$  (or measure) there exists  $u \in W_0^{1,q}(\Omega)$  for any  $1 < q < \frac{N}{N-1}$  solution to (1) in the sense of distribution:

$$\forall \varphi \in \mathcal{C}_0^{\infty}(\Omega) \qquad \lambda \int_{\Omega} u \varphi + \int_{\Omega} A(x, u) \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi.$$

#### **Remarks**

- u is not an admissible test function
- extension to nonlinear operator with p growth with 2 1/N < p.
- can be generalized to parabolic equations with L<sup>1</sup> data
- f can be replaced by a Radon measure with bounded variation



# **Proof**

**Weak solutions** 

 $1^{1}$  data

**Existence** 

Uniqueness

Consider an approximate problem with  $f_{\varepsilon}$  in place of f ( $f_{\varepsilon}$  regular which converges to f in  $L^1$ ): let  $u_{\varepsilon} \in H^1_0(\Omega)$  a weak solution. Then we perform

- Boccardo-Gallouët estimates
- subsequence extraction
- passing to the limit



 $L^1$  data

Existence

**Uniqueness** 

Boccardo-Gallouët estimates

Weak solutions

Boccardo-Gallouët estimates

Following Boccardo-Gallouët [1992], we consider the function  $\varphi_m, m > 0$ 

$$\varphi_m(r)=\int_0^r\frac{1}{(1+|s|)^{1+m}}ds.$$

Since  $\varphi_m(u_\varepsilon) \in H^1_0(\Omega) \cap L^\infty(\Omega)$ ,  $\|\varphi_m(u_\varepsilon)\|_{L^\infty(\Omega)} \leq \frac{1}{m}$  (the bound is independent of  $\varepsilon$ ), using it as test function in the approximate problem

$$\int_{\Omega} \frac{|\nabla u_{\varepsilon}|^2}{(1+|u_{\varepsilon}|)^{1+m}} \leq \frac{C}{m} \quad \text{independently of } \varepsilon.$$

For 0 < m < 1, with  $\psi_m(u_\varepsilon) = \int_0^{u_\varepsilon} (1+|s|)^{(1-m)/2} ds$  it can be rewritten

$$\int_{\Omega} |\nabla \psi_m(u_{\varepsilon})|^2 \leq \frac{C}{m}. \qquad \text{If } m > 0 \text{ small}$$
 
$$\int_{\Omega} |\nabla \psi_m(u_{\varepsilon})|^2 \leq \frac{C}{m}. \qquad \frac{1-m}{2} > 0$$



 $L^1$  data

Existence

Uniqueness

Since 
$$\psi_m(u_\varepsilon) = \int_0^{u_\varepsilon} (1+|s|)^{(1-m)/2} ds \in H_0^1(\Omega)$$
 we obtain (Sobolev inequalities)  $(N>2)$ 

$$\forall 0 < m < 1, \quad \psi_m(u_{\varepsilon}) \text{ bounded in } L^{2N/(N-2)}(\Omega)$$

that is

$$orall 0 < m < 1$$
  $u_{arepsilon}$  bounded in  $L^q(\Omega)$   $q \leq \frac{(1-m)N}{N-2}$ 

which gives the first estimate

(5) 
$$u_{\varepsilon} \text{ bounded in } L^{q}(\Omega) \quad q < \frac{N}{N-2}.$$



 $L^1$  data

**Existence** 

Uniqueness

As far as the gradient is concerned, using the Hölder inequality

$$\int_{\Omega} |\nabla u_{\varepsilon}|^{q} \leq \int_{\Omega} \left( \frac{|\nabla u_{\varepsilon}|^{2}}{(1+|u_{\varepsilon}|)^{1+m}} \right)^{q/2} \left( \int_{\Omega} \left( 1+|u_{\varepsilon}| \right)^{q(1+m)/(2-q)} \right)^{(2-q)/2}.$$

We obtain a bound for  $\nabla u_{\varepsilon}$  in  $(L^q(\Omega))^N$  if and only if

$$\frac{q(1+m)}{2-q}<\frac{N}{N-2},$$
  $N>2$ 

that is (since 0 < m < 1 can be chosen small enough)

$$q<\frac{N}{N-1}$$
.

