

### Probing Hadron Structure at the EIC



INTERNATIONAL CENTRE *for* THEORETICAL

MENTAL RESEARCH

### The TMD shape function and its applications at the EIC

### Speaker: Luca Maxia University of Groningen - VSI

In collaboration with: J. Bor, D. Boer, C.Pisano & F. Yuan













- Part II: Matching procedure to access the TMDShF perturbative tail • Relevance of the hard amplitude pole structure

Part III: the TMDShF depends on Q? Process dependence?

Part IV: Opportunities at the EIC to investigate the TMDShF



.. Maxia (University of Groningen - VSI)

### Part I: TMD shape function in TMD factorization for Quarkonium





# Quarkonia & gluon TMDs

### Processes involving Quarkonia are sensitive to gluons

### hadron collisions

$$\bullet p + p \to \eta_Q + X$$

•  $p + p \rightarrow J/\psi + J/\psi + X$ 

•  $e + p \rightarrow$ 

•  $e + p \rightarrow e' + J/\psi + \gamma + X$ 



Maxia (University of Groningen - VSI)

$$\bullet p + p \to \chi_Q + X$$

• 
$$p + p \rightarrow J/\psi + X$$
 ?

### *ep* collisions

$$e' + J/\psi + X$$

• 
$$e + p \rightarrow e' + J/\psi + jet + X$$

### and more...





# Quarkonia & gluon TMDs

### Processes involving Quarkonia are sensitive to gluons

### hadron collisions

$$\bullet p + p \to \eta_Q + X$$

• 
$$p + p \rightarrow J/\psi + J/\psi + X$$





Maxia (University of Groningen - VSI)

$$\bullet p + p \to \chi_Q + X$$

• 
$$p + p \rightarrow J/\psi + X$$
 ?

### *ep* collisions

$$e' + J/\psi + X$$

$$e + p \rightarrow e' + J/\psi + jet + X$$

### and more...





### **Theoretical framework**



.. Maxia (University of Groningen - VSI)

$$F_{UUT}^{2} + 4(1 - y) F_{UUL}^{2}$$



# (Some) Models for Quarkonium formation

### Colour Singlet Model

Baier, Rückl, Z.Phys.C 19 (1983)

$$d\sigma[\mathcal{Q}] = \int d\xi_i d\xi_j f_i(\xi_i) f_j(\xi_j) d\hat{\sigma}_{i+j \to \mathcal{Q}+X} |R(0)|^2 \quad d\sigma[\mathcal{Q}] = \sum_n \int d\xi_i d\xi_j f_i(\xi_i) f_j(\xi_j) d\hat{\sigma}_{i+j \to \mathcal{Q}\mathcal{Q}[n]+X} \langle \mathcal{O} \rangle$$

$$(S-wave production) \qquad \text{Long-Distance Matrix Elemen}$$

### (Improved) •Colour Evaporation Model

Ma, Vogt, PRD 94 (2016)

$$\frac{\mathrm{d}\sigma[\mathcal{Q}]}{\mathrm{d}P_{\mathcal{Q}}} = F_{\mathcal{Q}} \int_{M_{\mathcal{Q}}}^{2M_{H}} \mathrm{d}M \frac{\mathrm{d}\sigma_{\mathcal{Q}\mathcal{Q}}(M, P_{\mathcal{Q}}')}{\mathrm{d}M\mathrm{d}P_{\mathcal{Q}}}$$



... Maxia (University of Groningen - VSI)

### Non Relativistic QCD (CS + CO mechanism)

Bodwin, Braaten, Lepage, PRD 51 (1997)

Long-Distance Matrix Element (**universal** in principle)

### Fragmentation Functions

Kang, Ma, Qiu, Sterman, PRD 90 (2014)

$$d\sigma[\mathcal{Q}] = \int d\xi_i d\xi_j dz \ f_i f_j d\hat{\sigma}_{i+j\to f+X} D_{f\to\mathcal{Q}}(z) + \int d\xi_i d\xi_j dz \ f_i f_j d\hat{\sigma}_{i+j\to QQ+X} D_{QQ}(z)$$



## The TMD shape function





\_. Maxia (University of Groningen - VSI)



"light-hadron" SIDIS  $\sigma^{ep \to e'hX} = \hat{\sigma}^{[a]}(\mu_{H}) \otimes f_{a}(\hat{x};\mu_{H}) \otimes D_{a \to h}(\hat{z};\mu_{H})$ 

Bodwin, Braaten, Lepage, PRD 51 (1997)

"Quarkonium" SIDIS (adopting NRQCD)

 $\sigma^{ep \to e'J/\psi X} = \hat{\sigma}^{[n]}(\mu_{H}) \otimes f_{a}(\hat{x};\mu_{H}) \otimes \langle \mathcal{O}_{\psi}[n] \rangle \,\delta(\hat{z}-z)$ 





