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Finite dimensional simple Lie algebras (structure theory)

g = finite-dimensional simple Lie algebra over C,
h = Cartan subalgebra of g,
U(g) = universal enveloping algebra of g.

g admits a symmetric, non-degenerate and associative bilinear form
(Killing form) given by
(x|y) = trace(adx ◦ ady) for x, y ∈ g.

Root space decomposition: g = h
⊕(
⊕α∈∆ gα

)
is h∗-graded,

Root spaces: gα = {x ∈ g | [h, x] = adh(x) = α(h)x ∀ h ∈ h}
= Cxα, α ∈ ∆,

∆ = {α ∈ h∗ \ {0} | gα 6= (0)} = roots of g with respect to h,

∆ = ∆− t∆+,

Πg = simple roots, Π∨g = simple co-roots.

Triangular decomposition: g = n− ⊕ h⊕ n+, where n± =
⊕

α∈∆± gα.
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Finite-dimensional simple Lie algebras (representations)

Fix any λ ∈ h∗.

M(λ) = Verma module over g of highest weight λ;
M(λ) = U(g)mλ, h.mλ = λ(h)mλ, n+.mλ = (0), h ∈ h.

V (λ) = unique irreducible quotient of M(λ).

Dominant integral weights: P+
g = {λ ∈ h∗ | λ(α∨) ∈ Z>0 ∀ α∨ ∈ Π∨g }.

Theorem

1 V (λ) is finite-dimensional if and only if λ ∈ P+
g .

2 Every finite-dimensional irreducible module over g is isomorphic to V (λ)
for a unique λ ∈ P+

g .

Key observation: V (λ) is finite-dimensional if the following are satisfied.

V (λ) is a weight module with respect to h, i.e. V (λ) = ⊕µ∈h∗V (λ)µ
where V (λ)µ = {v ∈ V (λ) | h.v = µ(h)v ∀ h ∈ h}.
All the root vectors act locally nilpotently on V (λ), i.e. for each

v ∈ V (λ), there exists m(α, v) ∈ N such that x
m(α,v)
α .v = 0 for all α ∈ ∆.

Example: The adjoint representation of g is isomorphic to V (θ), where θ is the
highest root of g.
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Affine Kac-Moody algebras

The Kac-Moody algebras are natural generalizations of finite dimensional
simple Lie algebras. They were introduced independently by Kac and Moody in
the late 1960’s via a finite set of generators and relations.

Unlike the general Kac-Moody algebras, the affine Kac-Moody algebras also
admit an alternative definition which is quite explicit. It is the interplay
between these two definitions that makes the study of these algebras and their
representations tractable. The explicit realization is what we need for this talk,
which I shall now describe.
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Explicit Realization

g = finite-dimensional simple Lie algebra over C.

For the Laurent polynomial algebra C[t, t−1], consider the loop algebra
L(g) = g⊗ C[t, t−1] =

⊕
k∈Z

(
g⊗ Ctk

)
.

[x⊗ tr, y ⊗ ts] = [x, y]⊗ tr+s.

L(g) admits a 1-dimensional central extension g̃ = L(g)⊕ CK.
This extension is, in fact, the universal central extension of L(g).

[x⊗ tr, y ⊗ ts] = [x, y]⊗ tr+s + rδr+s,0(x|y)K,

[K,x⊗ tr] = 0 = [K,K].

We can now form the (untwisted) affine Kac-Moody algebra ĝ
(corresponding to g) by adding the degree derivation d to g̃, that is

ĝ = L(g)⊕ CK ⊕ Cd.
[d, x⊗ tr] = rx⊗ tr, [d,K] = 0 = [d, d].

Then ĝ is a Z-graded Lie algebra with finite-dimensional Z-graded
components.

Z(ĝ) = {x ∈ ĝ | [x, y] = 0 ∀ y ∈ ĝ} = CK.
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(corresponding to g) by adding the degree derivation d to g̃, that is
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Souvik Pal, IISc Bangalore 5 / 16



Explicit Realization

g = finite-dimensional simple Lie algebra over C.

