A new Weyl group action and a cluster structure for representations of shifted quantum groups

> David Hernandez (Paris) joint work with E. Frenkel (arXiv:2211.09779) and work in progress with C. Geiss and B. Leclerc

> > November 20, 2023 - ICTS Conference

David Hernandez (Paris) joint work with E. F Weyl group

Weyl group and cluster algebras

Classical Theory

- \mathfrak{g} complex finite-dimensional simple Lie algebra of rank n.
- Simple finite dimensional modules parametrized by dominant weights or monomials in

$$\mathbb{Z}[y_i]_{1\leq i\leq n},$$

where the y_i correspond to fundamental weights.

• Character morphism :

$$\chi: \mathsf{Rep}(\mathfrak{g}) \to \mathbb{Z}[y_i^{\pm 1}]_{1 \le i \le n}$$

• Image of the character morphism :

$$\operatorname{Im}(\chi) = (\mathbb{Z}[y_i^{\pm 1}]_{1 \le i \le n})^{W}$$

W : Weyl group W generated by the simple reflexions s_i

$$s_i(y_j) = y_j a_i^{-\delta_{ij}}$$
 where $a_i = \prod_{k \in I} y_k^{\mathcal{C}_{ji}}$

 a_i corresponds to a simple root (C is the Cartan matrix of g).

Classical Theory

• Example, for $\mathfrak{g} = \mathfrak{sl}_2$: $a_1 = y_1^2$ $s_1(y_1) = y_1 a_1^{-1} = y_1^{-1}$, $s_1^2(y_1) = y_1$ $s_1(y_1 + y_1^{-1}) = y_1 + y_1^{-1}$. $\operatorname{Im}(\chi) = (\mathbb{Z}[y_1^{\pm 1}])^W = \mathbb{Z}[y_1 + y_1^{-1}]$.

David Hernandez (Paris) joint work with E. F Weyl group and cluster algebras

Quantum affine algebra

- $\hat{\mathfrak{g}}$: affine Kac-Moody algebra.
- (Central extension of the loop algebra $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$).
- $q \in \mathbb{C}^*$: quantum parameter (not root of unity).
- Quantum affine algebra : $\mathcal{U}_q(\hat{\mathfrak{g}})$.
- $\mathcal{U}_q(\hat{\mathfrak{g}})$: Hopf algebra, *q*-deformation of $\mathcal{U}(\hat{\mathfrak{g}})$.
- For simplicity of the notations : we assume g simply-laced (most results will be for general types).

Quantum affine algebra

- C : Category of finite-dimensional representations of U_q(ĝ) : very interesting (and intricated) category.
- \mathcal{C} : tensor category, but not semi-simple and not braided.

Theorem (Chari-Pressley)

Simple finite-dimensional representations of $U_q(\hat{\mathfrak{g}})$ (of type 1) are parameterized by n-tuple of rational fractions of the form

$$q^{deg(P_i)}\frac{P_i(zq^{-1})}{P_i(zq)}$$

where $P_i(z) = \prod_{a \in \mathbb{C}^*} (1 - za)^{u_{i,a}} \in \mathbb{C}[z]$ and $P_i(0) = 1$ (Drinfeld polynomials).

• Monomial notation : $m = \prod_{i \in I, a \in \mathbb{C}^*} Y_{i,a}^{u_{i,a}}$.

November 20, 2023 - ICTS Conference

5/25

q-characters

• Analogue of character morphism : *q*-character (Frenkel-Reshetikhin) :

$$\chi_q : \operatorname{\mathsf{Rep}}(\mathcal{U}_q(\hat{\mathfrak{g}})) \to \mathcal{Y} = \mathbb{Z}[Y_{i,a}^{\pm 1}]_{1 \le i \le n, a \in \mathbb{C}^*}.$$

 \bullet Injective ring morphism on the Grothendieck ring of ${\mathcal C}$:

 $\operatorname{Rep}(\mathcal{U}_q(\hat{\mathfrak{g}})).$

- Recovers χ by forgetting the spectral parameters a.
- Example : fundamental representations of $\mathcal{U}_q(\hat{\mathfrak{sl}}_2)$:

$$\chi_q(V_1(a)) = Y_{1,a} + Y_{1,aq^2}^{-1}.$$

• Weyl-group symmetry ?

