Hadron Structure in Experiments Part. 3

Sanghwa Park
 Jefferson Lab

Jefferson Lab
Probing Hadron Structure at the Electron-Ion Collider, ICTS, Jan. 29 - Feb, 3
ENERGY

Previously..

- Part. 1: Basics of hadron structure experiments
- Accelerators and particle detectors
- Deep Inelastic Scattering experiments
- DIS Kinematics reconstruction
- Part. 2: Collinear observables and measurements
- Continue on DIS data - PDF extraction
- Parton distributions at large-x
- Flavor asymmetry of sea
- Polarized spin structure
- Part. 3: Beyond collinear
- TMD measurements
- GPD measurements
- Future opportunities
*Special thanks to J. Roche for the materials on GPD measurements.

Collinear PDFs

- Collinear parton picture: three parton distribution functions unveil the information on the 1-dim structure of the proton

Unpolarized parton distribution functions (PDFs)

Helicity PDFs

Transversity PDFs

Collinear PDFs

- Collinear parton picture: three parton distribution functions unveil the information on the 1-dim structure of the proton

$$
\mathrm{q}(\mathrm{x}) \quad \mathrm{f}_{1}^{\mathrm{q}}(\mathrm{x})=\mathrm{q} \overrightarrow{\mathrm{~F}}(\mathrm{x})+\mathrm{q}^{\vec{\epsilon}}(\mathrm{x})
$$

$$
\Delta \mathrm{q}(\mathrm{x}) \quad \mathrm{g}_{1}^{\mathrm{q}}(\mathrm{x})=\stackrel{\mathrm{q}}{\vec{\Rightarrow}}(\mathrm{x})-\mathrm{q}^{\stackrel{\rightharpoonup}{\epsilon}}(\mathrm{x})
$$

$$
\delta q(\mathrm{x}) \quad \mathrm{h}_{1}^{\mathrm{q}}(\mathrm{x})=\mathrm{q}^{\uparrow \Uparrow}(\mathrm{x})-\mathrm{q}^{\uparrow \Downarrow}(\mathrm{x})
$$

Unpolarized parton distribution functions (PDFs)

Helicity PDFs

Transversity PDFs

2+1D Imaging of Nucleon Structure

Wigner Distributions

Transverse Momentum Dependent Functions

Leading twist TMD PDFs

and FFs: $D_{1}, G_{1}, H_{1}^{\perp}$

adapted from A. Prokudin et al.

- Sensitive to confined motion of quarks and gluons inside the nucleon
- Connection to OAM: Off-diagonal part vanishes without parton's transverse motion
- Pretzelosity: Link to quark OAM (model-dependent)
- Accessed via various processes (SIDIS, DY, e+e-, p+p)
- TMD factorization and universality test

TMD programs

TMDs from SIDIS

- Semi-Inclusive process is ideal to study TMDs Naturally have two scales: $\mathrm{Q}^{2} \gg \mathrm{PT}^{2}, \Lambda_{\mathrm{QcD}}{ }^{2}$
- Access all 8 leading twist TMDs via spin (in)dependent azimuthal modulations

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d P_{T}^{2} d \phi_{h} d \phi_{S}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \times\left\{F_{U U, T}+\epsilon F_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}+\lambda_{e} \sqrt{2 \epsilon(1-\epsilon)} F_{L U}^{\sin \phi_{h}} \sin \phi_{h}\right. \\
& +S_{L}\left[\sqrt{2 \epsilon(1+\epsilon)} F_{U L}^{\sin \phi_{h}} \sin \phi_{h}+\epsilon F_{U L}^{\sin 2 \phi_{h}} \sin 2 \phi_{h}\right]+\lambda_{e} S_{L}\left[\sqrt{1-\epsilon^{2}} F_{L L}+\sqrt{2 \epsilon(1-\epsilon)} F_{L L}^{\cos \phi_{h}} \cos \phi_{h}\right] \\
& +S_{T}\left[\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\epsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right) \sin \left(\phi_{h}-\phi_{S}\right)+\epsilon F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \sin \left(\phi_{h}+\phi_{S}\right)+\epsilon F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \sin \left(3 \phi_{h}-\phi_{S}\right)\right. \\
& \left.\quad+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{\sin \phi_{S}} \sin \phi_{S}+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)} \sin \left(2 \phi_{h}-\phi_{S}\right)\right] \\
& +\lambda_{e} S_{T}\left[\sqrt{1-\epsilon^{2}} F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)} \cos \left(\phi_{h}-\phi_{S}\right)\right. \\
& \left.\left.\quad+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{\cos \phi_{S}} \cos \phi_{S}+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)} \cos \left(2 \phi_{h}-\phi_{S}\right)\right]\right\}
\end{aligned}
$$