For the Laurent polynomial algebra C[t, t−1], consider the loop algebra
L(g) = g⊗ C[t, t−1] =

⊕
k∈Z

(
g⊗ Ctk

)
.

[x⊗ tr, y ⊗ ts] = [x, y]⊗ tr+s.

L(g) admits a 1-dimensional central extension g̃ = L(g)⊕ CK.
This extension is, in fact, the universal central extension of L(g).

[x⊗ tr, y ⊗ ts] = [x, y]⊗ tr+s + rδr+s,0(x|y)K,

[K,x⊗ tr] = 0 = [K,K].

We can now form the (untwisted) affine Kac-Moody algebra ĝ
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(corresponding to g) by adding the degree derivation d to g̃, that is
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Structure theory of affine Kac–Moody algebras

ĝ = L(g)⊕ CK ⊕ Cd, where L(g) = g⊗ C[t, t−1].

ĥ = h⊕ CK ⊕ Cd is a Cartan subalgebra of ĝ.
Cd = ad-diagonalizable subalgebra of ĝ.

Recall that ∆ = ∆− t∆+ is the set of all roots of g with respect to h,
Πg = {αi}li=1 = simple roots of g, where l = dim h = rank of g;
Π∨g = {α∨i }li=1 = simple co-roots of g.

Root space decomposition: ĝ = ĥ
⊕(
⊕β∈ĥ∗ ĝβ

)
is ĥ∗-graded,

where ĝβ = {x ∈ ĝ | [h, x] = adh(x) = β(h)x ∀ h ∈ ĥ}.
∆̂ = {β ∈ ĥ∗ \ {0} | ĝβ 6= (0)} = roots of ĝ with respect to ĥ.

Define δ ∈ ĥ∗ by setting δ|h⊕CK = 0, δ(d) = 1.

∆̂+ = ∆+ ∪ {α+ nδ |α ∈ ∆, n ∈ N} ∪ {nδ | n ∈ N},
∆̂− = ∆− ∪ {α− nδ |α ∈ ∆, n ∈ N} ∪ {−nδ | n ∈ N}.
Root spaces: ĝα+nδ = gα ⊗ Ctn ∀ α ∈ ∆, n ∈ Z and
ĝnδ = h⊗ Ctn ∀ n ∈ Z \ {0}.
Πĝ = simple roots of ĝ = {αi}li=0, where α0 = δ − θ;
Π∨ĝ = simple co-roots of ĝ = {α∨i }li=0, where α∨0 = K − θ∨.
Triangular decomposition: ĝ = ĝ− ⊕ ĝ0 ⊕ ĝ+, where
ĝ± =

⊕
β∈∆̂±

ĝβ and ĝ0 = ĥ.
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ĥ = h⊕ CK ⊕ Cd is a Cartan subalgebra of ĝ.
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Define δ ∈ ĥ∗ by setting δ|h⊕CK = 0, δ(d) = 1.

∆̂+ = ∆+ ∪ {α+ nδ |α ∈ ∆, n ∈ N} ∪ {nδ | n ∈ N},
∆̂− = ∆− ∪ {α− nδ |α ∈ ∆, n ∈ N} ∪ {−nδ | n ∈ N}.
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Souvik Pal, IISc Bangalore 6 / 16



Structure theory of affine Kac–Moody algebras
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Cd = ad-diagonalizable subalgebra of ĝ.
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)
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Recall that ∆ = ∆− t∆+ is the set of all roots of g with respect to h,
Πg = {αi}li=1 = simple roots of g, where l = dim h = rank of g;
Π∨g = {α∨i }li=1 = simple co-roots of g.

Root space decomposition: ĝ = ĥ
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Define δ ∈ ĥ∗ by setting δ|h⊕CK = 0, δ(d) = 1.