Symmetry of *q*-characters : braid group action

 $\bullet\,$ Braid group approach : Chari defined ring automorphisms of ${\cal Y}$

$$T_i(Y_{j,a}) = Y_{j,a} A_{i,aq}^{-\delta_{i,j}},$$

 $A_{i,a} = Y_{i,aq^{-1}} Y_{i,aq} \prod_{j \mid C_{j,i} = -1} Y_{j,a}^{-1}.$

• *T_i* operator of infinite order.

Theorem (Chari 2002)

The operators T_i define a braid group action. The q-characters are "partially" preserved by these operators

• Example :
$$\mathfrak{g} = sl_2$$
,

$$T_1(Y_{1,a}) = Y_{1,aq^2}^{-1}$$
, $T_1(Y_{1,aq^2}^{-1}) = Y_{1,aq^4}$.

Partial symmetry of $\chi_q(V_1(a)) = Y_{1,a} + Y_{1,aq^2}^{-1}$

David Hernandez (Paris) joint work with E. F

Symmetry of *q*-characters

• Different operators (Frenkel-H. 2022) :

$$\Theta_i(Y_{j,a}) = Y_{j,a} A_{i,aq^{-1}}^{-\delta_{i,j}} \frac{\sum_{i,aq^{-3}}^{\delta_{i,j}}}{\sum_{i,aq^{-1}}^{\delta_{i,j}}}$$

• Here $\Sigma_{i,a}$ is the solution of the *q*-difference equation

$$\Sigma_{i,a} = 1 + A_{i,a}^{-1} \Sigma_{i,aq^{-2}}$$

in a sum

$$\Pi = \bigoplus_{w \in W} \tilde{\mathcal{Y}}^w$$

of completions $\tilde{\mathcal{Y}}^w$ of \mathcal{Y} .

Symmetry of *q*-character

• Example : $\mathfrak{g} = sl_2$,

$$\Theta_1(Y_{1,a}) = Y_{1,aq^{-2}}^{-1} \frac{\Sigma_{1,aq^{-3}}}{\Sigma_{1,aq^{-1}}}.$$

• Here $\Sigma_{1,a}$ is the couple

$$(1 + A_{1,a}^{-1}(1 + A_{1,aq^{-2}}^{-1}(1 + \cdots), -A_{1,aq^{2}}(1 + A_{1,aq^{4}}(1 + \cdots)))).$$

It belongs to

$$\mathsf{\Pi}=\mathcal{Y}^{e}\oplus\mathcal{Y}^{s_{1}}.$$

David Hernandez (Paris) joint work with E. F Weyl group and cluster algebras

Symmetry of *q*-characters

- \mathcal{Y} embeds in Π diagonally.
- We establish that the Θ_i define involutions of Π .
- And then :

Theorem (Frenkel-H. 2022)

The Θ_i define a Weyl group action and

 $\mathcal{Y}^{W} = Im(\chi_q).$

November 20, 2023 - ICTS Conference

10 / 25

• For $w \in W$, we have Θ_w well-defined.

Symmetry of *q*-character

• Example : $\mathfrak{g} = sl_2$,

$$\Theta_1(Y_{1,a}+Y_{1,aq^2}^{-1})=Y_{1,aq^{-2}}^{-1}\frac{\Sigma_{1,aq^{-3}}}{\Sigma_{1,aq^{-1}}}+Y_{1,a}\frac{\Sigma_{1,aq}}{\Sigma_{1,aq^{-1}}}=Y_{1,a}+Y_{1,aq^2}^{-1}.$$

- The Chari operator *T_i* can be recovered as a "leading term" of one component Θ_i.
- The Frenkel-Reshetikhin screening operators S_i can be recovered from the limit of another component of Θ_i.
- Formally, at "q root of unity", one component of Θ_i is related to an operator introduced by Inoue.