TMDs from SIDIS

- Semi-Inclusive process is ideal to study TMDs Naturally have two scales: $\mathrm{Q}^{2} \gg \mathrm{PT}^{2}, \Lambda_{\mathrm{QCD}}{ }^{2}$
- Access all 8 leading twist TMDs via spin (in)dependent azimuthal modulations

```
\(\frac{d \sigma}{d x d y d z d P_{T}^{2} d \phi_{h} d \phi_{S}}\)
\(=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\)
\(\times\left\{F_{U U, T}+\epsilon F_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}+\lambda_{e} \sqrt{2 \epsilon(1-\epsilon)} F_{L U}^{\sin \phi_{h}} \sin \phi_{h}\right.\)
\(+S_{L}\left[\sqrt{2 \epsilon(1+\epsilon)} F_{U L}^{\sin \phi_{h}} \sin \phi_{h}+\epsilon F_{U L}^{\sin 2 \phi_{h}} \sin 2 \phi_{h}\right]+\lambda_{e} S_{L}\left[\sqrt{1-\epsilon^{2}} F_{L L}+\sqrt{2 \epsilon(1-\epsilon)} F_{L L}^{\cos \phi_{h}} \cos \phi_{h}\right]\)
\(+S_{T}\left[\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\epsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right) \sin \left(\phi_{h}-\phi_{S}\right)+\epsilon F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \sin \left(\phi_{h}+\phi_{S}\right)+\epsilon F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \sin \left(3 \phi_{h}-\phi_{S}\right)\right.\)
    \(\left.+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{\sin \phi_{S}} \sin \phi_{S}+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)} \sin \left(2 \phi_{h}-\phi_{S}\right)\right]\)
\(+\lambda_{e} S_{T}\left[\sqrt{1-\epsilon^{2}} F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)} \cos \left(\phi_{h}-\phi_{S}\right)\right.\)
    \(\left.\left.+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{\cos \phi_{S}} \cos \phi_{S}+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)} \cos \left(2 \phi_{h}-\phi_{S}\right)\right]\right\}\)
```

Target single spin asymmetry

$$
\begin{aligned}
A_{U T}=\frac{1}{P} \frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}} \quad A_{U T} & =A_{U T}^{\text {Collins }} \sin \left(\phi_{h}+\phi_{s}\right) \\
& +A_{U T}^{\text {Sivers }} \sin \left(\phi_{h}-\phi_{s}\right) \\
& +A_{U T}^{\text {Pretzelosity }} \sin \left(3 \phi_{h}-\phi_{s}\right)
\end{aligned}
$$

$\begin{gathered} \text { TMDs } \\ \text { via } \\ \text { SIDIS } \end{gathered}$		Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	u	$\begin{gathered} F_{U U} \\ \propto f_{1} \otimes D_{1} \\ \text { Unpolarized } \\ \hline \end{gathered}$		$\begin{gathered} F_{U U}^{\cos \left(2 \phi_{h}\right)} \propto h_{1}^{1} \otimes H_{1}^{1} \\ \text { Boer-Mulders } \end{gathered}$
	L		$\underset{\substack{A_{L L}} g_{1} \otimes D_{1}}{\substack{\text { Helicicly }}}$	$\begin{aligned} & A_{U L}^{\sin \left(2 \phi_{h}\right)} \propto h_{1 L}^{\perp} \otimes H_{1}^{\perp} \\ & \quad \text { Long-Transersity } \end{aligned}$
	T	$A_{U T}^{\sin \left(\phi_{n}-\phi_{s}\right)}$ $\propto f_{1 T}^{1} \otimes D_{1}$ Sivers	$A_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)} \propto g_{1 T} \otimes D_{1}$ Trans-Helicity	$\begin{gathered} A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \propto h_{1} \otimes H_{1}^{\perp} \\ \text { Transversity } \\ A_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \propto h_{1 T}^{\perp} \otimes H_{1}^{\perp} \end{gathered}$ Pretzelosity

