Hadron Structure in Experiments Part. 3

Sanghwa Park

Jefferson Lab

Probing Hadron Structure at the Electron-Ion Collider, ICTS, Jan. 29 - Feb.

Office of Science

Previously..

- Part. 1: Basics of hadron structure experiments
 - Accelerators and particle detectors
 - Deep Inelastic Scattering experiments
 - DIS Kinematics reconstruction
- Part. 2: Collinear observables and measurements
 - Continue on DIS data PDF extraction
 - Parton distributions at large-x
 - Flavor asymmetry of sea
 - Polarized spin structure
- Part. 3: Beyond collinear
 - TMD measurements
 - GPD measurements
 - Future opportunities

З

Collinear PDFs

• Collinear parton picture: three parton distribution functions unveil the information on the 1-dim structure of the proton

Collinear PDFs

• Collinear parton picture: three parton distribution functions unveil the information on the 1-dim structure of the proton

$$q(x) \quad f_1^q(x) = q^{\stackrel{\rightarrow}{\Rightarrow}}(x) + q^{\stackrel{\rightarrow}{\leftarrow}}(x)$$

Unpolarized parton distribution functions (PDFs)

$$\Delta q(x) \quad g_1^q(x) = q^{\stackrel{\rightarrow}{\Rightarrow}}(x) - q^{\stackrel{\rightarrow}{\leftarrow}}(x)$$

Helicity PDFs

$$\delta q(x) \quad h_1^q(x) = q^{\uparrow\uparrow}(x) - q^{\uparrow\downarrow}(x)$$

Transversity PDFs

2+1D Imaging of Nucleon Structure

Transverse Momentum Dependent Functions

Leading twist TMD PDFs

- Sensitive to confined motion of quarks and gluons inside the nucleon
- Connection to OAM: Off-diagonal part vanishes without parton's transverse motion
 - Pretzelosity: Link to quark OAM (model-dependent)
- Accessed via various processes (SIDIS, DY, e+e-, p+p)
 - TMD factorization and universality test

TMD programs

TMDs from SIDIS

 P_{h}

 P_h

 ϕ_h

lepton plane

- Semi-Inclusive process is ideal to study TMDs Naturally have two scales: Q² >> p_T², Λ_{QCD}²
- Access all 8 leading twist TMDs via spin (in)dependent azimuthal modulations

azimuthal modulations

$$\frac{d\sigma}{dxdydzdP_{T}^{2}d\phi_{h}d\phi_{S}}$$

$$= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\times \left\{F_{UU,T}+\epsilon F_{UU,L}+\sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi_{h}}\cos\phi_{h}+\epsilon F_{UU}^{\cos2\phi_{h}}\cos2\phi_{h}+\lambda_{e}\sqrt{2\epsilon(1-\epsilon)}F_{LU}^{\sin\phi_{h}}\sin\phi_{h}\right.$$

$$+S_{L}\left[\sqrt{2\epsilon(1+\epsilon)}F_{UL}^{\sin\phi_{h}}\sin\phi_{h}+\epsilon F_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right]+\lambda_{e}S_{L}\left[\sqrt{1-\epsilon^{2}}F_{LL}+\sqrt{2\epsilon(1-\epsilon)}F_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right]$$

$$+S_{T}\left[\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\epsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\sin(\phi_{h}-\phi_{S})+\epsilon F_{UT}^{\sin(\phi_{h}+\phi_{S})}\sin(\phi_{h}+\phi_{S})+\epsilon F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\sin(3\phi_{h}-\phi_{S})\right.$$

$$+\sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin\phi_{S}}\sin\phi_{S}+\sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\sin(2\phi_{h}-\phi_{S})\right]$$

$$+\lambda_{e}S_{T}\left[\sqrt{1-\epsilon^{2}}F_{LT}^{\cos(\phi_{h}-\phi_{S})}\cos(\phi_{h}-\phi_{S})\right]$$

