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Introduction

§ Unavoidably, people were going to 
look at 2D active crystals and how 
they melt…

§ Two main reasons for this:
§ Fashion to look at anything-active

§ Fascination of theorists for KTHNY
theory

§ Also recent excitement about chiral 
active matter, odd elasticity, etc., with 
crystals found in experiments

KTHNY: Kosterlitz-Thouless-Halperin-Nelson-Young

Crystal of spinning starfish embryos
(Tan et al., Nature 607, 287 (2022)



§ We consider a more general problem: 
stability, under their intrinsic 
fluctuations, of 2D crystals formed by 
interacting active particles

§ previous works have considered this; 
in particular melting of crystals made 
of active particles such as active 
Brownian particles (ABP) 

§ Most concluded that KTHNY scenario 
holds or assumed it to be true…

Today we revisit this and show how and 
why 2D active crystals are very different 
from equilibrium ones 

Introduction

Simple definition of ABPs: constant speed, motion along 
persistent intrinsic polarity !, with !̇ =white noise.

Deformation field of a large defect-less active crystal
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Main results of KTHNY theory
§ 2D crystal: 

§ QLR positional order and LR bond 
order. 

§ Point defects [interstitials, 
vacancies] and bounded pairs of 
dislocations can be present 
nevertheless

§ KTHNY: melting of 2D crystals, 
in equilibrium, can proceed in 
two steps:

§ first, a continuous KT-like transition 
to a phase with SR positional order 
and QLR bond order (usually 
hexatic, i.e. 6-fold symmetry); 
driven by unbinding of pairs of 
dislocations, which move like a gas 
in the bond-quasi-ordered phase

§ second, another KT transition 
where bond-order becomes short-
range, leaving a fluid phase; driven 
by the unbinding of dislocations in 
free disclinations§ LR: long range (finite asymptotic value)

§ QLR: quasi-long-range (algebraic decay to zero)
§ SR: short-range (exponential decay to zero)



Main results of KTHNY theory

Schematics from Digregorio et al., Soft Matter,18, 566 (2022)
(arrows are showing local hexatic order orientation)

Pictorially, for 
the triangular 
lattice case:



§ exponents & scaling laws 
characterizing each of these transitions 
are known, but were not observed 
really convincingly [difficult!]

§ easier [and usually adopted] check of 
KTHNY: upper bounds that the theory 
sets on the decay exponents of 
correlations in the QLRO phases. 

§ In the crystal phase in particular, the 
two-point correlation function of 
positional order decays algebraically 

with an exponent ! that increases 
continuously with temperature and 

! < !#$% ∈ '
( ,
'
*

§ remarks:
§ often the transitions are not 

continuous but discontinuous, with 
coexistence sub-regions

§ direct melting [from crystal to fluid] 
can also be observed

Main results of KTHNY theory



§ KTHNY work essentially within linear 
elastic theory, plus energetic/entropic 
arguments about the nucleation and 
unbinding of dislocation pairs

§ Spin wave fluctuations give

§ Melting occurs roughly when entropy 
and elastic energy for creating a 
dislocation are balanced 

§ Combining the two equations yields 
(triangular lattice)

• |G| is a reciprocal vector of lattice
• ! and " are Lamé elastic constants
• ℓ0 is the lattice spacing

≤ 1
3

Main results of KTHNY theory



Numerical study of crystals of ABPs 

§ interactions:                                
mainly pair-wise repulsion

§ most results obtained with weak local 
alignment of polarities

§ use perfect triangular lattice as initial 
condition

• s0 is self-propulsion force / speed 
• here harmonic potential
• Dr rotational diffusion
• ! term: ferromagnetic alignment
• ℓ0 is the lattice spacing

Basic phase diagram in (!, s0) plane
(#r=1.5, d0 = Dr = 1, ℓ0 = ⁄3 2)



Decay of two-point correlation functions in crystal phase
Left: positional order.  Right: bond (hexatic order)

! ≃ 0.68

Numerical study of crystals of ABPs 

§ phase diagram seems to show 
that KTHNY scenario holds…

§ but ! > (
) !!