## The TMD shape function



### As for $D_{a \to h}(\hat{z}) \to D_{a \to h}(\hat{z}, k_T)$ , we have $\langle \mathcal{O}_{\psi}[n] \rangle \delta(\hat{z} - z) \to \Delta^{[n]}(\hat{z}, k_T)$



... Maxia (University of Groningen - VSI)



"light-hadron" SIDIS  
$$f_{A}(\hat{x};\mu_{H}) \otimes f_{a}(\hat{x};\mu_{H}) \otimes D_{a \to h}(\hat{z};\mu_{H})$$

Bodwin, Braaten, Lepage, PRD 51 (1997)

"Quarkonium" SIDIS (adopting NRQCD)

$$K = \hat{\sigma}^{[n]}(\mu_{H}) \otimes f_{a}(\hat{x};\mu_{H}) \otimes \langle \mathcal{O}_{\psi}[n] \rangle \,\delta(\hat{z}-z)$$

Echevarría, JHEP 144 (2019)

Fleming, Markis, Mehen, JHEP 112 (2020)





# The TMD shape function



### As for $D_{a \to h}(\hat{z}) \to D_{a \to h}(\hat{z}, k_T)$ , we hav





.. Maxia (University of Groningen - VSI)



"light-hadron" SIDIS  

$$f_{hX} = \hat{\sigma}^{[a]}(\mu_{H}) \otimes \hat{f}_{a}(\hat{x};\mu_{H}) \otimes \hat{D}_{a \rightarrow h}(\hat{z};\mu_{H})$$
Bodwin, Braaten, Lepage, PRD 51 (1997)  
"Quarkonium" SIDIS <sup>(adopting NRQCD)</sup>  

$$f = \hat{\sigma}^{[n]}(\mu_{H}) \otimes \hat{f}_{a}(\hat{x};\mu_{H}) \otimes (\mathcal{O}_{\psi}[n]) \delta(\hat{z}-z)$$

$$f = \hat{\sigma}^{[n]}(\mu_{H}) \otimes \hat{f}_{a}(\hat{x};\mu_{H}) \otimes (\mathcal{O}_{\psi}[n]) \delta(\hat{z}-z)$$

$$f = \hat{\sigma}^{[n]}(\mu_{H}) \otimes \hat{f}_{a}(\hat{x};\mu_{H}) \otimes (\mathcal{O}_{\psi}[n]) \delta(\hat{z}-z)$$

$$F = \hat{\sigma}^{[n]}(\hat{z},k_{T})$$
Echevarría, JHEP 144 (2019)  
Fleming, Markis, Mehen, JHEP 112 (2020)





# Matching procedure



 $\Lambda_{\rm QCD} \ll q_T \ll \mu_H$ 



L. Maxia (University of Groningen - VSI)





# Matching procedure





... Maxia (University of Groningen - VSI)





# Structure function at small- $q_T$ (TMD region)

 $J/\psi$  production at the lowest  $\alpha_s$ -order:  $\gamma^* + g \rightarrow c\bar{c}[n]$ 



Maxia (University of Groningen - VSI)

Bacchetta, Boer, Pisano, Taels, EPJC 80 (2020)

Kinematic fixes most of the variables:

• 
$$\hat{x} = x$$
 (where  $x = x_B \frac{M_{\psi}^2 + Q^2}{Q^2}$ )  
•  $\hat{z} = 1$ 

• 
$$p_{aT} = q_T$$

 $\mathscr{C}\left[wh_{1}^{\perp g}\Delta_{h}^{[n]}\right](x,q_{T})$ 





# Structure function at small- $q_T$ (TMD region)

 $J/\psi$  production at the lowest  $\alpha_s$ -order:  $\gamma^* + g \rightarrow c\bar{c}[n]$ 



.. Maxia (University of Groningen - VSI)

Bacchetta, Boer, Pisano, Taels, EPJC 80 (2020)

Kinematic fixes most of the variables:

• 
$$\hat{x} = x$$
 (where  $x = x_B \frac{M_{\psi}^2 + Q^2}{Q^2}$ )  
•  $\hat{z} = 1$ 

• 
$$p_{aT} = q_T$$

$$4(1-y)\left(\mathcal{F}_{UUL} + \cos 2\phi \mathcal{F}_{UU}^{\cos 2\phi}\right)\right\}$$

$$[n](x, q_T)$$
  
 $[a](x, q_T)$ 
TMDShF needed to  
investigate gluon TMDs







## Structure function at high- $q_T$ (collinear region)

 $J/\psi$  production at the lowest  $\alpha_s$ -order:  $\gamma^* + a \rightarrow c\bar{c}[n] + a$   $(a = q, \bar{q}, g)$ 





... Maxia (University of Groningen - VSI)