November 20, 2023 - ICTS Conference

11/25

Shifted quantum affine algebras

- Representation theoretical interpretation of the new Weyl group action ?
- We use **shifted** quantum affine algebras.
- Algebras introduced by Finkelberg-Tsymbaliuk in the study of K-theoretical Coulomb branches (in the sense of Braverman-Finkelberg-Nakajima).
- $U_q^{\mu}(\hat{\mathfrak{g}})$: variations of quantum affine algebras depending on a shift parameter : a coweight μ of \mathfrak{g} .
- The Coulomb branches are realized as quotient of $\mathcal{U}_q^{\mu}(\hat{\mathfrak{g}})$ (the truncated shifted quantum affine algebras).
- Rational analogues : shifted Yangians (Brundan-Kleshchev, Kamnitzer-Webster-Weekes-Yacobi, Nakajima-Weekes).

Shifted quantum affine algebras

 Construction : same (Drinfeld) generators as U_q(ĝ), but certain relations are modified inside the Cartan-Drinfeld subalgebra :

$$\phi_i^-(z) = \mathbf{z}^{\alpha_i(\mu)} \phi_{i,\alpha_i(\mu)}^- \exp\left((q^{-1}-q) \sum_{r>0} h_{i,-r} z^{-r}\right)$$

• $\mu = 0$: $\mathcal{U}_q^0(\hat{\mathfrak{g}})$ is (a central extension) of $\mathcal{U}_q(\hat{\mathfrak{g}})$.

• μ anti codominant : $\mathcal{U}^{\mu}_{q}(\hat{\mathfrak{g}})$ contains the Borel algebra

 $\mathcal{U}_q(\hat{\mathfrak{b}}) \subset \mathcal{U}_q^\mu(\hat{\mathfrak{g}})$

of the ordinary quantum affine algebra $\mathcal{U}_q(\hat{\mathfrak{g}})$.

• There are shift morphisms for μ' anti codominant :

$$\mathcal{U}^{\mu}_{m{q}}(\hat{\mathfrak{g}}) o \mathcal{U}^{\mu+\mu'}_{m{q}}(\hat{\mathfrak{g}})$$

David Hernandez (Paris) joint work with E. F

Representations of shifted quantum affine algebras

• Representations of $\mathcal{U}^{\mu}_{q}(\hat{\mathfrak{g}})$ very different that for $\mathcal{U}_{q}(\hat{\mathfrak{g}})$ in general.

Theorem (H. 2020)

 $\mathcal{U}^{\mu}_{q}(\hat{\mathfrak{g}})$ has non-zero finite-dimensional representation if and only if μ is codominant.

• For any coweight μ , $\mathcal{U}^{\mu}_{q}(\hat{\mathfrak{g}})$ has an abelian category \mathcal{O}^{μ} of representations : non necessarily finite-dimensional, but with finite-dimensional weight spaces (and the usual cone condition on the weight of a representation).

Theorem (H. 2020)

The simple representations in \mathcal{O}^{μ} are parameterized by n-tuples of rational fractions $(\psi_i(z))_{1 \le i \le n}$ regular at 0 and so that

$$deg(\psi_i(z)) = \alpha_i(\mu).$$

Representations of shifted quantum affine algebras

- $\mu = 0$: essentially same representations as for $\mathcal{U}_q(\hat{\mathfrak{g}})$. We have $\deg(\psi_i(z)) = 0$ as for Chari-Pressley rational fractions. \mathcal{O}^0 contains finite-dimensional fundamental representations.
- $\mu = \omega_i^{\vee}$, $a \in \mathbb{C}^*$. We have $L_{i,a}^+$ in $\mathcal{O}^{\omega_i^{\vee}}$ positive prefundamental representations where

$$\psi_j(z)=(1-za)^{\delta_{i,j}}.$$

It is of dimension 1 !

• $\mu = -\omega_i^{\vee}$, $a \in \mathbb{C}^*$: We have $L_{i,a}^-$ in $\mathcal{O}^{-\omega_i^{\vee}}$ negative prefundamental representations where

$$\psi_j(z)=(1-za)^{-\delta_{i,j}}.$$

Infinite dimensional, simple as a $\mathcal{U}_q(\hat{\mathfrak{b}})$ -module, extends $\mathcal{U}_q(\hat{\mathfrak{b}})$ -representations of H.-Jimbo (related to Baxter *Q*-operators) : limit of finite-dimensional Kirillov-Reshetikhin modules.

