Weakly integrable modules over affine Kac-Moody algebras

Algebraic and Combinatorial Methods in Representation Theory
(in honour of Vyjayanthi Chari's 65th birthday)
ICTS Bangalore

Souvik Pal

IISc Bangalore

16th November, 2023

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}, $\mathfrak{h}=$ Cartan subalgebra of \mathfrak{g}, $U(\mathfrak{g})=$ universal enveloping algebra of \mathfrak{g}.
- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}, $\mathfrak{h}=$ Cartan subalgebra of \mathfrak{g}, $U(\mathfrak{g})=$ universal enveloping algebra of \mathfrak{g}.
- \mathfrak{g} admits a symmetric, non-degenerate and associative bilinear form (Killing form) given by $(x \mid y)=\operatorname{trace}(\operatorname{ad} x \circ \operatorname{ad} y)$ for $x, y \in \mathfrak{g}$.

Finite dimensional simple Lie algebras (structure theory)

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}, $\mathfrak{h}=$ Cartan subalgebra of \mathfrak{g}, $U(\mathfrak{g})=$ universal enveloping algebra of \mathfrak{g}.
- \mathfrak{g} admits a symmetric, non-degenerate and associative bilinear form (Killing form) given by
$(x \mid y)=\operatorname{trace}(\operatorname{ad} x \circ \operatorname{ad} y)$ for $x, y \in \mathfrak{g}$.
- Root space decomposition: $\mathfrak{g}=\mathfrak{h} \bigoplus\left(\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)$ is \mathfrak{h}^{*}-graded,

Finite dimensional simple Lie algebras (structure theory)

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C},
$\mathfrak{h}=$ Cartan subalgebra of \mathfrak{g},
$U(\mathfrak{g})=$ universal enveloping algebra of \mathfrak{g}.
- \mathfrak{g} admits a symmetric, non-degenerate and associative bilinear form (Killing form) given by
$(x \mid y)=\operatorname{trace}(\operatorname{ad} x \circ \operatorname{ad} y)$ for $x, y \in \mathfrak{g}$.
- Root space decomposition: $\mathfrak{g}=\mathfrak{h} \bigoplus\left(\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)$ is \mathfrak{h}^{*}-graded, Root spaces: $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[h, x]=\operatorname{ad} h(x)=\alpha(h) x \forall h \in \mathfrak{h}\}$

$$
=\mathbb{C} x_{\alpha}, \alpha \in \Delta
$$

$\Delta=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq(0)\right\}=$ roots of \mathfrak{g} with respect to \mathfrak{h},

Finite dimensional simple Lie algebras (structure theory)

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C},
$\mathfrak{h}=$ Cartan subalgebra of \mathfrak{g},
$U(\mathfrak{g})=$ universal enveloping algebra of \mathfrak{g}.
- \mathfrak{g} admits a symmetric, non-degenerate and associative bilinear form (Killing form) given by
$(x \mid y)=\operatorname{trace}(\operatorname{ad} x \circ \operatorname{ad} y)$ for $x, y \in \mathfrak{g}$.
- Root space decomposition: $\mathfrak{g}=\mathfrak{h} \bigoplus\left(\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)$ is \mathfrak{h}^{*}-graded, Root spaces: $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[h, x]=\operatorname{ad} h(x)=\alpha(h) x \forall h \in \mathfrak{h}\}$

$$
=\mathbb{C} x_{\alpha}, \alpha \in \Delta
$$

$\Delta=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq(0)\right\}=$ roots of \mathfrak{g} with respect to \mathfrak{h}, $\Delta=\Delta^{-} \sqcup \Delta^{+}$,
$\Pi_{\mathfrak{g}}=$ simple roots, $\Pi_{\mathfrak{g}}^{\vee}=$ simple co-roots.

Finite dimensional simple Lie algebras (structure theory)

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C},
$\mathfrak{h}=$ Cartan subalgebra of \mathfrak{g},
$U(\mathfrak{g})=$ universal enveloping algebra of \mathfrak{g}.
- \mathfrak{g} admits a symmetric, non-degenerate and associative bilinear form (Killing form) given by
$(x \mid y)=\operatorname{trace}(\operatorname{ad} x \circ \operatorname{ad} y)$ for $x, y \in \mathfrak{g}$.
- Root space decomposition: $\mathfrak{g}=\mathfrak{h} \bigoplus\left(\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)$ is \mathfrak{h}^{*}-graded, Root spaces: $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[h, x]=\operatorname{ad} h(x)=\alpha(h) x \forall h \in \mathfrak{h}\}$

$$
=\mathbb{C} x_{\alpha}, \alpha \in \Delta
$$

$\Delta=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq(0)\right\}=$ roots of \mathfrak{g} with respect to \mathfrak{h}, $\Delta=\Delta^{-} \sqcup \Delta^{+}$,
$\Pi_{\mathfrak{g}}=$ simple roots, $\Pi_{\mathfrak{g}}^{\vee}=$ simple co-roots.

- Triangular decomposition: $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$, where $\mathfrak{n}_{ \pm}=\bigoplus_{\alpha \in \Delta^{ \pm}} \mathfrak{g}_{\alpha}$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

(1) $V(\lambda)$ is finite-dimensional if and only if $\lambda \in P_{\mathfrak{g}}^{+}$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ;
$M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

(1) $V(\lambda)$ is finite-dimensional if and only if $\lambda \in P_{\mathfrak{g}}^{+}$.
(2) Every finite-dimensional irreducible module over \mathfrak{g} is isomorphic to $V(\lambda)$ for a unique $\lambda \in P_{\mathfrak{g}}^{+}$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

(1) $V(\lambda)$ is finite-dimensional if and only if $\lambda \in P_{\mathfrak{g}}^{+}$.
(2) Every finite-dimensional irreducible module over \mathfrak{g} is isomorphic to $V(\lambda)$ for a unique $\lambda \in P_{\mathfrak{g}}^{+}$.

Key observation: $V(\lambda)$ is finite-dimensional if the following are satisfied.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

(1) $V(\lambda)$ is finite-dimensional if and only if $\lambda \in P_{\mathfrak{g}}^{+}$.
(2) Every finite-dimensional irreducible module over \mathfrak{g} is isomorphic to $V(\lambda)$ for a unique $\lambda \in P_{\mathfrak{g}}^{+}$.

Key observation: $V(\lambda)$ is finite-dimensional if the following are satisfied.