∆̂+ = ∆+ ∪ {α+ nδ |α ∈ ∆, n ∈ N} ∪ {nδ | n ∈ N},
∆̂− = ∆− ∪ {α− nδ |α ∈ ∆, n ∈ N} ∪ {−nδ | n ∈ N}.
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Cd = ad-diagonalizable subalgebra of ĝ.
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⊕(
⊕β∈ĥ∗ ĝβ
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Π∨ĝ = simple co-roots of ĝ = {α∨i }li=0, where α∨0 = K − θ∨.
Triangular decomposition: ĝ = ĝ− ⊕ ĝ0 ⊕ ĝ+, where
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Recall that ∆ = ∆− t∆+ is the set of all roots of g with respect to h,
Πg = {αi}li=1 = simple roots of g, where l = dim h = rank of g;
Π∨g = {α∨i }li=1 = simple co-roots of g.

Root space decomposition: ĝ = ĥ
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∆̂ = {β ∈ ĥ∗ \ {0} | ĝβ 6= (0)} = roots of ĝ with respect to ĥ.
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Πĝ = simple roots of ĝ = {αi}li=0, where α0 = δ − θ;
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ĝ± =

⊕
β∈∆̂±
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Recall that ∆ = ∆− t∆+ is the set of all roots of g with respect to h,
Πg = {αi}li=1 = simple roots of g, where l = dim h = rank of g;
Π∨g = {α∨i }li=1 = simple co-roots of g.

Root space decomposition: ĝ = ĥ
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Define δ ∈ ĥ∗ by setting δ|h⊕CK = 0, δ(d) = 1.

∆̂+ = ∆+ ∪ {α+ nδ |α ∈ ∆, n ∈ N} ∪ {nδ | n ∈ N},
∆̂− = ∆− ∪ {α− nδ |α ∈ ∆, n ∈ N} ∪ {−nδ | n ∈ N}.
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ĥ = h⊕ CK ⊕ Cd is a Cartan subalgebra of ĝ.
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)
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Highest weight modules

U(ĝ) = universal enveloping algebra of ĝ.

Fix any Λ ∈ ĥ∗.

M̂(Λ) = Verma module over ĝ of highest weight Λ;

M̂(Λ) = U(ĝ)mΛ, h.mΛ = Λ(h)mΛ, ĝ+.mΛ = (0), h ∈ ĥ.

V̂ (Λ) = unique irreducible quotient of M̂(Λ).

Dominant integral weights: P̂+
ĝ

= {Λ ∈ ĥ∗ : Λ(α∨) ∈ Z>0 ∀ α∨ ∈ Π∨ĝ }.

Theorem

V̂ (Λ) is an integrable ĝ-module if and only if Λ ∈ P̂+
ĝ

.
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U(ĝ) = universal enveloping algebra of ĝ.
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Integrable modules

Definition

A ĝ-module V is called integrable if

1 V is a weight module with respect to ĥ, i.e. V =
⊕
µ∈ĥ∗

Vµ where

Vµ = {v ∈ V | h.v = µ(h)v ∀ h ∈ ĥ}, ĥ = h⊕ CK ⊕ Cd;

2 For each α ∈ ∆ and r ∈ Z, gα ⊗ Ctr acts locally nilpotently on V.

Weights of a representation: Pĥ(V ) = {µ ∈ ĥ∗ | Vµ 6= (0)}.
Vµ is called the ĥ-weight space corresponding to µ ∈ Pĥ(V ).

Question: Classify irreducible integrable ĝ-modules with
finite-dimensional ĥ-weight spaces.

Examples:
1. Highest weight modules: V̂ (Λ), Λ ∈ P̂+

ĝ
.