Grothendieck ring

• The sum of Grothendieck groups

$$\mathcal{K}_0(\mathcal{O}) = \bigoplus_{\mu} \mathcal{K}_0(\mathcal{O}^{\mu})$$

has a ring structure, induced from the fusion product obtained from the Drinfeld coproduct (topological coproduct).

- The structure constants on simple classes are positive.
- We have a notion of *q*-characters in the shifted context. Injective ring morphism

$$\chi_{q}: \mathsf{K}_{0}(\mathcal{O}) \to \tilde{\mathcal{Y}}$$

completion of \mathcal{Y} .

• For simplicity of notations : in the following parameters $a \in q^{\mathbb{Z}}$.

Interpretation of the Weyl group action

Theorem (Frenkel-H.)

We have (up to one-dimensional invertible representations) :

$$Y_{i,a} = \chi_q(L^+_{i,aq^{-1}})/\chi_q(L^+_{i,aq}).$$

(the first component of)
$$\Theta_i(Y_{i,a}) = \chi_q(L_{aq^{-1}}^{s_i(\omega_i^{\vee})})/\chi_q(L_{aq}^{s_i(\omega_i^{\vee})}).$$

for a family of simple representations $L_{i,a}^{s_i(\omega_i^{\vee})}$ in $\mathcal{O}^{s_i(\omega_i^{\vee})}$.

• For a general $w \in W$, $i \in I$, we introduce

$$Q^{w(\omega_i^ee)}_{a}\in ilde{\mathcal{Y}}^e$$

so that the first component of $\Theta_w(Y_{i,a})$ is

$$Q_{\mathsf{a}q^{-1}}^{\mathsf{w}(\omega_i^ee)}/Q_{\mathsf{a}q}^{\mathsf{w}(\omega_i^ee)}$$

David Hernandez (Paris) joint work with E. F

Interpretation of the Weyl group action

• We also introduce a family of simple representations $L_a^{w(\omega_i^{\vee})}$ (with explicit parameter) and explicit conjectural *q*-character formula :

$$\chi_q(L_a^{w(\omega_i^{\vee})}) = Q_a^{w(\omega_i^{\vee})}$$

- We prove the leading term of Q_a^{w(ω_i)} can be recovered from Chari braid group action by a change of variables.
- Interpretation of Θ_w associated to $w \in W$: the simple representation $L_a^{\omega_i^{\vee}}$ is replaced by the simple representation $L_a^{w(\omega_i^{\vee})}$.
- Finite-dimensional representations of $U_q(\hat{\mathfrak{g}})$ are invariant by this substitution.

QQ-system

- Additional properties of the $Q_a^{w(\omega_i^{\vee})}$:
- Theorem (Frenkel-H. 2023)

The series $Q_a^{w(\omega_i^{\vee})}$ satisfy the QQ-system

$$Q_{aq}^{(ws_i)(\omega_i^{\vee})}Q_{aq^{-1}}^{w(\omega_i^{\vee})} - Q_{aq^{-1}}^{(ws_i)(\omega_i^{\vee})}Q_{aq}^{w(\omega_i^{\vee})} = \prod_{j|C_{i,j}=-1} Q_a^{w(\omega_j^{\vee})}$$

- Motivations : *QQ*-system in the context of affine opers (Masoero-Raimundo-Valeri, Mukhin-Varchenko).
- Example $(\mathfrak{g} = sl_2)$: Quantum Wronskian relation :

$$ilde{Q}_{\mathsf{a}\mathsf{q}} Q_{\mathsf{a}\mathsf{q}^{-1}} - ilde{Q}_{\mathsf{a}\mathsf{q}^{-1}} Q_{\mathsf{a}\mathsf{q}} = 1.$$

where
$$\tilde{Q}_a = Q_a^{-\omega_1^{\vee}}$$
, $Q_a = Q_a^{\omega_1^{\vee}}$.

Cluster algebras (quick reminder)

- Cluster algebra \mathcal{A}_Q attached to a quiver Q.
- Q_0 : set of vertices of Q.
- Start from $\mathcal{F} = \mathbb{Q}(X_i)_{i \in Q_0}$.
- \mathcal{A}_Q is the commutative subalgebra of \mathcal{F} generated by cluster variables.
- Initial cluster variables : X_i ($i \in Q_0$).
- New cluster variables : obtained from the initial by mutations (exchange relations controlled by the quiver *Q*).
- The cluster variables are grouped into overlapping subsets : the clusters.
- Cluster monomials : monomials in the cluster variables from the same cluster.