- $V(\lambda)$ is a weight module with respect to \mathfrak{h}, i.e. $V(\lambda)=\oplus_{\mu \in \mathfrak{h}} * V(\lambda)_{\mu}$ where $V(\lambda)_{\mu}=\{v \in V(\lambda) \mid h . v=\mu(h) v \forall h \in \mathfrak{h}\}$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

(1) $V(\lambda)$ is finite-dimensional if and only if $\lambda \in P_{\mathfrak{g}}^{+}$.
(2) Every finite-dimensional irreducible module over \mathfrak{g} is isomorphic to $V(\lambda)$ for a unique $\lambda \in P_{\mathfrak{g}}^{+}$.

Key observation: $V(\lambda)$ is finite-dimensional if the following are satisfied.

- $V(\lambda)$ is a weight module with respect to \mathfrak{h}, i.e. $V(\lambda)=\oplus_{\mu \in \mathfrak{h}} * V(\lambda)_{\mu}$ where $V(\lambda)_{\mu}=\{v \in V(\lambda) \mid h . v=\mu(h) v \forall h \in \mathfrak{h}\}$.
- All the root vectors act locally nilpotently on $V(\lambda)$, i.e. for each $v \in V(\lambda)$, there exists $m(\alpha, v) \in \mathbb{N}$ such that $x_{\alpha}^{m(\alpha, v)} . v=0$ for all $\alpha \in \Delta$.

Finite-dimensional simple Lie algebras (representations)

- Fix any $\lambda \in \mathfrak{h}^{*}$.
- $M(\lambda)=$ Verma module over \mathfrak{g} of highest weight λ; $M(\lambda)=U(\mathfrak{g}) m_{\lambda}, \quad h . m_{\lambda}=\lambda(h) m_{\lambda}, \quad \mathfrak{n}_{+} . m_{\lambda}=(0), \quad h \in \mathfrak{h}$.
- $V(\lambda)=$ unique irreducible quotient of $M(\lambda)$.
- Dominant integral weights: $P_{\mathfrak{g}}^{+}=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

(1) $V(\lambda)$ is finite-dimensional if and only if $\lambda \in P_{\mathfrak{g}}^{+}$.
(2) Every finite-dimensional irreducible module over \mathfrak{g} is isomorphic to $V(\lambda)$ for a unique $\lambda \in P_{\mathfrak{g}}^{+}$.

Key observation: $V(\lambda)$ is finite-dimensional if the following are satisfied.

- $V(\lambda)$ is a weight module with respect to \mathfrak{h}, i.e. $V(\lambda)=\oplus_{\mu \in \mathfrak{h}} * V(\lambda)_{\mu}$ where $V(\lambda)_{\mu}=\{v \in V(\lambda) \mid h . v=\mu(h) v \forall h \in \mathfrak{h}\}$.
- All the root vectors act locally nilpotently on $V(\lambda)$, i.e. for each $v \in V(\lambda)$, there exists $m(\alpha, v) \in \mathbb{N}$ such that $x_{\alpha}^{m(\alpha, v)} . v=0$ for all $\alpha \in \Delta$.

Example: The adjoint representation of \mathfrak{g} is isomorphic to $V(\theta)$, where θ is the highest root of \mathfrak{g}.

Affine Kac-Moody algebras

The Kac-Moody algebras are natural generalizations of finite dimensional simple Lie algebras. They were introduced independently by Kac and Moody in the late 1960's via a finite set of generators and relations.

Affine Kac-Moody algebras

The Kac-Moody algebras are natural generalizations of finite dimensional simple Lie algebras. They were introduced independently by Kac and Moody in the late 1960's via a finite set of generators and relations.

Unlike the general Kac-Moody algebras, the affine Kac-Moody algebras also admit an alternative definition which is quite explicit. It is the interplay between these two definitions that makes the study of these algebras and their representations tractable. The explicit realization is what we need for this talk, which I shall now describe.

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

- $L(\mathfrak{g})$ admits a 1-dimensional central extension $\widetilde{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K$. This extension is, in fact, the universal central extension of $L(\mathfrak{g})$.

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

- $L(\mathfrak{g})$ admits a 1-dimensional central extension $\widetilde{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K$. This extension is, in fact, the universal central extension of $L(\mathfrak{g})$.

$$
\begin{array}{r}
{\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}+r \delta_{r+s, 0}(x \mid y) K} \\
{\left[K, x \otimes t^{r}\right]=0=[K, K] .}
\end{array}
$$

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

- $L(\mathfrak{g})$ admits a 1-dimensional central extension $\widetilde{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K$. This extension is, in fact, the universal central extension of $L(\mathfrak{g})$.

$$
\begin{array}{r}
{\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}+r \delta_{r+s, 0}(x \mid y) K} \\
{\left[K, x \otimes t^{r}\right]=0=[K, K]}
\end{array}
$$

- We can now form the (untwisted) affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ (corresponding to \mathfrak{g}) by adding the degree derivation d to \mathfrak{g}, that is

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

- $L(\mathfrak{g})$ admits a 1-dimensional central extension $\widetilde{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K$. This extension is, in fact, the universal central extension of $L(\mathfrak{g})$.

$$
\begin{array}{r}
{\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}+r \delta_{r+s, 0}(x \mid y) K} \\
{\left[K, x \otimes t^{r}\right]=0=[K, K]}
\end{array}
$$

- We can now form the (untwisted) affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ (corresponding to \mathfrak{g}) by adding the degree derivation d to \mathfrak{g}, that is

$$
\begin{array}{r}
\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d . \\
{\left[d, x \otimes t^{r}\right]=r x \otimes t^{r}, \quad[d, K]=0=[d, d] .}
\end{array}
$$

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

- $L(\mathfrak{g})$ admits a 1-dimensional central extension $\widetilde{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K$. This extension is, in fact, the universal central extension of $L(\mathfrak{g})$.

$$
\begin{array}{r}
{\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}+r \delta_{r+s, 0}(x \mid y) K} \\
{\left[K, x \otimes t^{r}\right]=0=[K, K]}
\end{array}
$$

- We can now form the (untwisted) affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ (corresponding to \mathfrak{g}) by adding the degree derivation d to \mathfrak{g}, that is

$$
\begin{array}{r}
\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d . \\
{\left[d, x \otimes t^{r}\right]=r x \otimes t^{r}, \quad[d, K]=0=[d, d] .}
\end{array}
$$

Then $\widehat{\mathfrak{g}}$ is a \mathbb{Z}-graded Lie algebra with finite-dimensional \mathbb{Z}-graded components.