2. Lowest weight modules/restricted dual:

V̂ (Λ)∗ =
⊕

µ∈ĥ∗(V̂ (Λ)µ)∗, Λ ∈ P̂+
ĝ

. These modules can be obtained by

twisting V̂ (Λ) by an automorphism of ĝ.
3. Adjoint representation, which is not irreducible.
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⊕
µ∈ĥ∗
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3. Adjoint representation, which is not irreducible.

Souvik Pal, IISc Bangalore 8 / 16



Integrable modules

Definition
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⊕
µ∈ĥ∗
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Some more examples of integrable modules

Question: Can we construct other examples of irreducible integrable
modules of ĝ other than highest weight or lowest weight modules?

Example: For a finite-dimensional irreducible g-module V (λ) (λ ∈ P+
g ),

we can define a ĝ-module structute on V (λ)⊗ C[t, t−1] by setting

x⊗ tr.(v ⊗ ts) = (x.v)⊗ tr+s, K.(v ⊗ ts) = 0,

d.(v ⊗ ts) = s(v ⊗ ts) ∀ x ∈ g, v ∈ V, r, s ∈ Z.

Then V (λ)⊗ C[t, t−1] is an irreducible integrable ĝ-module with

finite-dimensional ĥ-weight spaces, which is neither a highest weight nor a
lowest weight module.

Question (ill-formulated): Does there exist other examples of irreducible

integrable modules with finite-dimensional ĥ-weight spaces over ĝ “like”
V (λ)⊗ C[t, t−1]?

Recall that Z(ĝ) = {x ∈ ĝ | [x, y] = 0 ∀ y ∈ ĝ} = CK.
If V is an irreducible integrable ĝ-module, then there exists c ∈ Z such
that Kv = cv ∀ v ∈ V . Then c is said to be the level of V .

Question (re-formulated): Does there exist other examples of level zero

irreducible integrable ĝ-modules with finite-dimensional ĥ-weight spaces?
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If V is an irreducible integrable ĝ-module, then there exists c ∈ Z such
that Kv = cv ∀ v ∈ V . Then c is said to be the level of V .

Question (re-formulated): Does there exist other examples of level zero
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finite-dimensional ĥ-weight spaces, which is neither a highest weight nor a
lowest weight module.

Question (ill-formulated): Does there exist other examples of irreducible

integrable modules with finite-dimensional ĥ-weight spaces over ĝ “like”
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modules of ĝ other than highest weight or lowest weight modules?

Example: For a finite-dimensional irreducible g-module V (λ) (λ ∈ P+
g ),
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Evaluation modules

For each 1 6 i 6 m, let V (λi, bi) be the irreducible g-module V (λi)
(λi ∈ P+

g , bi ∈ C×) equipped with the following action of L(g).

(x⊗ f(t)).v = f(bi)x.v

In the literature, these modules are referred to as evaluation modules.
V (λi, bi) is an irreducible L(g)-module for each 1 6 i 6 m.

Denote the m-fold tensor product of a family of evaluation modules by

V (λ, b,m) = V (λ1, b1)⊗ . . .⊗ V (λm, bm)

with b = (b1, . . . , bm) ∈ (C×)m and λ = (λ1, . . . , λm) ∈ (P+
g )m.

We can now give an L(g)-module structure on V (λ, b,m) by extending
the evaluation action of L(g) on the whole space, i.e. more precisely,

(x⊗ f(t)).(v1 ⊗ . . .⊗ vm) =

m∑
i=1

f(bi)(v1 ⊗ · · · ⊗ x.vi ⊗ . . .⊗ vm).

Remark: V (λ, b,m) is irreducible ⇐⇒ all the bi’s are distinct non-zero
complex numbers.
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Integrable loop modules

For any γ ∈ C, m ∈ N, b = (b1, . . . , bm) ∈ (C×)m (bi 6= bj ∀ i 6= j) and
λ = (λ1, . . . , λm) ∈ (P+

g )m, let ĝ act on V (λ, b,m)γ ⊗ C[t, t−1] via

x⊗ tr.(v1 ⊗ . . .⊗ vm ⊗ ts) =

m∑
i=1

bri v1 ⊗ . . .⊗ (x.vi)⊗ . . . vm ⊗ tr+s,

K.(v1 ⊗ . . .⊗ vm ⊗ ts) = 0,

d.(v1 ⊗ . . .⊗ vm ⊗ ts) = (γ + s)(v1 ⊗ . . .⊗ vm ⊗ ts).