Cluster structure - finite-dimensional representations

- H.-Leclerc : realize Grothendieck rings of representations of quantum groups as cluster algebras ?
- Many developments for the category C of ordinary $U_q(\hat{\mathfrak{g}})$: H.-Leclerc, Nakajima, Qin, Kashiwara-Kim-Oh-Park, Bittmann, Brito-Chari...
- Now : C^{sh} ⊂ O category of finite-dimensional representations of shifted quantum affine algebras.

Theorem (H.-Leclerc 2016, Kashiwara-Kim-Oh-Park 2020, H. 2020)

 $K_0(\mathcal{C}^{sh})$ is isomorphic to a cluster algebra $\mathcal{A}_{\Gamma_\infty}$ (explicit quiver Γ_∞). Initial cluster variables : classes of positive prefundamental representations. The cluster monomials correspond to certain classes of simple modules.

Cluster structure - finite-dimensional representation

- Example : $\mathfrak{g} = \mathfrak{sl}_2$. Infinite linear quiver :
 - $\cdots \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots$
- Initial seed of 1-dimensional representations

$$\cdots \longrightarrow L^+_{1,q^{-2}} \longrightarrow L^+_{1,1} \longrightarrow L^+_{1,q^2} \longrightarrow \cdots$$

• First step mutations are given by Baxter TQ-relations

$$[L_{1,a}^+][V_1(a)] = [L_{1,aq^2}^+] + [L_{1,aq^{-2}}^+]$$

November 20, 2023 - ICTS Conference

22 / 25

where V_1 : 2-dimensional fundamental representation.

Cluster structure - category \mathcal{O}

- Work in progress (with Geiss and Leclerc) :
- \bullet New families of quivers Γ'_∞ attached to each $\mathfrak{g}.$

Theorem (Geiss-H.-Leclerc 2023)

The Grothendieck ring $K_0(\mathcal{O})$ is isomorphic to (a completion of) $\mathcal{A}_{\Gamma'_{\infty}}$.

- Crucial ingredients :
- There is an initial seed with cluster variables of the form Q^{w(ω[∨]_i)}_{i,q^r} for various 1 ≤ i ≤ n, w ∈ W, r ∈ Z.
- The QQ-systems [FH] are identified with distinguished exchange relations.
- "Periodicity" property.

November 20, 2023 - ICTS Conference

23 / 25

Cluster structure - category \mathcal{O}

• Example : $\mathfrak{g} = \mathfrak{sl}_2$

Initial seed :

$$\cdots \longrightarrow L^+_{1,q^2} \longrightarrow L^+_{1,1} \longleftarrow L^-_{1,q^{-2}} \longrightarrow L^-_{1,q^{-4}} \longrightarrow \cdots$$

• Mutation at $L_{1,1}^+$:

$$\cdots \longrightarrow L^+_{1,q^2} \longleftarrow L^-_{1,1} \longrightarrow L^-_{1,q^{-2}} \longrightarrow L^-_{1,q^{-4}} \longrightarrow \cdots$$

• Mutation at $L^-_{1,q^{-2}}$:

$$\cdots \longrightarrow L^+_{1,q^2} \longrightarrow L^+_{1,1} \longrightarrow L^+_{1,q^{-2}} \longleftarrow L^-_{1,q^{-4}} \longrightarrow \cdots$$

Conjecture

• We conjecture : all cluster monomials in $\mathcal{A}_{\Gamma'_\infty}$ correspond to classes of simple objects in $\mathcal O$ through our isomorphism.

Theorem (Geiss-H.-Leclerc 2023)

The conjecture is true for $\mathfrak{g} = \mathfrak{sl}_2$.

• Complete list of cluster variables for $\mathfrak{g} = \mathfrak{sl}_2$:

$$L^+_{1,a}$$
 , $L^-_{1,a}$, $W^{(k)}_{1,a}$

where the $W_{1,a}^{(k)}$ are finite-dimensional Kirillov-Reshetikhin modules.