## Structure function at high- $q_T$ (collinear region)

 $J/\psi$  production at the lowest  $\alpha_s$ -order:  $\gamma^* + a \rightarrow c\bar{c}[n] + a$   $(a = q, \bar{q}, g)$ 





... Maxia (University of Groningen - VSI)



## $\mathrm{d}\sigma^{ep\to e'J/\psi X} = \mathrm{d}\hat{\sigma}^{a\,[n]}(\mu_{H}) \otimes f_{p}^{a}(\hat{x};\mu_{H}) \otimes \langle \mathcal{O}_{\psi}[n] \rangle \,\delta(\hat{z}-z)$

### Lepton tensor from

Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP 02 (2007) 



for  $M_{\psi} \ll Q$  in agreement with

Meng, Olness, Soper JHEP 11 (2019)









$$\delta(\hat{x}',\hat{z}) \sim \frac{M_{\psi}^2 + Q^2}{M_{\psi}^2/\hat{z} + Q^2} \frac{\hat{z}}{(1-\hat{z})_+} \delta(1-\hat{x}') + \log \frac{M_{\psi}^2 + Q^2}{q_T^2} \delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_+} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_+} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_+} \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{$$



\_. Maxia (University of Groningen - VSI)



## **Delta expansion**





\_. Maxia (University of Groningen - VSI)

Boer, D'Alesio, Murgia, Pisano, Taels, JHEP 09 (2020)



## **Delta expansion**



 $I = \int_{0}^{1} \mathrm{d}\hat{z} \frac{(1-\hat{z})(\hat{z}Q^{2}+M_{\psi}^{2})}{(1-\hat{z})(\hat{z}Q^{2}+M_{\psi}^{2})+\hat{z}^{2}q_{T}^{2}} \tilde{g}(\hat{z})\tilde{f}(\hat{x}_{0}')$ 

$$\tilde{g}(\hat{z})\tilde{f}(\hat{x}_0) = \left(\tilde{g}(\hat{z})\right)$$



Maxia (University of Groningen - VSI)

Boer, D'Alesio, Murgia, Pisano, Taels, JHEP 09 (2020)

$$\int_0^1 \mathrm{d}\hat{x}'\,\hat{x}'f(\hat{x}')\,\,\delta\Big((1-\hat{x}')(1-\hat{z})+(1-\hat{z})(\hat{z}-\hat{x}')\frac{M_\psi^2}{Q^2}+\frac{1-\hat{z}}{Q^2}\Big)$$

$$\hat{x}_0' = (1 + \frac{M_{\psi}^2}{Q^2}) \left[ 1 + \frac{M_{\psi}^2}{\hat{z} Q^2} + \frac{\hat{z}}{1 - \hat{z}} \frac{q_T^2}{Q^2} \right]^{-1}$$

$$f(\hat{x}_0') = I_1 + I_2 + I_3$$

### **Obtained from:** $(\hat{z}) - \tilde{g}(1))\tilde{f}(1) + \tilde{g}(1)\tilde{f}(1) + \tilde{g}(\hat{z})\left(\tilde{f}(\hat{x}_0) - \tilde{f}(1)\right)$







## **Delta expansion**



$$= \int_{0}^{1} d\hat{z} g(\hat{z}) \int_{0}^{\hat{x}_{\text{max}}} d\hat{x} f(\hat{x}) \,\delta(\hat{x}, \hat{z}) = \hat{x}_{\text{max}} \int_{0}^{1} d\hat{z} \,\hat{z}^{2} g(\hat{z}) \int_{0}^{1} d\hat{x}' \,\hat{x}' f(\hat{x}') \,\delta\left((1 - \hat{x}')(1 - \hat{z}) + (1 - \hat{z})(\hat{z} - \hat{x}')\frac{M_{\psi}^{2}}{Q^{2}} + \frac{1}{Q^{2}}\right) d\hat{z} \,\hat{z}' g(\hat{z}) \int_{0}^{1} d\hat{x}' \,\hat{x}' f(\hat{x}') \,\delta\left((1 - \hat{x}')(1 - \hat{z}) + (1 - \hat{z})(\hat{z} - \hat{x}')\frac{M_{\psi}^{2}}{Q^{2}} + \frac{1}{Q^{2}}\right) d\hat{z}' \,\hat{z}' \,d\hat{z}' \,d\hat{z}'' \,d\hat{z}' \,d\hat{z}' \,d\hat{z}' \,d\hat{z}' \,d\hat{z}' \,d\hat{z}'$$