Sivers from HERMES

- HERMES "TMDs bible"
[HERMES, J. High Energ. Phys. 2020, 10 (2020)]

- Large positive amplitude, clear evidence of non zero u-quark Sivers
- Detailed information from the 3D binning (x, z, pT)
- Continuous rising of $\mathrm{K}+$ amplitude due to different contribution from exclusive vector meson decays (less pronounced for kaons)

Sivers from COMPASS

Modified universality

- Sivers sign change: fundamental prediction from the gauge invariance of QCD, direct verification of QCD factorization
[COMPASS, PRL 118 (2017) 112002]

- Measures SIDIS and DY with the same detector
- COMPASS DY results favor the sign change hypothesis
[STAR, Phys. Rev. Lett. 116, 132301 (2016)]

Fully reconstructed W kinematics via its recoil compared to curves with signchange scenario
Agree with the sign change, improved precision data expected.

Collins asymmetries

[HERMES, J. High Energ. Phys. 2020, 10 (2020)]

$0.00<P_{h_{\perp} \perp}[G e V]<0.230 .23<P_{h \perp}[G e V]<0.360 .36<P_{h_{\perp}}[G e V]<0.54 \quad 0.54<P_{h_{\perp} \perp}[G e V]<2.00$

Collins asymmetries

- It can be also measured from hardons within jets in p+p [STAR, PRD 103 (2021) 92009]

- Transverse spin asymmetries of the azimuthal distribution of pions inside of jets
- First Collins asymmetry measurement in p+p
- Compare with models based on SIDIS/ $\mathrm{e}^{+} \mathrm{e}^{-}$: universality and factorization
- Generally good agreement with STAR data
- No sign of strong TMD evolution in the asymmetries

Transversity

- One of three standard PDFs, however least known due to its chiral odd nature
- Can be observed in combination with additional spin dependent final state effects (e.g Collins asymmetry ~ Transversity x Collins FF)
- Tensor charge
- lowest moment of transversity

$$
\delta_{T} q=\int_{0}^{1}\left[h_{1}^{q}(x)-h_{1}^{\bar{q}}(x)\right] \mathrm{d} x
$$

- Fundamental quantity of nucleon. Can be compared with Lattice QCD calculation.
[JAM, Phys.Rev.D 102 (2020) 5, 05400 (2020)]

Transversity

- One of three standard PDFs, however least known due to its chiral odd nature
- Can be observed in combination with additional spin dependent final state effects (e.g Collins asymmetry ~ Transversity x Collins FF)
- Tensor charge
- lowest moment of transversity

$$
\delta_{T} q=\int_{0}^{1}\left[h_{1}^{q}(x)-h_{1}^{\bar{q}}(x)\right] \mathrm{d} x
$$

- Fundamental quantity of nucleon. Can be compared with Lattice QCD calculation.

Unpolarized TMDs: Boer-Mulder

- Unpolarized DY angular distribution
- Pion-induced DY from COMPASS
$\frac{d \sigma}{d \Omega} \propto \frac{3}{4 \pi} \frac{1}{\lambda+3}\left[1+\lambda \cos ^{2} \theta_{C S}+\mu \sin 2 \theta_{C S} \cos \phi_{C S}+\frac{\nu}{2} \sin ^{2} \theta_{C S} \cos 2 \phi_{C S}\right]$

- Tend to deviate from pQCD calculation, indicating nonzero BM effect
- First photon-induced DY results at SeaQuest
- SIDIS measurements from COMPASS
- Transverse momentum distributions and azimuthal symmetries
- Clear signal and kinematic dependence

$$
A_{U U}^{\cos 2 \phi_{h}}=\frac{F_{U U}^{\cos 2 \phi_{h}}}{F_{U U, T}+\varepsilon F_{U U, L}}
$$

Transverse Single Spin Asymmetries in p+p

Transverse single spin asymmetry (TSSA)

$$
\mathrm{A}_{\mathrm{N}}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}
$$

C. A. Aidala, S.D. Bass, D. Hasch, and G. K. Mallot, Rev. Mod. Phys. 85655 (2013).

Transverse Single Spin Asymmetries in p+p

- Twist-3 multiparton correlation in collinear framework:
- Need one hard scale (pT), relevant to most inclusive hadron productions in $\mathrm{p}+\mathrm{p}$
- qgq correlation function: interference between scattering off of quark and gluon versus a single quark of the same flavor
- ggg correlation function: two gluons versus one gluon