Explicit Realization

- $\mathfrak{g}=$ finite-dimensional simple Lie algebra over \mathbb{C}.
- For the Laurent polynomial algebra $\mathbb{C}\left[t, t^{-1}\right]$, consider the loop algebra $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]=\bigoplus_{k \in \mathbb{Z}}\left(\mathfrak{g} \otimes \mathbb{C} t^{k}\right)$.

$$
\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}
$$

- $L(\mathfrak{g})$ admits a 1-dimensional central extension $\widetilde{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K$. This extension is, in fact, the universal central extension of $L(\mathfrak{g})$.

$$
\begin{array}{r}
{\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}+r \delta_{r+s, 0}(x \mid y) K} \\
{\left[K, x \otimes t^{r}\right]=0=[K, K]}
\end{array}
$$

- We can now form the (untwisted) affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ (corresponding to \mathfrak{g}) by adding the degree derivation d to \mathfrak{g}, that is

$$
\begin{array}{r}
\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d . \\
{\left[d, x \otimes t^{r}\right]=r x \otimes t^{r}, \quad[d, K]=0=[d, d] .}
\end{array}
$$

Then $\widehat{\mathfrak{g}}$ is a \mathbb{Z}-graded Lie algebra with finite-dimensional \mathbb{Z}-graded components.

- $Z(\widehat{\mathfrak{g}})=\{x \in \widehat{\mathfrak{g}} \mid[x, y]=0 \forall y \in \widehat{\mathfrak{g}}\}=\mathbb{C} K$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h},

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of $\mathfrak{g} ;$ $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{ad} h(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{ad} h(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of $\mathfrak{g} ;$ $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{ad} h(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of $\mathfrak{g} ;$ $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{ad} h(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$. $\widehat{\Delta}_{+}=\Delta^{+} \cup\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{n \delta \mid n \in \mathbb{N}\}$, $\widehat{\Delta}_{-}=\Delta^{-} \cup\{\alpha-n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{-n \delta \mid n \in \mathbb{N}\}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{ad} h(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$.
$\widehat{\Delta}_{+}=\Delta^{+} \cup\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{n \delta \mid n \in \mathbb{N}\}$, $\widehat{\Delta}_{-}=\Delta^{-} \cup\{\alpha-n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{-n \delta \mid n \in \mathbb{N}\}$. Root spaces: $\widehat{\mathfrak{g}}_{\alpha+n \delta}=\mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{n} \forall \alpha \in \Delta, n \in \mathbb{Z}$ and

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{adh}(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$.
$\widehat{\Delta}_{+}=\Delta^{+} \cup\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{n \delta \mid n \in \mathbb{N}\}$,
$\widehat{\Delta}_{-}=\Delta^{-} \cup\{\alpha-n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{-n \delta \mid n \in \mathbb{N}\}$.
Root spaces: $\widehat{\mathfrak{g}}_{\alpha+n \delta}=\mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{n} \forall \alpha \in \Delta, n \in \mathbb{Z}$ and $\widehat{\mathfrak{g}}_{n \delta}=\mathfrak{h} \otimes \mathbb{C} t^{n} \forall n \in \mathbb{Z} \backslash\{0\}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{adh}(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$.
$\widehat{\Delta}_{+}=\Delta^{+} \cup\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{n \delta \mid n \in \mathbb{N}\}$,
$\widehat{\Delta}_{-}=\Delta^{-} \cup\{\alpha-n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{-n \delta \mid n \in \mathbb{N}\}$.
Root spaces: $\widehat{\mathfrak{g}}_{\alpha+n \delta}=\mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{n} \forall \alpha \in \Delta, n \in \mathbb{Z}$ and $\widehat{\mathfrak{g}}_{n \delta}=\mathfrak{h} \otimes \mathbb{C} t^{n} \forall n \in \mathbb{Z} \backslash\{0\}$.
- $\Pi_{\widehat{\mathfrak{g}}}=$ simple roots of $\widehat{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=0}^{l}$, where $\alpha_{0}=\delta-\theta$;

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{adh}(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$.
$\widehat{\Delta}_{+}=\Delta^{+} \cup\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{n \delta \mid n \in \mathbb{N}\}$,
$\widehat{\Delta}_{-}=\Delta^{-} \cup\{\alpha-n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{-n \delta \mid n \in \mathbb{N}\}$.
Root spaces: $\widehat{\mathfrak{g}}_{\alpha+n \delta}=\mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{n} \forall \alpha \in \Delta, n \in \mathbb{Z}$ and $\widehat{\mathfrak{g}}_{n \delta}=\mathfrak{h} \otimes \mathbb{C} t^{n} \forall n \in \mathbb{Z} \backslash\{0\}$.
- $\Pi_{\widehat{\mathfrak{g}}}=$ simple roots of $\widehat{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=0}^{l}$, where $\alpha_{0}=\delta-\theta$; $\Pi_{\mathfrak{g}}^{\vee}=$ simple co-roots of $\widehat{\mathfrak{g}}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$, where $\alpha_{0}^{\vee}=K-\theta^{\vee}$.

Structure theory of affine Kac-Moody algebras

- $\widehat{\mathfrak{g}}=L(\mathfrak{g}) \oplus \mathbb{C} K \oplus \mathbb{C} d$, where $L(\mathfrak{g})=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$. $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ is a Cartan subalgebra of $\widehat{\mathfrak{g}}$. $\mathbb{C} d=$ ad-diagonalizable subalgebra of $\widehat{\mathfrak{g}}$.
- Recall that $\Delta=\Delta^{-} \sqcup \Delta^{+}$is the set of all roots of \mathfrak{g} with respect to \mathfrak{h}, $\Pi_{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=1}^{l}=$ simple roots of \mathfrak{g}, where $l=\operatorname{dim} \mathfrak{h}=$ rank of \mathfrak{g}; $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=1}^{l}=$ simple co-roots of \mathfrak{g}.
- Root space decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{h}} \bigoplus\left(\oplus_{\beta \in \widehat{\mathfrak{h}}^{*}} \widehat{\mathfrak{g}}_{\beta}\right)$ is $\widehat{\mathfrak{h}}^{*}$-graded, where $\widehat{\mathfrak{g}}_{\beta}=\{x \in \widehat{\mathfrak{g}} \mid[h, x]=\operatorname{adh}(x)=\beta(h) x \forall h \in \widehat{\mathfrak{h}}\}$. $\widehat{\Delta}=\left\{\beta \in \widehat{\mathfrak{h}}^{*} \backslash\{0\} \mid \widehat{\mathfrak{g}}_{\beta} \neq(0)\right\}=$ roots of $\widehat{\mathfrak{g}}$ with respect to $\widehat{\mathfrak{h}}$.
- Define $\delta \in \widehat{\mathfrak{h}}^{*}$ by setting $\left.\delta\right|_{\mathfrak{h} \oplus \mathbb{C} K}=0, \delta(d)=1$.
$\widehat{\Delta}_{+}=\Delta^{+} \cup\{\alpha+n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{n \delta \mid n \in \mathbb{N}\}$,
$\widehat{\Delta}_{-}=\Delta^{-} \cup\{\alpha-n \delta \mid \alpha \in \Delta, n \in \mathbb{N}\} \cup\{-n \delta \mid n \in \mathbb{N}\}$.
Root spaces: $\widehat{\mathfrak{g}}_{\alpha+n \delta}=\mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{n} \forall \alpha \in \Delta, n \in \mathbb{Z}$ and $\widehat{\mathfrak{g}}_{n \delta}=\mathfrak{h} \otimes \mathbb{C} t^{n} \forall n \in \mathbb{Z} \backslash\{0\}$.
- $\Pi_{\widehat{\mathfrak{g}}}=$ simple roots of $\widehat{\mathfrak{g}}=\left\{\alpha_{i}\right\}_{i=0}^{l}$, where $\alpha_{0}=\delta-\theta$; $\Pi_{\mathfrak{g}}^{\vee}=$ simple co-roots of $\widehat{\mathfrak{g}}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$, where $\alpha_{0}^{\vee}=K-\theta^{\vee}$.
- Triangular decomposition: $\widehat{\mathfrak{g}}=\widehat{\mathfrak{g}}_{-} \oplus \widehat{\mathfrak{g}}_{0} \oplus \widehat{\mathfrak{g}}_{+}$, where $\widehat{\mathfrak{g}}_{ \pm}=\bigoplus_{\beta \in \widehat{\Delta}_{ \pm}} \widehat{\mathfrak{g}}_{\beta}$ and $\widehat{\mathfrak{g}}_{0}=\widehat{\mathfrak{h}}$.