$$d\hat{z} g(\hat{z}) \int_{0}^{\hat{x}_{\text{max}}} d\hat{x} f(\hat{x}) \,\delta(\hat{x},\hat{z}) = \hat{x}_{\text{max}} \int_{0}^{1} d\hat{z} \,\hat{z}^{2} g(\hat{z}) \int_{0}^{1} d\hat{x}' \,\hat{x}' f(\hat{x}') \,\delta\Big((1-\hat{x}')(1-\hat{z}) + (1-\hat{z})(\hat{z}-\hat{x}')\frac{M_{\psi}^{2}}{Q^{2}} + \frac{1}{1-\hat{z}}\frac{q_{r}^{2}}{Q^{2}}\Big) d\hat{x}' \,\hat{x}' f(\hat{x}') \,\delta\Big((1-\hat{x}')(1-\hat{z}) + (1-\hat{z})(\hat{z}-\hat{x}')\frac{M_{\psi}^{2}}{Q^{2}} + \frac{1}{1-\hat{z}}\frac{q_{r}^{2}}{Q^{2}}\Big]^{-1}$$
**ntinuous** test functions
$$\hat{x}_{0}' = (1 + \frac{M_{\psi}^{2}}{Q^{2}}) \left[1 + \frac{M_{\psi}^{2}}{\hat{z}Q^{2}} + \frac{\hat{z}}{1-\hat{z}}\frac{q_{r}^{2}}{Q^{2}}\right]^{-1}$$

$$\hat{x}_{0}' = (1 + \frac{M_{\psi}^{2}}{Q^{2}}) \left[1 + \frac{M_{\psi}^{2}}{\hat{z}Q^{2}} + \frac{\hat{z}}{1-\hat{z}}\frac{q_{r}^{2}}{Q^{2}}\right]^{-1}$$

$$\delta(\hat{x}', \hat{z}) \sim \frac{M_{\psi}^{2} + Q^{2}}{M_{\psi}^{2}/\hat{z} + Q^{2}} \frac{\hat{z}}{(1-\hat{z})_{+}} \,\delta(1-\hat{x}') + \log \frac{M_{\psi}^{2} + Q^{2}}{q_{r}^{2}} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{x}') + \log \frac{M_{\psi}^{2} + Q^{2}}{q_{r}^{2}} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{x}') + \log \frac{M_{\psi}^{2} + Q^{2}}{q_{r}^{2}} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{x}') + \log \frac{M_{\psi}^{2} + Q^{2}}{q_{r}^{2}} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{x}') \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{z}) \,\delta(1-\hat{z}) + \frac{\hat{x}'}{(1-\hat{x})_{+}} \,\delta(1-\hat{z}) + \frac{$$



L. Maxia (University of Groningen - VSI)

Boer, D'Alesio, Murgia, Pisano, Taels, JHEP 09 (2020)







# $F_{UU}(\hat{x}',\hat{z}) = F_{UU}^{(0)}(\hat{x}',\hat{z}) + \sum_{k=1}^{k} \left(\frac{1-\hat{z}}{1-\hat{x}'}\right)^{k} F_{UU}^{(k)}(\hat{x}',\hat{z})$ (general notation)



... Maxia (University of Groningen - VSI)

### Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)



Continuous functions of  $\hat{x}'$  and  $\hat{z}$ .



 $F_{UU}(\hat{x}',\hat{z}) = F_{UU}^{(0)}(\hat{x}',\hat{z}) + \sum_{k=1}^{k} \left(\frac{1-\hat{z}}{1-\hat{x}'}\right)^k F_{UU}^{(k)}(\hat{x}',\hat{z})$ (general notation)

Delta expansion is applicable

Delta expansion is <u>not</u> applicable



... Maxia (University of Groningen - VSI)

### Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)



Continuous functions of  $\hat{x}'$  and  $\hat{z}$ .



$$F_{UU}(\hat{x}',\hat{z}) = F_{UU}^{(0)}(\hat{x}',\hat{z}) + \sum_{k=1}^{\infty} \left(\frac{1-\hat{z}}{1-\hat{x}'}\right)^k F_{UU}^{(k)}(\hat{x}',\hat{z}) \rightarrow \text{Relevant for}$$
  
in  $F_{UUT}^{(k)}$  and  $\hat{x}$   
with  $k = 1$ ,  
$$\sum_{k=1}^{\infty} \frac{\hat{x}'}{\delta(1-\hat{z})} + \log \frac{M_{\psi}^2 + Q^2}{\delta(1-\hat{x}')} \delta(1-\hat{z})$$



L. Maxia (University of Groningen - VSI)

### Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)



$$F_{UU}(\hat{x}',\hat{z}) = F_{UU}^{(0)}(\hat{x}',\hat{z}) + \sum_{k=1}^{\infty} \left(\frac{1-\hat{z}}{1-\hat{x}'}\right)^k F_{UU}^{(k)}(\hat{x}',\hat{z}) \rightarrow \text{Relevant for}$$
  
in  $F_{UUT}^{(k)}$  and  $k$  with  $k = 1$ ,  
mpact on the double delta  
 $\sim \frac{\hat{x}'}{(1-\hat{x})_+} \delta(1-\hat{z}) + \log \frac{\sqrt{2}-Q^2}{\sqrt{2}} \delta(1-\hat{x}') \delta(1-\hat{z})$ 