TMDs from SIDIS

- Semi-Inclusive process is ideal to study TMDs Naturally have two scales: Q² >> p_T², Λ_{QCD}²
- Access all 8 leading twist TMDs via spin (in)dependent azimuthal modulations

azimuthal modulations

$$\frac{d\sigma}{dxdydzdP_{T}^{2}d\phi_{h}d\phi_{S}}$$

$$= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\times \left\{F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi_{h}}\cos\phi_{h} + \epsilon F_{UU}^{\cos2\phi_{h}}\cos2\phi_{h} + \lambda_{e}\sqrt{2\epsilon(1-\epsilon)}F_{LU}^{\sin\phi_{h}}\sin\phi_{h} + S_{L}\left[\sqrt{2\epsilon(1+\epsilon)}F_{UL}^{\sin\phi_{h}}\sin\phi_{h} + \epsilon F_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right] + \lambda_{e}S_{L}\left[\sqrt{1-\epsilon^{2}}F_{LL} + \sqrt{2\epsilon(1-\epsilon)}F_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right]$$

$$+ S_{T}\left[\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} + \epsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\sin(\phi_{h} - \phi_{S}) + \epsilon F_{UT}^{\sin(\phi_{h}+\phi_{S})}\sin(\phi_{h} + \phi_{S}) + \epsilon F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\sin(3\phi_{h} - \phi_{S})\right]$$

$$+ \lambda_{e}S_{T}\left[\sqrt{1-\epsilon^{2}}F_{LT}^{\cos(\phi_{h}-\phi_{S})}\cos(\phi_{h} - \phi_{S}) + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos\phi_{S}}\cos\phi_{S} + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\cos(2\phi_{h} - \phi_{S})\right]\right\}$$
The

Target single spin asymmetry

$$A_{UT} = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \qquad A_{UT} = A_{UT}^{Collins} sin(\phi_h + \phi_s) + A_{UT}^{Sivers} sin(\phi_h - \phi_s)$$

$$+A_{UT}^{Pretzelosity}sin(3\phi_h - \phi_s)$$

TMI	Ds	Quark Polarization			
vic SID	ı IS	Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
-	υ	$\begin{array}{c} F_{UU} \\ \propto f_1 \otimes D_1 \\ \\ \text{Unpolarized} \end{array}$		$F_{UU}^{\cos(2\phi_h)} \propto h_1^{\perp} \bigotimes H_1^{\perp}$ Boer-Mulders	
larization	L		$A_{LL} \propto g_1 \bigotimes D_1$ Helicity	$A_{UL}^{\sin(2\phi_h)} \propto h_{1L}^{\perp} \otimes H_1^{\perp}$ Long-Transversity	
Nucleon Po	т	$\begin{array}{c} A_{UT}^{\sin(\phi_h-\phi_S)} \\ \propto f_{1T}^{\perp} \otimes D_1 \\ \\ \text{Sivers} \end{array}$	$A_{LT}^{\cos(\phi_h-\phi_S)} \propto g_{1T} \otimes D_1$ Trans-Helicity	$\begin{array}{l} A_{UT}^{\sin(\phi_h+\phi_S)} \propto h_1 \otimes H_1^{\perp} \\ & Transversity \\ A_{UT}^{\sin(3\phi_h-\phi_S)} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \\ & Pretzelosity \end{array}$	

 P_h

 P_{h}

 ϕ_h

lepton plane

Sivers from HERMES

• HERMES "TMDs bible"

[HERMES, J. High Energ. Phys. 2020, 10 (2020)]

- Large positive amplitude, clear evidence of non zero u-quark Sivers
- Detailed information from the 3D binning (x, z, pT)
- Continuous rising of K+ amplitude due to different contribution from exclusive vector meson decays (less pronounced for kaons)

Sivers from COMPASS

Modified universality

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x, k_{T}, Q^{2}) = -f_{q/h^{\uparrow}}^{\text{DY/W}^{\pm}/Z}(x, k_{T}, Q^{2})$$

[Collins, PLB 536 (02)]

• Sivers sign change: fundamental prediction from the gauge invariance of QCD, direct verification of QCD factorization

- Measures SIDIS and DY with the same detector
- COMPASS DY results favor the sign change hypothesis

Fully reconstructed W kinematics via its recoil compared to curves with sign-change scenario

Agree with the sign change, improved precision data expected.

Collins asymmetries

Collins asymmetries

• It can be also measured from hardons within jets in p+p [STAR, PRD 103 (2021) 92009]

- Transverse spin asymmetries of the azimuthal distribution of pions inside of jets
- First Collins asymmetry measurement in p+p
- Compare with models based on SIDIS/e⁺e⁻ : universality and factorization
- Generally good agreement with STAR data
- No sign of strong TMD evolution in the asymmetries

Transversity

- One of three standard PDFs, however least known due to its chiral odd nature
- Can be observed in combination with additional spin dependent final state effects (e.g Collins asymmetry ~ Transversity x Collins FF)
- Tensor charge
 - lowest moment of transversity $\delta_T q =$

$$d = \int_{0}^{1} \left[h_{1}^{q}(x) - h_{1}^{\bar{q}}(x) \right] \mathrm{d}x$$

Fundamental quantity of nucleon. Can be compared with Lattice QCD calculation.