Highest weight modules

- $U(\widehat{\mathfrak{g}})=$ universal enveloping algebra of $\widehat{\mathfrak{g}}$.

Highest weight modules

- $U(\widehat{\mathfrak{g}})=$ universal enveloping algebra of $\widehat{\mathfrak{g}}$.
- Fix any $\Lambda \in \widehat{\mathfrak{h}}^{*}$.

Highest weight modules

- $U(\widehat{\mathfrak{g}})=$ universal enveloping algebra of $\widehat{\mathfrak{g}}$.
- Fix any $\Lambda \in \widehat{\mathfrak{h}}^{*}$.
- $\widehat{M}(\Lambda)=$ Verma module over $\widehat{\mathfrak{g}}$ of highest weight Λ;

$$
\widehat{M}(\Lambda)=U(\widehat{\mathfrak{g}}) m_{\Lambda}, \quad h . m_{\Lambda}=\Lambda(h) m_{\Lambda}, \quad \widehat{\mathfrak{g}}_{+} \cdot m_{\Lambda}=(0), \quad h \in \widehat{\mathfrak{h}} .
$$

Highest weight modules

- $U(\widehat{\mathfrak{g}})=$ universal enveloping algebra of $\widehat{\mathfrak{g}}$.
- Fix any $\Lambda \in \widehat{\mathfrak{h}}^{*}$.
- $\widehat{M}(\Lambda)=$ Verma module over $\widehat{\mathfrak{g}}$ of highest weight Λ;

$$
\widehat{M}(\Lambda)=U(\widehat{\mathfrak{g}}) m_{\Lambda}, \quad h . m_{\Lambda}=\Lambda(h) m_{\Lambda}, \quad \widehat{\mathfrak{g}}_{+} \cdot m_{\Lambda}=(0), \quad h \in \widehat{\mathfrak{h}} .
$$

- $\widehat{V}(\Lambda)=$ unique irreducible quotient of $\widehat{M}(\Lambda)$.

Highest weight modules

- $U(\widehat{\mathfrak{g}})=$ universal enveloping algebra of $\widehat{\mathfrak{g}}$.
- Fix any $\Lambda \in \widehat{\mathfrak{h}}^{*}$.
- $\widehat{M}(\Lambda)=$ Verma module over $\widehat{\mathfrak{g}}$ of highest weight Λ;

$$
\widehat{M}(\Lambda)=U(\widehat{\mathfrak{g}}) m_{\Lambda}, \quad h \cdot m_{\Lambda}=\Lambda(h) m_{\Lambda}, \quad \widehat{\mathfrak{g}}_{+} \cdot m_{\Lambda}=(0), \quad h \in \widehat{\mathfrak{h}} .
$$

- $\widehat{V}(\Lambda)=$ unique irreducible quotient of $\widehat{M}(\Lambda)$.
- Dominant integral weights: $\widehat{P}_{\widehat{\mathfrak{g}}}^{+}=\left\{\Lambda \in \widehat{\mathfrak{h}}^{*}: \Lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Highest weight modules

- $U(\widehat{\mathfrak{g}})=$ universal enveloping algebra of $\widehat{\mathfrak{g}}$.
- Fix any $\Lambda \in \widehat{\mathfrak{h}}^{*}$.
- $\widehat{M}(\Lambda)=$ Verma module over $\widehat{\mathfrak{g}}$ of highest weight Λ;

$$
\widehat{M}(\Lambda)=U(\widehat{\mathfrak{g}}) m_{\Lambda}, \quad h . m_{\Lambda}=\Lambda(h) m_{\Lambda}, \quad \widehat{\mathfrak{g}}_{+} \cdot m_{\Lambda}=(0), \quad h \in \widehat{\mathfrak{h}}
$$

- $\widehat{V}(\Lambda)=$ unique irreducible quotient of $\widehat{M}(\Lambda)$.
- Dominant integral weights: $\widehat{P}_{\widehat{\mathfrak{g}}}^{+}=\left\{\Lambda \in \widehat{\mathfrak{h}}^{*}: \Lambda\left(\alpha^{\vee}\right) \in \mathbb{Z}_{\geqslant 0} \forall \alpha^{\vee} \in \Pi_{\mathfrak{g}}^{\vee}\right\}$.

Theorem

$\widehat{V}(\Lambda)$ is an integrable $\widehat{\mathfrak{g}}$-module if and only if $\Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$.

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$

$$
V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;
$$

(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$.
V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$.
V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.
- Question: Classify irreducible integrable $\widehat{\mathfrak{g}}$-modules

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$. V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.
- Question: Classify irreducible integrable $\widehat{\mathfrak{g}}$-modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces.

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$.
V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.
- Question: Classify irreducible integrable $\widehat{\mathfrak{g}}$-modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces.

Examples:

1. Highest weight modules: $\widehat{V}(\Lambda), \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$.

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$.
V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.
- Question: Classify irreducible integrable $\widehat{\mathfrak{g}}$-modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces.

Examples:

1. Highest weight modules: $\widehat{V}(\Lambda), \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$.
2. Lowest weight modules/restricted dual:
$\widehat{V}(\Lambda)^{*}=\bigoplus_{\mu \in \widehat{\mathfrak{h}}^{*}}\left(\widehat{V}(\Lambda)_{\mu}\right)^{*}, \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$. These modules can be obtained by twisting $\widehat{V}(\Lambda)$ by an automorphism of $\widehat{\mathfrak{g}}$.