It follows that, for any  $1 \le q < N/(N-1)$ 

 $u_{\varepsilon}$  is bounded in  $W_0^{1,q}(\Omega)$ .



 $L^1$  data

**Existence** 

Uniqueness

By Rellich-Kondrasov Theorem, up to a subsquence (still indexed by  $\varepsilon$ ), there exists a measurable function u, finite a.e. in  $\Omega$ , such that  $\forall 1 < q < \frac{N}{N}$ 

$$\begin{cases} u_{\varepsilon} \to u & \text{a.e. and strongly in } L^{q}(\Omega) \\ u_{\varepsilon} \to u & \text{weakly in } W_{0}^{1,q}(\Omega). \end{cases}$$

We are now in a position to pass to the limit. Let  $\varphi \in C_0^{\infty}(\Omega)$ , using  $\varphi$  as a test function in the approximate problem

$$\lambda \int_{\Omega} u_{\varepsilon} \varphi + \int_{\Omega} A(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla \varphi = \int_{\Omega} f_{\varepsilon} \varphi.$$

Since the matrix field  $A(x, u_{\varepsilon})$  is bounded, with the previous convergences, we can pass to the limit and we obtain that

$$\begin{cases} u \in \bigcap_{q < N/(N-1)} W_0^{1,q}(\Omega), \\ \forall \varphi \in \mathcal{C}_0^{\infty}(\Omega) \end{cases} \lambda \int_{\Omega} u\varphi + \int_{\Omega} A(x,u) \nabla u \cdot \nabla \varphi = \int_{\Omega} f\varphi.$$



 $1^{1}$  data

Existence

Uniqueness

## **Some limitations**

#### We have an existence theorem but

- for general operator with p growth we have restriction on p, since we cannot expect to have  $u_{\varepsilon}$  in a Sobolev space (even with a small exponent) (could be relaxed)
- *u* is not an admissible test function
- no stability result
- uniqueness may fail (see counterexample in Serrin (1964)) even in the linear case
- the matrix A(x, s) should be bounded



Weak solutions

L<sup>1</sup> data

Existence

**Uniqueness** 

### **Convenient frameworks**

During the 90's different notions of solutions have been developed to deal with  $L^1$  data, that is to have existence, stability and uniqueness results:

- Entropy solutions, introduced by Bénilan et al (1995)
- Renormalized solutions, introduced by DiPerna and Lions for first order equations and adapted to elliptic, parabolic equations
- SOLA or Solution Obtained as a Limit of Approximation, introduced by Dall'Aglio (1996)

Moreover the common point is that these three a posteriori definitions are obtained by considering an approximate problem (data approximation, operator approximation) and by passing to the limit.

#### Remark

- For L<sup>1</sup> data, these three notions are (in general) equivalent.
- In the linear (and quasi-linear) case it is also possible to use the notion of "duality" solution introduced by Stampacchia (1965) (see also Murat (1994), Droniou (2000))



 $I^{1}$  data

**Existence** 

Uniqueness

# A convenient framework: renormalized solutions

- First order and Boltzmann equations: DiPerna and Lions (1989)
- Elliptic equations: Murat (1993-1994,  $L^1$  data), Boccardo-Diaz-Giachetti-Murat (1993), Lions-Murat, Dal Maso-Murat-Orsina-Prignet (1999, bounded Radon measure as data), etc.
- Parabolic equations: Blanchard (1994), Blanchard-Murat (1997), Blanchard-Redwane (1998), Carrillo-Wittbold (1999), Porretta (1999), Blanchard-Porretta (2005), Andreu et al (2009), etc.
- with extension to anisotropic equations, to Orlicz-Sobolev spaces, etc.