§ ! can take very large 
values…

§ !~+,- indicates that polarity 
field . = +,0 1 can be seen 
as effective space-time 
correlated noise  



Variation of ! with parameters (crystal phase)
Note that !~#$% with slope increasing with & (right panel)

Numerical study of crystals of ABPs 

§ phase diagram seems to show 
that KTHNY scenario holds…

§ but ! > (
) !!

§ ! can take very large 
values…

§ !~#$% indicates that polarity 
field * = #$, - can be seen 
as effective temperature, but 
with space-time correlations



Theoretical understanding
§ Spatial power spectra of s confirm increase of 

effective large-scale temperature TS with !
§ but only on large scales…                           

two-temperature picture?

§ Within linear elastic theory, displacement field 
u obeys

§ In equilibrium s is noise; here s obeys

with " white noise of variance s0
2Dr #

Spatial spectra of s at various ! values

§ u is displacement from perfect crystal positions
§ a and b > 0, b due to alignment



§ Spatial power spectra of u can be calculated; 
good agreement with numerics (included k-6 tail)

§ small-k limit:

yields effective !" = $
% &'

%()/+%

§ rescaling wavenumbers by k∗(κ) and spectra by a 
coefficient c∗(κ) yields an excellent collapse 

Spatial spectra of u at various - values
and collapse using --varying coefficients

Theoretical understanding



§ The product c∗(κ)k∗2(κ) provides an estimate of 
the prefactor of 1/k2 scaling region of u spectra

§ Using spinwave expression for " yields

§ Agreement with direct estimates and 
extrapolation to very high values where direct 
measures cannot be performed

(displacements beyond lattice spacing,
Bragg peak ill-defined)

Decay exponent " from direct measures
and using #-varying coefficients

Theoretical understanding



Movie of large crystal 
in strong deformation 
regime

§ system of size 
1536x1536

§ (indirect) value of 
decay exponent         
! =14 !!

§ Maximum |u| larger 
than 3 lattice spacings

§ Perfect crystal order 
without defects

Decay exponent ! from direct measures
and using "-varying coefficients

Displacement field u (left) and hexatic order field (right)
(color is orientation, intensity is magnitude)

Theoretical understanding



Let’s now turn to the LR bond order

§ Equilibrium predicts that 

decreases exponentially with T

§ We do observe that 

§ This suggests the existence of a “bond-order 
(effective) temperature” !" = $" %, '( )*+

§ To be meaningful, T6 must be adjusted to 
coincide with TS in the equilibrium '( → ∞
limit

Variation of asymptotic bond-order value
with s0

2 at various % and Dr values
(all straight lines have slope 1)

Theoretical understanding



§ Since                        we define

and adjust tS and t6 so that they coincide in

equilibrium

§ divergence of tS and t6 as ! increases, but also 
with Dr even for !=0

§ bond temperature t6 lower than elastic 
temperature tS

Øwild deformations without unbinding 
dislocations

Variation of reduced temperatures
tS and t6 with ! and Dr

Theoretical understanding



§ Active crystals can sustain strong 
spontaneous deformations without 
melting 

§ KTHNY bounds do not apply: 
melting can occur at arbitrarily large 
values of !, but also, probably, for 
!<1/4

§ Two-temperature picture: local 
fluctuations stay weak while large-
scale elastic deformations occur

§ Alignment not crucial; key 
ingredient is (time-) persistence of 
fluctuations

§ Similar results obtained in systems 
without alignment, with chirality, for 
passive crystals in active bath, even 
for XY model with time-correlated 
noise

§ Key open problem is whether 
melting transition remains KT-like

Summary, remarks, perspectives

Physical Review Letters 131, 108301 (2023)