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$.
V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.
- Question: Classify irreducible integrable $\widehat{\mathfrak{g}}$-modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces.

Examples:

1. Highest weight modules: $\widehat{V}(\Lambda), \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$.
2. Lowest weight modules/restricted dual:
$\widehat{V}(\Lambda)^{*}=\bigoplus_{\mu \in \widehat{\mathfrak{h}}^{*}}\left(\widehat{V}(\Lambda)_{\mu}\right)^{*}, \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$. These modules can be obtained by twisting $\widehat{V}(\Lambda)$ by an automorphism of $\widehat{\mathfrak{g}}$.
3. Adjoint representation,

Integrable modules

Definition

A $\widehat{\mathfrak{g}}$-module V is called integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus V_{\mu}$ where $\mu \in \widehat{\mathfrak{h}}^{*}$
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$
(2) For each $\alpha \in \Delta$ and $r \in \mathbb{Z}, \mathfrak{g}_{\alpha} \otimes \mathbb{C} t^{r}$ acts locally nilpotently on V.

- Weights of a representation: $P_{\widehat{\mathfrak{h}}}(V)=\left\{\mu \in \widehat{\mathfrak{h}}^{*} \mid V_{\mu} \neq(0)\right\}$.
V_{μ} is called the $\widehat{\mathfrak{h}}$-weight space corresponding to $\mu \in P_{\widehat{\mathfrak{h}}}(V)$.
- Question: Classify irreducible integrable $\widehat{\mathfrak{g}}$-modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces.

Examples:

1. Highest weight modules: $\widehat{V}(\Lambda), \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$.
2. Lowest weight modules/restricted dual:
$\widehat{V}(\Lambda)^{*}=\bigoplus_{\mu \in \widehat{\mathfrak{h}}^{*}}\left(\widehat{V}(\Lambda)_{\mu}\right)^{*}, \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+}$. These modules can be obtained by twisting $\widehat{V}(\Lambda)$ by an automorphism of $\widehat{\mathfrak{g}}$.
3. Adjoint representation, which is not irreducible.

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{array}{rlrl}
x \otimes t^{r} \cdot\left(v \otimes t^{s}\right) & =(x . v) \otimes t^{r+s}, & & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{array}
$$

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{array}{rlrl}
x \otimes t^{r} \cdot\left(v \otimes t^{s}\right) & =(x . v) \otimes t^{r+s}, & & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{array}
$$

Then $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ is an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces,

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{aligned}
x \otimes t^{r} .\left(v \otimes t^{s}\right) & =(x . v) \otimes t^{r+s}, & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{aligned}
$$

Then $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ is an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces, which is neither a highest weight nor a lowest weight module.

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{array}{rlrl}
x \otimes t^{r} \cdot\left(v \otimes t^{s}\right) & =(x \cdot v) \otimes t^{r+s}, & & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{array}
$$

Then $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ is an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces, which is neither a highest weight nor a lowest weight module.

- Question (ill-formulated): Does there exist other examples of irreducible integrable modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces over $\widehat{\mathfrak{g}}$ "like" $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right] ?$

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{array}{rlrl}
x \otimes t^{r} .\left(v \otimes t^{s}\right) & =(x . v) \otimes t^{r+s}, & & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{array}
$$

Then $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ is an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces, which is neither a highest weight nor a lowest weight module.

- Question (ill-formulated): Does there exist other examples of irreducible integrable modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces over $\widehat{\mathfrak{g}}$ "like" $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$?
- Recall that $Z(\widehat{\mathfrak{g}})=\{x \in \widehat{\mathfrak{g}} \mid[x, y]=0 \forall y \in \widehat{\mathfrak{g}}\}=\mathbb{C} K$.

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{array}{rlrl}
x \otimes t^{r} .\left(v \otimes t^{s}\right) & =(x . v) \otimes t^{r+s}, & & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{array}
$$

Then $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ is an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces, which is neither a highest weight nor a lowest weight module.

- Question (ill-formulated): Does there exist other examples of irreducible integrable modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces over $\widehat{\mathfrak{g}}$ "like" $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$?
- Recall that $Z(\widehat{\mathfrak{g}})=\{x \in \widehat{\mathfrak{g}} \mid[x, y]=0 \forall y \in \widehat{\mathfrak{g}}\}=\mathbb{C} K$.

If V is an irreducible integrable $\widehat{\mathfrak{g}}$-module, then there exists $c \in \mathbb{Z}$ such that $K v=c v \forall v \in V$. Then c is said to be the level of V.

Some more examples of integrable modules

- Question: Can we construct other examples of irreducible integrable modules of $\widehat{\mathfrak{g}}$ other than highest weight or lowest weight modules?
Example: For a finite-dimensional irreducible \mathfrak{g}-module $V(\lambda)\left(\lambda \in P_{\mathfrak{g}}^{+}\right)$, we can define a $\widehat{\mathfrak{g}}$-module structute on $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by setting

$$
\begin{array}{rlrl}
x \otimes t^{r} .\left(v \otimes t^{s}\right) & =(x . v) \otimes t^{r+s}, & & K .\left(v \otimes t^{s}\right)=0 \\
d .\left(v \otimes t^{s}\right) & =s\left(v \otimes t^{s}\right) \forall x \in \mathfrak{g}, & v \in V, r, s \in \mathbb{Z}
\end{array}
$$

Then $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$ is an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces, which is neither a highest weight nor a lowest weight module.

- Question (ill-formulated): Does there exist other examples of irreducible integrable modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces over $\widehat{\mathfrak{g}}$ "like" $V(\lambda) \otimes \mathbb{C}\left[t, t^{-1}\right]$?
- Recall that $Z(\widehat{\mathfrak{g}})=\{x \in \widehat{\mathfrak{g}} \mid[x, y]=0 \forall y \in \widehat{\mathfrak{g}}\}=\mathbb{C} K$. If V is an irreducible integrable $\widehat{\mathfrak{g}}$-module, then there exists $c \in \mathbb{Z}$ such that $K v=c v \forall v \in V$. Then c is said to be the level of V.
- Question (re-formulated): Does there exist other examples of level zero irreducible integrable $\widehat{\mathfrak{g}}$-modules with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces?

Evaluation modules

- For each $1 \leqslant i \leqslant m$, let $V\left(\lambda_{i}, b_{i}\right)$ be the irreducible \mathfrak{g}-module $V\left(\lambda_{i}\right)$ $\left(\lambda_{i} \in P_{\mathfrak{g}}^{+}, b_{i} \in \mathbb{C}^{\times}\right.$) equipped with the following action of $L(\mathfrak{g})$.