- One of thre
- Can be ob: effects (e.g. John a asymmetry)

ITAHOVEISILY A COMPANY

Tensor charge

ensor charge
• lowest moment of transversity
$$\delta_T q = \int_0^1 \left[h_1^q(x]_{A_{UT}^{\sin(\phi_h,\bar{+}\phi_S)}} \sim h_1(x,k_\perp) \bigotimes H_1^\perp(z,p_\perp)\right]$$

Fundamental quantity of nucleon. Can be compared with Lattice QCD

Unpolarized TMDs: Boer-Mulder

- Unpolarized DY angular distribution
 - Pion-induced DY from COMPASS

- Tend to deviate from pQCD calculation, indicating nonzero BM effect
- First photon-induced DY results at SeaQuest

- SIDIS measurements from COMPASS
 - Transverse momentum distributions and azimuthal symmetries
 - Clear signal and kinematic dependence

Transverse Single Spin Asymmetries in p+p

Transverse Single Spin Asymmetries in p+p

- Twist-3 multiparton correlation in collinear framework:
 - Need one hard scale (pT), relevant to most inclusive hadron productions in p+p
 - qgq correlation function: interference between scattering off of quark and gluon versus a single quark of the same flavor
 - ggg correlation function: two gluons versus one gluon

A_N : direct photons

- First measurement of direct photon A_N at RHIC
- Direct photon channel is sensitive to initial state effects only
- Constraint the trigluon correlation functions
- Indirect access to Sivers function

- Neutral pion measurement sensitive to both initial and final state effects
- Mid-rapidity measurements are sensitive to gluons
- Asymmetries consistent with zero, new data significantly improved precision compared to previous PHENIX results

TSSAs in nuclear environment

- First time polarized p+A collisions in 2015
- Study nuclear effects in A_N

Charged hadron AN

- Inclusive positively charged hadrons TSSA in the forward region
- Particle composition $\pi^+/K^+/p$: 45%/47%/5%

Charged hadron AN

- Suppression of A_N in p+Au observed
 - Suppression in p+A is sensitive to saturation scale
 - A^{1/3} suppression in models with gluon saturation effects:

PRD84 (2011) 034019, PRD95 (2017) 014008

- <pT> of this measurement > saturation scale in Au
- No A dependence observed from mid rapidity pi0 measurements

Generalized Parton Distributions

Nucleon Tomography

GPD	U	L	T
U	H		\mathcal{E}_T
\boldsymbol{L}		\tilde{H}	$ ilde{E}_T$
T	E	$ ilde{E}$	$H_T, \ \tilde{H}_T$

Leading-twist GPDs: 4 chiral-even GPDs $H, \tilde{H}, E, \tilde{E}$ - DVCS, DVMP, Pseudoscala mesons 4 chiral-odd GPDs $H_T, \tilde{H}_T, E_T, \tilde{E}_T$ - ρ production, ..

• Quark OAM contribution to the proton spin

$$J_{\rm q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} \mathrm{d}x \; x \left[H^{\rm q}(x,\xi,t) + E^{\rm q}(x,\xi,t) \right] \qquad J_{q} = \frac{1}{2} \Delta \Sigma + L_{q} \qquad \text{[X. Ji PRL 78, 610 (1997)]}$$

- Accessed via exclusive processes;
- DVCS, DVMP, TCS
- cross section and asymmetries (beam charge, beam spin)

GPD Program

Collider mode e-p forward fast proton HERA till

Polarised 27 GeV e-/e+ Unpolarised 920 GeV p ~ Full event reconstruction

Fixed target mode slow recoil proton

Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 with recoil detector

High lumi, highly polar. 6 & **12 GeV e**-Long, (Trans) polarised p, d target Missing mass technique (Hall A) ~ Full event reconstruction (CLAS12)

Highly polarised **160 GeV μ+/μ**p target, (Trans) polarised target with recoil detection

Deeply Virtual Compton scattering

 $q = (p_{\mu} - p_{\mu'})$: 4-momentum of virtual photon $Q^2 = -q^2$: virtual photon virtuality $t = (p_P - p_{P'})^2$: 4-momentum transfer to nucleon squared x: average longitudinal momentum fraction ξ : half of longitudinal momentum fraction transfer