L. Maxia (University of Groningen - VSI)

### Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

$$\rightarrow \frac{1}{2} \left( \log \frac{M_{\psi}^2 + Q^2}{q_T^2} - 1 - \log \frac{M_{\psi}^2}{M_{\psi}^2 + Q^2} - 1 - \log \frac{M_{\psi}^2}{M_{\psi}^2 + Q^2} \right)$$





### **Eikonal method**

Same term is found by considering the soft gluon emission





... Maxia (University of Groningen - VSI)







### **Eikonal method**





\_. Maxia (University of Groningen - VSI)





### **Eikonal method**





# TMD shape function perturbative tail

### TMD-PDFs evolved according to



Up to the precision considered, bulk of the expression driven by CO waves  $1\mathbf{S}(8)$ 3p(8)



\_. Maxia (University of Groningen - VSI)

Comparison at  $\Lambda_{\text{OCD}} \ll q_T \ll \mu_H$ 

Echevarria, Kasemets, Mulders, Pisano, JHEP 07 (2015) <u>Sun, Xiao, Yuan, PRD 84 (2011)</u>

$$_{\psi} = \delta^{(2)}(k_T^2) \left\langle \mathcal{O}_{\psi}[n] \right\rangle \delta(1-z)$$

Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

$$-\frac{\alpha_s}{2\pi^2 k_T^2} C_A \left(1 + \log \frac{M_{\psi}^2}{M_{\psi}^2 + Q^2}\right) \left< \mathcal{O}_{\psi}[n] \right> \delta(1)$$







# Scale dependence of the TMD shape function

### Previous equation is obtained for $\mu_{\rm H} \equiv \sqrt{M_{\psi}^2 + Q^2}$

(in  $b_{T}$ -space)  $\tilde{\Delta}_{\psi}^{[n]}\left(z, b_{T}; \sqrt{M_{\psi}^{2} + Q^{2}}\right) = \frac{1}{2\pi} \left[ 1 + \frac{\alpha_{s}}{2\pi} C_{A}\left(1 + \log\frac{M_{\psi}^{2}}{(M_{\psi}^{2} + Q^{2})}\right) \log\frac{M_{\psi}^{2} + Q^{2}}{\mu_{b}^{2}} \right] \langle \mathcal{O}[n] \rangle \, \delta(1 - z)$   $\mu_{b} = \frac{2 e^{-\gamma_{E}}}{b_{T}}$ 



... Maxia (University of Groningen - VSI)







# Scale dependence of the TMD shape function

### Previous equation is obtained for $\mu_{\rm H} \equiv \sqrt{M_{\psi}^2 + Q^2}$

$$\begin{split} \tilde{\Delta}_{\psi}^{(\text{in } b_{T} \text{-space})} \tilde{\Delta}_{\psi}^{[n]} \Big( z, b_{T}^{2}; \sqrt{M_{\psi}^{2} + Q^{2}} \Big) &= \frac{1}{2\pi} \left[ 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 1 + \log \frac{M_{\psi}^{2}}{(M_{\psi}^{2} + Q^{2})} \right) \log \frac{M_{\psi}^{2} + Q^{2}}{\mu_{b}^{2}} \right] \langle \mathcal{O}[n] \rangle \\ \text{for a general (hard) scale } \mu_{H} \\ \tilde{\Delta}_{ep}^{[n]}(z, b_{T}^{2}; \mu_{H}) &= \frac{1}{2\pi} \left[ 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 1 + \log \frac{M_{\psi}^{2} \mu_{H}^{2}}{(M_{\psi}^{2} + Q^{2})^{2}} \right) \log \frac{\mu_{H}^{2}}{\mu_{b}^{2}} \right] \langle \mathcal{O}[n] \rangle \, \delta(1 - z) \end{split}$$



L. Maxia (University of Groningen - VSI)









# Scale dependence of the TMD shape function

### Previous equation is obtained for $\mu_{\rm H} \equiv \sqrt{M_{\psi}^2 + Q^2}$

(in 
$$b_T$$
-space)  
 $\tilde{\Delta}^{[n]}_{\psi}\left(z, b_T; \sqrt{M_{\psi}^2 + Q^2}\right) = \frac{1}{2\pi} \left[1 + \frac{\alpha_s}{2\pi}C_A\left(1 + \frac{\alpha_s}{2\pi}C_A\left(1 + \frac{\alpha_s}{2\pi}C_A\left(1 + 1 + \frac{\alpha_s}{2\pi}C_A\left(1 + \frac{\alpha_s}{2\pi}C_A\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$ 

Note that a  $Q^2$ -dependent soft factor is present in the open-quark production too



.. Maxia (University of Groningen - VSI)



# $\log \frac{M_{\psi}^2 \mu_H^2}{\left(M_{\psi}^2 + Q^2\right)^2} \log \frac{\mu_H^2}{\mu_b^2} \left| \langle \mathcal{O}[n] \rangle \, \delta(1-z) \right|$ ! It is process dependent !