Evaluation modules

- For each $1 \leqslant i \leqslant m$, let $V\left(\lambda_{i}, b_{i}\right)$ be the irreducible \mathfrak{g}-module $V\left(\lambda_{i}\right)$ $\left(\lambda_{i} \in P_{\mathfrak{g}}^{+}, b_{i} \in \mathbb{C}^{\times}\right.$) equipped with the following action of $L(\mathfrak{g})$.

$$
(x \otimes f(t)) \cdot v=f\left(b_{i}\right) x \cdot v
$$

In the literature, these modules are referred to as evaluation modules.

Evaluation modules

- For each $1 \leqslant i \leqslant m$, let $V\left(\lambda_{i}, b_{i}\right)$ be the irreducible \mathfrak{g}-module $V\left(\lambda_{i}\right)$ $\left(\lambda_{i} \in P_{\mathfrak{g}}^{+}, b_{i} \in \mathbb{C}^{\times}\right.$) equipped with the following action of $L(\mathfrak{g})$.

$$
(x \otimes f(t)) \cdot v=f\left(b_{i}\right) x \cdot v
$$

In the literature, these modules are referred to as evaluation modules. $V\left(\lambda_{i}, b_{i}\right)$ is an irreducible $L(\mathfrak{g})$-module for each $1 \leqslant i \leqslant m$.

Evaluation modules

- For each $1 \leqslant i \leqslant m$, let $V\left(\lambda_{i}, b_{i}\right)$ be the irreducible \mathfrak{g}-module $V\left(\lambda_{i}\right)$ $\left(\lambda_{i} \in P_{\mathfrak{g}}^{+}, b_{i} \in \mathbb{C}^{\times}\right.$) equipped with the following action of $L(\mathfrak{g})$.

$$
(x \otimes f(t)) \cdot v=f\left(b_{i}\right) x \cdot v
$$

In the literature, these modules are referred to as evaluation modules. $V\left(\lambda_{i}, b_{i}\right)$ is an irreducible $L(\mathfrak{g})$-module for each $1 \leqslant i \leqslant m$.

- Denote the m-fold tensor product of a family of evaluation modules by

$$
V(\underline{\lambda}, \underline{b}, m)=V\left(\lambda_{1}, b_{1}\right) \otimes \ldots \otimes V\left(\lambda_{m}, b_{m}\right)
$$

with $\underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$.

Evaluation modules

- For each $1 \leqslant i \leqslant m$, let $V\left(\lambda_{i}, b_{i}\right)$ be the irreducible \mathfrak{g}-module $V\left(\lambda_{i}\right)$ $\left(\lambda_{i} \in P_{\mathfrak{g}}^{+}, b_{i} \in \mathbb{C}^{\times}\right.$) equipped with the following action of $L(\mathfrak{g})$.

$$
(x \otimes f(t)) \cdot v=f\left(b_{i}\right) x \cdot v
$$

In the literature, these modules are referred to as evaluation modules. $V\left(\lambda_{i}, b_{i}\right)$ is an irreducible $L(\mathfrak{g})$-module for each $1 \leqslant i \leqslant m$.

- Denote the m-fold tensor product of a family of evaluation modules by

$$
V(\underline{\lambda}, \underline{b}, m)=V\left(\lambda_{1}, b_{1}\right) \otimes \ldots \otimes V\left(\lambda_{m}, b_{m}\right)
$$

with $\underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$.
We can now give an $L(\mathfrak{g})$-module structure on $V(\underline{\lambda}, \underline{b}, m)$ by extending the evaluation action of $L(\mathfrak{g})$ on the whole space, i.e. more precisely,

$$
(x \otimes f(t)) \cdot\left(v_{1} \otimes \ldots \otimes v_{m}\right)=\sum_{i=1}^{m} f\left(b_{i}\right)\left(v_{1} \otimes \cdots \otimes x \cdot v_{i} \otimes \ldots \otimes v_{m}\right)
$$

Evaluation modules

- For each $1 \leqslant i \leqslant m$, let $V\left(\lambda_{i}, b_{i}\right)$ be the irreducible \mathfrak{g}-module $V\left(\lambda_{i}\right)$ $\left(\lambda_{i} \in P_{\mathfrak{g}}^{+}, b_{i} \in \mathbb{C}^{\times}\right.$) equipped with the following action of $L(\mathfrak{g})$.

$$
(x \otimes f(t)) \cdot v=f\left(b_{i}\right) x \cdot v
$$

In the literature, these modules are referred to as evaluation modules. $V\left(\lambda_{i}, b_{i}\right)$ is an irreducible $L(\mathfrak{g})$-module for each $1 \leqslant i \leqslant m$.

- Denote the m-fold tensor product of a family of evaluation modules by

$$
V(\underline{\lambda}, \underline{b}, m)=V\left(\lambda_{1}, b_{1}\right) \otimes \ldots \otimes V\left(\lambda_{m}, b_{m}\right)
$$

with $\underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$.
We can now give an $L(\mathfrak{g})$-module structure on $V(\underline{\lambda}, \underline{b}, m)$ by extending the evaluation action of $L(\mathfrak{g})$ on the whole space, i.e. more precisely,

$$
(x \otimes f(t)) \cdot\left(v_{1} \otimes \ldots \otimes v_{m}\right)=\sum_{i=1}^{m} f\left(b_{i}\right)\left(v_{1} \otimes \cdots \otimes x \cdot v_{i} \otimes \ldots \otimes v_{m}\right)
$$

Remark: $V(\underline{\lambda}, \underline{b}, m)$ is irreducible \Longleftrightarrow all the b_{i} 's are distinct non-zero complex numbers.

Integrable loop modules

- For any $\gamma \in \mathbb{C}, m \in \mathbb{N}, \underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\left(b_{i} \neq b_{j} \forall i \neq j\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$, let $\widehat{\mathfrak{g}}$ act on $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ via

Integrable loop modules

- For any $\gamma \in \mathbb{C}, m \in \mathbb{N}, \underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\left(b_{i} \neq b_{j} \forall i \neq j\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$, let $\widehat{\mathfrak{g}}$ act on $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ via

$$
\begin{aligned}
x \otimes t^{r} .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =\sum_{i=1}^{m} b_{i}^{r} v_{1} \otimes \ldots \otimes\left(x \cdot v_{i}\right) \otimes \ldots v_{m} \otimes t^{r+s}, \\
K .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =0 \\
d .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =(\gamma+s)\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) .
\end{aligned}
$$

Integrable loop modules

- For any $\gamma \in \mathbb{C}, m \in \mathbb{N}, \underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\left(b_{i} \neq b_{j} \forall i \neq j\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$, let $\widehat{\mathfrak{g}}$ act on $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ via

$$
\begin{aligned}
x \otimes t^{r} .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =\sum_{i=1}^{m} b_{i}^{r} v_{1} \otimes \ldots \otimes\left(x . v_{i}\right) \otimes \ldots v_{m} \otimes t^{r+s}, \\
K .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =0 \\
d .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =(\gamma+s)\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right)
\end{aligned}
$$

$V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ is a level zero integrable module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces.