V (λ, b,m)γ ⊗ C[t, t−1] is a level zero integrable module with

finite-dimensional ĥ-weight spaces. These modules were introduced by
Chari–Pressley and are known as integrable loop modules.

V (λ, b,m)γ ⊗ C[t, t−1] need not be irreducible, but can be always
decomposed as a direct sum of finitely many irreducible ĝ-modules.
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Classification of irreducible integrable modules

Theorem (Chari, Invent. Math., 1986 and Chari–Pressley, Math. Ann., 1986)

Let V be an irreducible integrable ĝ-module with finite-dimensional ĥ-weight
spaces. Then:

1 V has positive level =⇒ V ∼= V̂ (Λ), Λ ∈ P̂+
ĝ
\ Cδ.

2 V has negative level =⇒ V ∼= V̂ (Λ)∗, Λ ∈ P̂+
ĝ
\ Cδ.

3 V has zero level =⇒ V is isomorphic to an irreducible summand of an
integrable loop module.

Observation: All the above modules have finite-dimensional Z-graded
components, i.e. they have finite-dimensional weight spaces with respect to Cd.
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Quasi-finite modules

Definition

A ĝ-module V is said to be quasi-finite if

1 V is a weight module with respect to Cd, i.e. V =
⊕

n∈Z Vn, where
Vn = {v ∈ V | d.v = nv};

2 dim Vn <∞ ∀ n ∈ Z.

Question: Does there exist quasi-finite modules which are not integrable?

Example: Recall that ĥ = h⊕ CK ⊕ Cd and Π∨ĝ = {α∨i }li=0 is the set of
all simple co-roots of ĝ, where l = dim h and α∨0 = K − θ∨.
Define Λ ∈ ĥ∗ by setting Λ(α∨i ) = i ∀ 1 6 i 6 l and Λ(K) = λ(d) = 0

and consider the irreducible highest weight module V̂ (Λ).

Then Λ(α∨0 ) < 0 and thus V̂ (Λ) is not integrable, but it can be shown

that V̂ (Λ) is quasi-finite.

Problem

Classify irreducible quasi-finite modules over ĝ.
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⊕

n∈Z Vn, where
Vn = {v ∈ V | d.v = nv};

2 dim Vn <∞ ∀ n ∈ Z.
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Weakly integrable modules

The following definition is inspired from the work of Kac–Wakimoto where they
introduced the so-called “weakly integrable modules” in the context of affine
Lie superalgebras.

Definition

A ĝ-module is said to be weakly integrable if

1 V is a weight module with respect to ĥ, i.e. V =
⊕
µ∈ĥ∗

Vµ where

Vµ = {v ∈ V | h.v = µ(h)v ∀ h ∈ ĥ}, ĥ = h⊕ CK ⊕ Cd;

2 For each α ∈ ∆, gα acts locally nilpotently on V, i.e. V is g-integrable.

Lemma

Let V be a ĝ-module. Then V is weakly integrable with finite-dimensional
ĥ-weight spaces if and only if V is quasi-finite.
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Classification of irreducible weakly integrable modules

Theorem (P.)

Let V be an irreducible weakly integrable ĝ-module with finite-dimensional
ĥ-weight spaces. Then V is isomorphic to one of the following.

1 An irreducible summand of an integrable loop module;

2 A highest weight module V̂ (Λ), Λ|h ∈ P+
g ;

3 A lowest weight module V̂ (Λ)∗, Λ|h ∈ P+
g .

Conversely, all the above mentioned irreducible modules are weakly integrable.
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