Zhu, Sun, Yuan, Phys. Lett. B 727 (2013)







# TMD-PDF matching coefficients taken from Echevarria, Kasemets, Mulders, Pisano, JHEP 07 (2015) $\tilde{f}_1^{g/A}(x, b_T; \zeta, \mu) = \int_{-1}^{1} \frac{\mathrm{d}\bar{x}}{\bar{x}} \tilde{C}_{g/j} f_{j/A}(\bar{x}/x; \mu)$

(Only terms relevant in region  $\Lambda_{OCD} \ll \mu$ )

$$\tilde{C}_{g/g} = \delta(1-x) + \frac{\alpha_s}{2\pi} \left[ -\frac{C_A}{2} \log^2 \frac{Q^2}{\mu_b^2} \delta(1-x) - \frac{1}{2} \log^$$



... Maxia (University of Groningen - VSI)

gluon-gluon splitting function  $-\log\frac{Q^2}{\mu_b^2}\left(P_{g/g} - \delta(1-x)\frac{\beta_0}{2}\right) \int \beta_0 = \frac{11}{3}C_F - \frac{4}{3}T_F n_f$ 

function







# TMD-PDF matching coefficients taken from Echevarria, Kasemets, Mulders, Pisano, JHEP 07 (2015) $\tilde{f}_{1}^{g/A}(x, b_{T}; \zeta, \mu) = \int_{x}^{1} \frac{\mathrm{d}\bar{x}}{\bar{x}} \,\tilde{C}_{g/j} f_{j/A}(\bar{x}/x; \mu)$

(Only terms relevant in region  $\Lambda_{\rm OCD} \ll \mu$ )

$$\tilde{C}_{g/g} = \delta(1-x) + \frac{\alpha_s}{2\pi} \left[ -\frac{C_A}{2} \log^2 \frac{Q^2}{\mu_b^2} \delta(1-x) - \log \frac{Q^2}{\mu_b^2} \left( P_{g/g} - \delta(1-x) \frac{\beta_0}{2} \right) \right]$$

$$\tilde{C}_{g/q} = \frac{\alpha_s}{2\pi} \left[ -\log \frac{Q^2}{\mu_b^2} P_{g/q} \right] \qquad Q \text{ comes from the scale choice } (\mu = q)$$



\_. Maxia (University of Groningen - VSI)

 $\underline{O}$ )



# TMD-PDF matching coefficients taken from Echevarria, Kasemets, Mulders, Pisano, JHEP 07 (2015) $\tilde{f}_1^{g/A}(x, b_T; \zeta, \mu) = \int_x^1 \frac{\mathrm{d}\bar{x}}{\bar{x}} \, \tilde{C}_{g/j} f_{j/A}(\bar{x}/x; \mu)$

(Only terms relevant in region  $\Lambda_{\rm OCD} \ll \mu$  and for general  $\mu$ )

$$\tilde{C}_{g/g} = \delta(1-x) + \frac{\alpha_s}{2\pi} \left[ C_A \left( -\frac{1}{2} \log^2 \frac{\mu^2}{\mu_b^2} + \log \frac{\mu^2}{Q^2} \log \frac{\mu^2}{\mu_b^2} \right) \delta(1-x) - \log \frac{\mu^2}{\mu_b^2} \left( P_{g/g} - \delta(1-x) \frac{\beta_0}{2} \right) \right]$$

$$\tilde{C}_{g/q} = \frac{\alpha_s}{2\pi} \left[ -\log \frac{\mu^2}{\mu_b^2} P_{g/q} \right]$$



\_. Maxia (University of Groningen - VSI)



# TMD-PDF matching coefficients taken from Echevarria, Kasemets, Mulders, Pisano, JHEP 07 (2015) $\tilde{f}_1^{g/A}(x, b_T; \zeta, \mu) = \int_{-\infty}^{1} \frac{\mathrm{d}\bar{x}}{\bar{x}} \,\tilde{C}_{g/j} f_{j/A}(\bar{x}/x; \mu)$

(Only terms relevant in region  $\Lambda_{\rm OCD} \ll \mu$  and for general  $\mu$ )

$$\tilde{C}_{g/g} = \delta(1-x) + \frac{\alpha_s}{2\pi} \left[ C_A \left( -\frac{1}{2} \log^2 \frac{\mu^2}{\mu_b^2} + \log \frac{\mu^2}{\mu_b^2} \log \frac{\mu^2}{\mu_b^2} \right) \delta(1-x) - \log \frac{\mu^2}{\mu_b^2} \left( P_{g/g} - \delta(1-x) \frac{\beta_0}{2} \right) \right]$$

$$\tilde{C}_{g/q} = \frac{\alpha_s}{2\pi} \left[ -\log \frac{\mu^2}{\mu_b^2} P_{g/q} \right]$$