Integrable loop modules

- For any $\gamma \in \mathbb{C}, m \in \mathbb{N}, \underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\left(b_{i} \neq b_{j} \forall i \neq j\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$, let $\widehat{\mathfrak{g}}$ act on $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ via

$$
\begin{aligned}
x \otimes t^{r} .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =\sum_{i=1}^{m} b_{i}^{r} v_{1} \otimes \ldots \otimes\left(x \cdot v_{i}\right) \otimes \ldots v_{m} \otimes t^{r+s} \\
K .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =0 \\
d .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =(\gamma+s)\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right)
\end{aligned}
$$

$V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ is a level zero integrable module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces. These modules were introduced by Chari-Pressley and are known as integrable loop modules.

Integrable loop modules

- For any $\gamma \in \mathbb{C}, m \in \mathbb{N}, \underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\left(b_{i} \neq b_{j} \forall i \neq j\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$, let $\widehat{\mathfrak{g}}$ act on $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ via

$$
\begin{aligned}
x \otimes t^{r} .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =\sum_{i=1}^{m} b_{i}^{r} v_{1} \otimes \ldots \otimes\left(x \cdot v_{i}\right) \otimes \ldots v_{m} \otimes t^{r+s} \\
K .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =0 \\
d .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =(\gamma+s)\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right)
\end{aligned}
$$

$V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ is a level zero integrable module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces. These modules were introduced by Chari-Pressley and are known as integrable loop modules.

- $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ need not be irreducible,

Integrable loop modules

- For any $\gamma \in \mathbb{C}, m \in \mathbb{N}, \underline{b}=\left(b_{1}, \ldots, b_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\left(b_{i} \neq b_{j} \forall i \neq j\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in\left(P_{\mathfrak{g}}^{+}\right)^{m}$, let $\widehat{\mathfrak{g}}$ act on $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ via

$$
\begin{aligned}
x \otimes t^{r} .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =\sum_{i=1}^{m} b_{i}^{r} v_{1} \otimes \ldots \otimes\left(x . v_{i}\right) \otimes \ldots v_{m} \otimes t^{r+s} \\
K .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =0 \\
d .\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right) & =(\gamma+s)\left(v_{1} \otimes \ldots \otimes v_{m} \otimes t^{s}\right)
\end{aligned}
$$

$V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ is a level zero integrable module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces. These modules were introduced by Chari-Pressley and are known as integrable loop modules.

- $V(\underline{\lambda}, \underline{b}, m)^{\gamma} \otimes \mathbb{C}\left[t, t^{-1}\right]$ need not be irreducible, but can be always decomposed as a direct sum of finitely many irreducible $\widehat{\mathfrak{g}}$-modules.

Classification of irreducible integrable modules

Theorem (Chari, Invent. Math., 1986 and Chari-Pressley, Math. Ann., 1986)
Let V be an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces. Then:

Classification of irreducible integrable modules

Theorem (Chari, Invent. Math., 1986 and Chari-Pressley, Math. Ann., 1986)

Let V be an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces. Then:
(1) V has positive level $\Longrightarrow V \cong \widehat{V}(\Lambda), \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+} \backslash \mathbb{C} \delta$.
(2) V has negative level $\Longrightarrow V \cong \widehat{V}(\Lambda)^{*}, \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+} \backslash \mathbb{C} \delta$.
(3) V has zero level $\Longrightarrow V$ is isomorphic to an irreducible summand of an integrable loop module.

Classification of irreducible integrable modules

Theorem (Chari, Invent. Math., 1986 and Chari-Pressley, Math. Ann., 1986)

Let V be an irreducible integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces. Then:
(1) V has positive level $\Longrightarrow V \cong \widehat{V}(\Lambda), \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+} \backslash \mathbb{C} \delta$.
(2) V has negative level $\Longrightarrow V \cong \widehat{V}(\Lambda)^{*}, \Lambda \in \widehat{P}_{\widehat{\mathfrak{g}}}^{+} \backslash \mathbb{C} \delta$.
(3) V has zero level $\Longrightarrow V$ is isomorphic to an irreducible summand of an integrable loop module.

Observation: All the above modules have finite-dimensional \mathbb{Z}-graded components, i.e. they have finite-dimensional weight spaces with respect to $\mathbb{C} d$.

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

- Question: Does there exist quasi-finite modules which are not integrable?

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

- Question: Does there exist quasi-finite modules which are not integrable? Example: Recall that $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ and $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$ is the set of all simple co-roots of $\widehat{\mathfrak{g}}$, where $l=\operatorname{dim} \mathfrak{h}$ and $\alpha_{0}^{\vee}=K-\theta^{\vee}$.

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

- Question: Does there exist quasi-finite modules which are not integrable? Example: Recall that $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ and $\Pi_{\mathfrak{\mathfrak { G }}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$ is the set of all simple co-roots of $\widehat{\mathfrak{g}}$, where $l=\operatorname{dim} \mathfrak{h}$ and $\alpha_{0}^{\vee}=K-\theta^{\vee}$. Define $\Lambda \in \widehat{\mathfrak{h}}^{*}$ by setting $\Lambda\left(\alpha_{i}^{\vee}\right)=i \forall 1 \leqslant i \leqslant l$ and $\Lambda(K)=\lambda(d)=0$ and consider the irreducible highest weight module $\widehat{V}(\Lambda)$.

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

- Question: Does there exist quasi-finite modules which are not integrable? Example: Recall that $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ and $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$ is the set of all simple co-roots of $\widehat{\mathfrak{g}}$, where $l=\operatorname{dim} \mathfrak{h}$ and $\alpha_{0}^{\vee}=K-\theta^{\vee}$. Define $\Lambda \in \widehat{\mathfrak{h}}^{*}$ by setting $\Lambda\left(\alpha_{i}^{\vee}\right)=i \forall 1 \leqslant i \leqslant l$ and $\Lambda(K)=\lambda(d)=0$ and consider the irreducible highest weight module $\widehat{V}(\Lambda)$.
Then $\Lambda\left(\alpha_{0}^{\vee}\right)<0$ and thus $\widehat{V}(\Lambda)$ is not integrable,

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

- Question: Does there exist quasi-finite modules which are not integrable? Example: Recall that $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ and $\Pi_{\mathfrak{\mathfrak { a }}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$ is the set of all simple co-roots of $\widehat{\mathfrak{g}}$, where $l=\operatorname{dim} \mathfrak{h}$ and $\alpha_{0}^{\vee}=K-\theta^{\vee}$. Define $\Lambda \in \widehat{\mathfrak{h}}^{*}$ by setting $\Lambda\left(\alpha_{i}^{\vee}\right)=i \forall 1 \leqslant i \leqslant l$ and $\Lambda(K)=\lambda(d)=0$ and consider the irreducible highest weight module $\widehat{V}(\Lambda)$.
Then $\Lambda\left(\alpha_{0}^{\vee}\right)<0$ and thus $\widehat{V}(\Lambda)$ is not integrable, but it can be shown that $\widehat{V}(\Lambda)$ is quasi-finite.