# The main tool

**Weak solutions** 

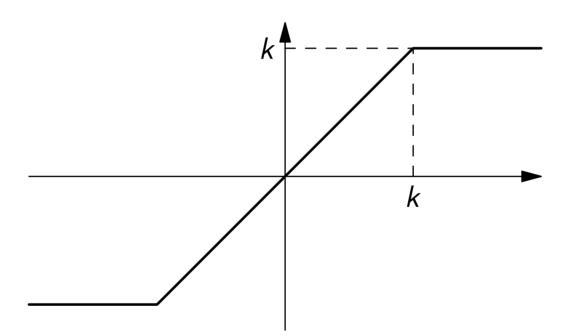
 $L^1$  data

**Existence** 

Uniqueness

The main tool is the truncation function at height  $\pm k$ 

$$T_k(r) = \max(-k, \min(r, k))$$





Weak solutions

/ 1 data

Existence

Uniqueness

# $f \in L^1(\Omega)$ – renormalized solution

#### **Definition 1**

A renormalized solution u of

(6) 
$$\begin{cases} \lambda u - \operatorname{div}(A(x, u)\nabla u)) = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega. \end{cases}$$

is measurable function defined on  $\Omega$ , finite a.e. in  $\Omega$ , such that

(7) 
$$T_K(u) \in H_0^1(\Omega) \quad \forall K \geq 0,$$

 $\forall h \in W^{1,\infty}(\mathbb{R})$  with h having compact support

(8) 
$$\lambda uh(u) - \operatorname{div}(h(u)A(x,u)\nabla u) + h'(u)A(x,u)\nabla u \cdot \nabla u = fh(u)$$

$$\text{(family } (\zeta) \times h(u) \text{)}$$

$$\text{in } \mathcal{D}'(\Omega).$$

(9) 
$$\frac{1}{n} \int_{\{|u| < n\}} A(x, u) \nabla u \cdot \nabla u \longrightarrow 0 \text{ as } n \to +\infty.$$



 $1^{1}$  data

**Existence** 

**Uniqueness** 

#### Remarks

•  $T_K(u) \in H^1_0(\Omega)$  and u finite a.e. allow one to define the gradient in the truncate sense (see Bénilan et al (1995)). There exists a unique vector field, denoted by  $T_{k'}(T_{k}(u)) = T_{k'}(u)$  $\nabla u$ , such that

$$\nabla T_K(u) = \mathbb{1}_{\{|u| < K\}} \nabla u$$
 a.e. in  $\Omega$ .

the equation

$$\lambda uh(u) - \operatorname{div}(h(u)A(x,u)\nabla u) + h'(u)A(x,u)\nabla u \cdot \nabla u = \operatorname{fh}(u)$$

has a sense in  $\mathcal{D}'(\Omega)$ : assuming that supp $(h) \subset [-K, K]$ ,

$$\lambda uh(u) \in L^{\infty}(\Omega);$$

$$h(u)A(x,u)\nabla u = h(u)A(x,T_{K}(u))\nabla T_{K}(u) \in (L^{2}(\Omega))^{N};$$

$$h'(u)A(x,u)\nabla u \cdot \nabla u = h(u)A(x,T_{K}(u))\nabla T_{K}(u) \cdot \nabla T_{K}(u) \in L^{1}(\Omega);$$

$$fh(u) \in L^{1}(\Omega).$$



 $1^{1}$  data

**Existence** 

Uniqueness

#### Remarks

- In (8) we can take any test function belonging to  $H_0^1(\Omega) \cap L^{\infty}(\Omega)$
- The condition (9) namely

$$\frac{1}{n} \int_{\{|u| < n\}} A(x, u) \nabla u \cdot \nabla u \longrightarrow 0 \text{ as } n \to +\infty$$

is in some sense the decay of the truncated energy. Since the equation stands for bounded value of u (whatever the bound is), the decay of the energy is a crucial information on the behavior of u near  $\pm \infty$ . It allows

- to prove stability results
- to use (formally)  $T_k(u)$  as a test function
- to prove uniqueness results.
- Even if the linear case, i.e. A(x,s) = A(x), the formulation (8) is is nonlinear.