# No rapidity divergences for the TMD shape function $\tilde{\Delta}_{ep}^{[n]}(z, b_T; \mu_H)$



Maxia (University of Groningen - VSI)

Comes from the rapidity regulator choice ( $\zeta = Q^2$ )

### in agreement with

del Castillo, Echevarria, Makris, Scimemi, JHEP 03 (2022)

Bor, Boer, Phys.Rev.D 106 (2022)







## **Process dependence of the TMD shape function**

$$\tilde{\Delta}_{ep}^{[n]}(z, b_T; Q, \mu_H) = \frac{1}{2\pi} \left[ 1 + \frac{\alpha_s}{2\pi} C_A \left( 1 + \log \frac{M_{\psi}^2 \mu_H^2}{(M_{\psi}^2 + Q^2)^2} \right) \log \frac{\mu_H^2}{\mu_b^2} \right] \langle \mathcal{O}[n] \rangle \, \delta(1 - z)$$

Reasons to split-up this term:

1. A purely quarkonium quantity should depend on  $M_w$  solely

2. In open-quark production the soft-factor may produce azimuthal dependeces

Catani, Grazzini, Torre, Nucl. Phys. B 890 (2014)

Figure taken from Ferrera's talk @ Heavy-Quark Hadroproduction from Collider to Astroparticle Physics (2019)



.. Maxia (University of Groningen - VSI)

Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)







## **Process dependence of the TMD shape function**

$$\tilde{\Delta}_{ep}^{[n]}(z, b_T; Q, \mu_H) = \frac{1}{2\pi} \left[ 1 + \frac{\alpha_s}{2\pi} C_A \left( 1 + \log \frac{M_{\psi}^2 \mu_H^2}{(M_{\psi}^2 + Q^2)^2} \right) \log \frac{\mu_H^2}{\mu_b^2} \right] \langle \mathcal{O}[n] \rangle \, \delta(1 - z)$$

### split up: $\Delta$

$$\Delta_{\psi}^{[n]}(z,b_{T};\mu_{H}) = \frac{1}{2\pi} \left[ 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 1 + \log \frac{M_{\psi}^{2}}{\mu_{H}^{2}} \right) \log \frac{\mu_{H}^{2}}{\mu_{b}^{2}} \right] \langle \mathcal{O}[n] \rangle \,\delta(1-z) \quad \Longrightarrow \quad \text{Universal}$$

$$S_{ep}(b_T; Q, \mu_H) = 1 + \frac{\alpha_s}{2\pi} C_A \left( 2\log \frac{\mu_H^2}{M_{\psi}^2 + Q^2} \right) \log \frac{\mu_H^2}{\mu_b^2} \longrightarrow \frac{\text{Process}}{\text{dependent}}$$



\_. Maxia (University of Groningen - VSI)

Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

$${}^{[n]}_{ep} = \Delta^{[n]}_{\psi} \times S_{ep}$$



al



 $J/\psi$  production in:

### **SIDIS (2 hard scales)**

 $S_{ep}(\mu_{H}) = 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 2\log \frac{\mu_{H}^{2}}{M_{m}^{2} + Q^{2}} \right) \log \frac{\mu_{H}^{2}}{\mu_{h}^{2}}$ 



... Maxia (University of Groningen - VSI)



Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

### hadron collisions (1 hard scale)

$$S_{pp}(\mu_{H}) = 1 + \frac{\alpha_{s}}{2\pi}C_{A}\left(3\log\frac{\mu_{H}^{2}}{M_{\psi}^{2}}\right)\log\left(\frac{1}{2\pi}\right)$$









 $J/\psi$  production in:

### **SIDIS (2 hard scales)**

 $S_{ep}(\mu_{H}) = 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 2\log \frac{\mu_{H}^{2}}{M_{m}^{2} + Q^{2}} \right) \log \frac{\mu_{H}^{2}}{\mu_{h}^{2}}$ 



... Maxia (University of Groningen - VSI)



Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

hadron collisions (1 hard scale)

 $S_{pp}(\mu_{H}) = 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 3\log\frac{\mu_{H}^{2}}{M_{m}^{2}} \right) \log\frac{\mu_{H}^{2}}{\mu_{L}^{2}}$  $S_{pp}(M_{\psi}) \approx 0$ 

Easier extraction of  $\Delta_{\psi}^{[n]}(M_{\psi})$ 









### **SIDIS (2 hard scales)**

 $S_{ep}(\mu_{H}) = 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 2\log \frac{\mu_{H}^{2}}{M_{m}^{2} + Q^{2}} \right) \log \frac{\mu_{H}^{2}}{\mu_{h}^{2}}$ 

$$\Delta_{\psi}^{[n]} \left( \sqrt{M_{\psi}^2 + Q^2} \right)$$



... Maxia (University of Groningen - VSI)



Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

### $J/\psi$ production in:







### **SIDIS (2 hard scales)**

 $S_{ep}(\mu_{H}) = 1 + \frac{\alpha_{s}}{2\pi} C_{A} \left( 2\log \frac{\mu_{H}^{2}}{M_{H}^{2} + Q^{2}} \right) \log \frac{\mu_{H}^{2}}{\mu_{h}^{2}}$  $\Delta_{\psi}^{[n]} \left( \sqrt{M_{\psi}^2 + Q^2} \right) \qquad Evolution to$ 

Tested at other scales, e.g.  $\Upsilon$  production



... Maxia (University of Groningen - VSI)



Boer, Bor, LM, Pisano, Yuan, JHEP 08 (2023)

### $J/\psi$ production in:







# **Gluon TMDs at the EIC (unpolarized)**



Maxia (University of Groningen - VSI)

5

- Collinear

4

- TMD
- Matched (with InEW)

Echevarria, Kasemets, Lansberg, Pisano, Signori, PLB 781 (2018)

- Gluon TMDs at (relatively) low scale (Here Q = 3 GeV)
- TMDShF non-perturbative component
- Match as a function of Q?









## $J/\psi$ polarization

We can study the  $J/\psi$  polarization by considering its decay into a lepton pair



 $dx_B dy d^4 P_{\psi} d\Omega$ 



... Maxia (University of Groningen - VSI)





# $J/\psi$ polarization and NRQCD

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_{B}\,\mathrm{d}y\,\mathrm{d}^{4}P_{\psi}\,\mathrm{d}\Omega} \propto 1 + \lambda\cos^{2}\theta + \mu\cos 2\theta\,\mathrm{c}\sigma$ 

Angular parameters are connected to helicity amplitudes  $\mathcal{W}_{\Lambda\Lambda'}$ 

### Parameterization is in accordance to **model-independent** arguments! Parity Hermeticity **Gauge Invariance**

Within **NRQCD** helicity amplitudes involve interferences among waves!

 $\mathscr{W}_{\Lambda\Lambda'} = \mathscr{W}_{\Lambda\Lambda'} \begin{bmatrix} 3S_1^{(1)} \end{bmatrix} + \mathscr{W}_{\Lambda\Lambda'} \begin{bmatrix} 1S_0^{(8)} \end{bmatrix} + \mathscr{W}_{\Lambda'} \begin{bmatrix} 1S_0^{(8)}$ 



. Maxia (University of Groningen - VSI)



$$\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi$$

### D'Alesio, LM, Murgia, Pisano, Sangem, JHEP 03 (2022) with $\Lambda = -1, 0, +1$

$$up \text{ to } v^4 \text{ order}$$
$$V_{\Lambda\Lambda'} [{}^3S_1^{(8)}] + \mathcal{W}_{\Lambda\Lambda'} [\{S = 1, L = 1\}^{(8)}]$$

Beneke, Krämer, Vänttinen, PRD 57 (1998)











# $J/\psi$ polarization and the Boer-Mulders

### Angular parameters within TMD factorization



Non-perturbative components may differ with  $\Lambda$ 



Maxia (University of Groningen - VSI)

<u>D'Alesio, LM, Murgia, Pisano, Sangem, JHEP 03 (2022)</u>













# $J/\psi$ polarization and production mechanisms

### Within TMD factorization the CO channel dominates



.. Maxia (University of Groningen - VSI)

 $\lambda \text{ polarisation is} \\ \text{related to the ratio} \\ R = \frac{\langle \mathcal{O}_8[{}^3P_0] \rangle}{m_c^2 \langle \mathcal{O}_8[{}^1S_0] \rangle} \\ \end{array}$ 

Band given by y variation

 $\left(0 \le y = \frac{P \cdot q}{P \cdot \ell} \le 1\right)$ 

Valid only for z = 1!





# $J/\psi$ polarization and production mechanisms I

### At $P_T \neq 0$ CS channel is <u>very</u> relevant



... Maxia (University of Groningen - VSI)





# $J/\psi$ polarization and production mechanisms II

### At $P_T \neq 0$ CS channel is <u>very</u> relevant



. Maxia (University of Groningen - VSI)



**Connection between TMD** and **collinear** regions is neeed!

And the **TMDShF** sits in the middle of this story!





## Conclusions

- Factorization involves the presence of TMD shape functions
- We present a matching procedure to extract the TMDShF perturbative tail
- TMD shape functions separated in universal and process-dependent components
- Perturbative tail at higher order  $\longrightarrow$  Relevant for  $\Delta_{k}^{[n]}$
- Non-perturbative dependence
- Role of the TMD shape function in other processes
- The EIC is a promising playground to study the TMD shape function



Maxia (University of Groningen - VSI)