Quasi-finite modules

Definition

A $\widehat{\mathfrak{g}}$-module V is said to be quasi-finite if
(1) V is a weight module with respect to $\mathbb{C} d$, i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, where $V_{n}=\{v \in V \mid d . v=n v\} ;$
(2) $\operatorname{dim} V_{n}<\infty \forall n \in \mathbb{Z}$.

- Question: Does there exist quasi-finite modules which are not integrable? Example: Recall that $\widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d$ and $\Pi_{\mathfrak{g}}^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i=0}^{l}$ is the set of all simple co-roots of $\widehat{\mathfrak{g}}$, where $l=\operatorname{dim} \mathfrak{h}$ and $\alpha_{0}^{\vee}=K-\theta^{\vee}$. Define $\Lambda \in \widehat{\mathfrak{h}}^{*}$ by setting $\Lambda\left(\alpha_{i}^{\vee}\right)=i \forall 1 \leqslant i \leqslant l$ and $\Lambda(K)=\lambda(d)=0$ and consider the irreducible highest weight module $\widehat{V}(\Lambda)$.
Then $\Lambda\left(\alpha_{0}^{\vee}\right)<0$ and thus $\widehat{V}(\Lambda)$ is not integrable, but it can be shown that $\widehat{V}(\Lambda)$ is quasi-finite.

Problem

Classify irreducible quasi-finite modules over $\widehat{\mathfrak{g}}$.

Weakly integrable modules

The following definition is inspired from the work of Kac-Wakimoto where they introduced the so-called "weakly integrable modules" in the context of affine Lie superalgebras.

Weakly integrable modules

The following definition is inspired from the work of Kac-Wakimoto where they introduced the so-called "weakly integrable modules" in the context of affine Lie superalgebras.

Definition

A $\widehat{\mathfrak{g}}$-module is said to be weakly integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus_{\mu \in \widehat{\mathfrak{h}}^{*}} V_{\mu}$ where
$V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;$

Weakly integrable modules

The following definition is inspired from the work of Kac-Wakimoto where they introduced the so-called "weakly integrable modules" in the context of affine Lie superalgebras.

Definition

A $\widehat{\mathfrak{g}}$-module is said to be weakly integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus_{\mu \in \widehat{\mathfrak{h}}^{*}} V_{\mu}$ where

$$
V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;
$$

(2) For each $\alpha \in \Delta, \mathfrak{g}_{\alpha}$ acts locally nilpotently on V, i.e. V is \mathfrak{g}-integrable.

Weakly integrable modules

The following definition is inspired from the work of Kac-Wakimoto where they introduced the so-called "weakly integrable modules" in the context of affine Lie superalgebras.

Definition

A $\widehat{\mathfrak{g}}$-module is said to be weakly integrable if
(1) V is a weight module with respect to $\widehat{\mathfrak{h}}$, i.e. $V=\bigoplus_{\mu \in \widehat{\mathfrak{h}}^{*}} V_{\mu}$ where

$$
V_{\mu}=\{v \in V \mid h . v=\mu(h) v \forall h \in \widehat{\mathfrak{h}}\}, \widehat{\mathfrak{h}}=\mathfrak{h} \oplus \mathbb{C} K \oplus \mathbb{C} d ;
$$

(2) For each $\alpha \in \Delta, \mathfrak{g}_{\alpha}$ acts locally nilpotently on V, i.e. V is \mathfrak{g}-integrable.

Lemma

Let V be a $\widehat{\mathfrak{g}}$-module. Then V is weakly integrable with finite-dimensional $\widehat{\mathfrak{h}}$-weight spaces if and only if V is quasi-finite.

Classification of irreducible weakly integrable modules

```
Theorem (P.)
Let \(V\) be an irreducible weakly integrable \(\widehat{\mathfrak{g}}\)-module with finite-dimensional \(\mathfrak{h}\)-weight spaces. Then \(V\) is isomorphic to one of the following.
```


Classification of irreducible weakly integrable modules

Theorem (P.)

Let V be an irreducible weakly integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional \mathfrak{h}-weight spaces. Then V is isomorphic to one of the following.
(1) An irreducible summand of an integrable loop module;

Classification of irreducible weakly integrable modules

Theorem (P.)

Let V be an irreducible weakly integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional \mathfrak{h}-weight spaces. Then V is isomorphic to one of the following.
(1) An irreducible summand of an integrable loop module;
(2) A highest weight module $\widehat{V}(\Lambda),\left.\Lambda\right|_{\mathfrak{h}} \in P_{\mathfrak{g}}^{+}$;
(3) A lowest weight module $\widehat{V}(\Lambda)^{*},\left.\Lambda\right|_{\mathfrak{h}} \in P_{\mathfrak{g}}^{+}$.

Classification of irreducible weakly integrable modules

Theorem (P.)

Let V be an irreducible weakly integrable $\widehat{\mathfrak{g}}$-module with finite-dimensional \mathfrak{h}-weight spaces. Then V is isomorphic to one of the following.
(1) An irreducible summand of an integrable loop module;
(2) A highest weight module $\widehat{V}(\Lambda),\left.\Lambda\right|_{\mathfrak{h}} \in P_{\mathfrak{g}}^{+}$;
(3) A lowest weight module $\widehat{V}(\Lambda)^{*},\left.\Lambda\right|_{\mathfrak{h}} \in P_{\mathfrak{g}}^{+}$.

Conversely, all the above mentioned irreducible modules are weakly integrable.
[1] Quasi-finite modules over extended affine Lie algebras, https://arxiv.org/abs/2308.10665, 2023 (P.)
[2] Integrable representations of affine Lie-algebras, Invent. Math., 1986 (V. Chari).
[3] New unitary representations of loop groups, Math. Ann., 1986 (V. Chari, A. Pressley).
[4] Integrable highest weight modules over affine Lie superalgebras and Appell's function,
Comm. Math. Phys., 2001 (V. Kac, M. Wakimoto).