 $1^{1}$  data

**Existence** 

Uniqueness

### **Existence of a renormalized solution**

#### **Theorem 2**

Assume that  $\lambda \geq 0$  and  $A(x,s): \Omega \times \mathbb{R} \mapsto \mathbb{R}^{N^2}$  is a Carathéodory function (measurable in x, continuous in s) such that

$$A(x,s)\xi \cdot \xi \geq \alpha |\xi|^2, \qquad -$$

(11) 
$$\exists \forall K > 0, M_K > 0, \quad |A(x,s)| \leq M_K, \quad \forall s \in [-K,K], \text{ a.e. in } \Omega.$$

Then for any  $f \in L^1(\Omega)$  there exists at least a renormalized solution.



 $L^1$  data

**Existence** 

Uniqueness

# Step 1: construction of the approximate problem

Since the matrix A is not supposed to be bounded, for  $\varepsilon > 0$  let us define

$$A_{\varepsilon}(x,s) = A(x,T_{1/\varepsilon}(s))$$

and let  $f_{\varepsilon} \in L^2(\Omega)$  such that

$$f_{\varepsilon} \to f$$
 strongly in  $L^1(\Omega)$ .

We now consider  $u_{\varepsilon} \in H_0^1(\Omega)$  a weak solution of the approximated problem :  $\forall v \in H_0^1(\Omega)$ 

(12) 
$$\lambda \int_{\Omega} u_{\varepsilon} v + \int_{\Omega} A_{\varepsilon}(x, u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla v = \int_{\Omega} f_{\varepsilon} v$$



 $L^1$  data

**Existence** 

Uniqueness

# **Step 2: a priori estimates**

 $T_k(u_{\varepsilon})$  is bounded in  $H_0^1(\Omega)$  uniformly with respect to  $\varepsilon$ 

$$\lim_{M\to+\infty}\limsup_{\varepsilon\to 0}\operatorname{meas}\{|u_\varepsilon|\geq M\}=0$$

Poincoi inequality  $\int_{\mathcal{R}} |\nabla_{k} | |^{2} \leq k M'$  (uniformly/ $\xi$ )  $k^{2} \text{ mes} \left\{ |u_{\xi}| > k \right\} \leq k M'$ Uniform estimate  $\int_{\mathcal{R}} |u_{\xi}| > k \leq \frac{M'}{k}$   $\lim_{k \to +\infty} \lim_{\epsilon \to 0} |u_{\xi}| > k \leq \frac{M'}{k}$ 



Existence

 $1^{1}$  data

Uniqueness

# Step 3: extraction of subsequences

There exists a measurable function u, finite a.e. such that, up to a subsequence

$$u_arepsilon o u$$
 a.e. in  $\Omega$ 

 $\forall k > 0, \quad T_k(u_{\varepsilon}) \rightharpoonup T_k(u) \text{ weakly in } H_0^1(\Omega)$ 

$$k \in \mathbb{N} + T_k |_{\ell_k}$$
 bounded in  $H^1_o(\Omega)$ . Diagonal process, subsequence  $\forall k \in \mathbb{N} + \exists u_k \in H^1_o(\Omega) / T_k |_{\ell_k} \longrightarrow u_k \text{ a.e. in } \mathcal{L}_o(\Omega) / T_k |_{\ell_k} \longrightarrow u_k \text{ strongly in } L^2(\Omega)$ 

$$T_k |_{u_k} \longrightarrow u_k \text{ weakly in } H^1(\Omega)$$