- Sensitive to H and E
- GPDs appear in the DVCS amplitude through CFFs

$$\mathcal{H}_{++}(\xi,t) = \int_{-1}^{1} H(x,\xi,t) \Big(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \Big) dx$$

 $\sigma_{(}ep \rightarrow ep\gamma) = \left| DVCS \right|^2 + \left| BH \right|^2 + Interference$

DVCS cross section

Measuring DVCS to access GPDs information

t-dependent cross section

DVCS at large-x

DVCS off neutron

Flavor separation of CFFs (combined with proton data)

First experimental extraction of all four helicity-

Sensitive to GPD E

• JLab HallA arXiv:2201.03714 [hep-ph]

[Benali, *et al.*, Nature Physics 16, 191–198 (2020)] 6 GeV data from HallA, NLO and HT analyses

Timelike Compton Scattering

- Time-reversal conjugate process of DVCS
- Both $Im(\mathcal{H})$ and $Re(\mathcal{H})$ can be accessed
- Comparison with DVCS: Universality test of GPDs
- Real part of the CFF and nucleon D-term:

pressure distribution in the nucleon [Burkert et al., Nature 557, 396-399 (2018)]

• First measurement by CLAS12 [CLAS, Phys. Rev. Lett. 127, 262501 (2021)]

Exclusivity

• Example: DVCS process

$$e + p \rightarrow e' + \gamma + p'$$

- Would be ideal to have full event reconstruction
- Can measure recoil proton?
 - Forward detector at collider

A very simple event :

H1 Events

Exclusivity

• Example: DVCS process

$$e + p \rightarrow e' + \gamma + p'$$

- Would be ideal to have full event reconstruction
- No recoil detector?
 - Missing mass reconstruction

JLab HallA DVCS

Exercise: measure π^0

- VIP as an observable (VIO?) of its own measurements, but also very useful for detector calibration, background suppression when looking for other final states.
- From Lecture 1:
 - Neutral pion lifetime is $\sim 10^{-18}$ sec.
 - Neutral pion decay modes:
 - two photons decay (BR: ~0.988), Dalitz decay (BR: ~0.0117)
- Q1: How would you detect the pion?
- Q2: What detector would you use?
- Q3: How do you know you detected pions?

Exercise: measure π^0

- Invariant mass of pion: 135 MeV/c²
- In two-particle collisions

Exclusivity : the CLAS12/JLab scheme

The **full exclusivity** of the event is insured by:

- Electron detection: Cerenkov detector, drift chambers and electromagnetic calorimeter
- Photon detection: sampling calorimeter or a small PbWO4-calorimeter close to the beamline
- Proton detection: Silicon and Micromegas detector

 Current and future experiments for hadron structure experiments

sPHENIX Cold QCD Program

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	$ z < 10 { m cm}$
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	$0.11 {\rm pb}^{-1}$
					$0.01 \ \mathrm{pb^{-1}} \ [10\%-str]$	

Jet, Heavy flavor, and direct photon measurements will allow us to detailed investigation of the transverse structure of the proton and nuclear effects

10¹⁰

.5 GeV

Yield / 2.

<u>sPHENIX BUP2021 [sPH-TRG-2021-001]</u>

38

STAR Forward Upgrade and Cold QCD Plan

At 2.5 < η < 4

- Si disks + small-strip Thin Gap Chamber (sTGC) for tracking;
- Electromagnetic and hadronic calorimeters.

Detector	p+p and p+A	A+A
ECal	~10%/ \sqrt{E}	~20%/√ <i>E</i>
HCal	~50%/ \sqrt{E} + 10%	
Tracking	Charge separation Photon background suppression	0.2< p_T < 2 GeV/c, with 20-30% 1/ p_T

Slide from T. Lin (RHIC&AGS Meeting, 2021)

COMPASS++/AMBER

COMPASS detector + Several upgrade

Hadron mass Hadron radii Pion and Kaon Structure Meson polarizabilities Strange sector hadron spectroscopy

Summary

- Part. 1: Basics of hadron structure experiments
 - Accelerators and particle detectors
 - Deep Inelastic Scattering experiments
 - DIS Kinematics reconstruction
- Part. 2: Collinear observables and measurements
 - Continue on DIS data PDF extraction
 - Parton distributions at large-x
 - Flavor asymmetry of sea
 - Polarized spin structure
- Part. 3: Beyond collinear
 - TMD measurements
 - GPD measurements
 - Future opportunities