$A_{N}:$ direct photons

- First measurement of direct photon A_{N} at RHIC
- Direct photon channel is sensitive to initial state effects only
- Constraint the trigluon correlation functions
- Indirect access to Sivers function
- Neutral pion measurement sensitive to both initial and final state effects
- Mid-rapidity measurements are sensitive to gluons
- Asymmetries consistent with zero, new data significantly improved precision compared to previous PHENIX results

TSSAs in nuclear environment

- First time polarized p+A collisions in 2015
- Study nuclear effects in A_{N}

Charged hadron AN

- Inclusive positively charged hadrons TSSA in the forward region
- Particle composition $\pi^{+} / K^{+} / p: 45 \% / 47 \% / 5 \%$

Charged hadron AN

- Suppression of A_{N} in $p+A u$ observed
- Suppression in $p+A$ is sensitive to saturation scale
- $\mathrm{A}^{1 / 3}$ suppression in models with gluon saturation effects:

PRD84 (2011) 034019, PRD95 (2017) 014008

- <pT> of this measurement > saturation scale in Au
- No A dependence observed from mid rapidity piO measurements

Generalized Parton Distributions

- Nucleon Tomography

Trắnsverse position of partons Elastic FFs

$\wedge \hat{\wedge}$
 PDFs

GPD	U	L	T
U	H		\mathcal{E}_{T}
L		\tilde{H}	\tilde{E}_{T}
T	E	\tilde{E}	H_{T}, \tilde{H}_{T}

Leading-twist GPDs:
4 chiral-even GPDs $H, \tilde{H}, E, \tilde{E}$

- DVCS, DVMP, Pseudoscala mesons

4 chiral-odd GPDs $H_{T}, \tilde{H}_{T}, E_{T}, \tilde{E}_{T}$

- ρ production, ..
- Quark OAM contribution to the proton spin

$$
J_{\mathrm{q}}=\frac{1}{2} \lim _{t \rightarrow 0} \int_{-1}^{1} \mathrm{~d} x x\left[H^{\mathrm{q}}(x, \xi, t)+E^{\mathrm{q}}(x, \xi, t)\right] \quad J_{q}=\frac{1}{2} \Delta \Sigma+L_{q} \quad[\mathrm{X} . \text { Ji PRL } 78,610 \text { (1997) }]
$$

- Accessed via exclusive processes;
- DVCS, DVMP, TCS
- cross section and asymmetries (beam charge, beam spin)

GPD Program

Collider mode e-p forward fast proton

Polarised 27 GeV e-/e+ Unpolarised 920 GeV p \sim Full event reconstruction

Fixed target mode slow recoil proton

Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 with recoil detector

High lumi, highly polar. 6 \& $\mathbf{1 2} \mathbf{~ G e V ~ e - ~}$ Long, (Trans) polarised p, d target Missing mass technique (Hall A)
~ Full event reconstruction (CLAS12)
Highly polarised $160 \mathrm{GeV} \mu+/ \mu-$ p target, (Trans) polarised target with recoil detection

Deeply Virtual Compton scattering

- Sensitive to H and E
- GPDs appear in the DVCS amplitude through CFFs

$$
\begin{aligned}
& \mathcal{H}_{++}(\xi, t)=\int_{-1}^{1} H(x, \xi, t)\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) d x \\
& \left.\sigma_{(e p} \rightarrow e p \gamma\right)=|D V C S|^{2}+|B H|^{2}+\text { Interference }
\end{aligned}
$$

[EIC Yellow Report, arXiv:2103.05419]
$q=\left(p_{\mu}-p_{\mu^{\prime}}\right): 4$-momentum of virtual photon $Q^{2}=-q^{2}$: virtual photon virtuality
$t=\left(p_{P}-p_{P^{\prime}}\right)^{2}: 4$-momentum transfer to nucleon squared
x : average longitudinal momentum fraction
ξ : half of longitudinal momentum fraction transfer

DVCS cross section

Measuring DVCS to access GPDs information

$\boldsymbol{e} \boldsymbol{p} \rightarrow \boldsymbol{e} \boldsymbol{p} \gamma$

Bilinear combinations

t-dependent cross section

DVCS at large-x

- JLab HallA arXiv:2201.03714 [hep-ph]
- First experimental extraction of all four helicityconserving CFFs

- DVCS off neutron
- Flavor separation of CFFs (combined with proton data)
- Sensitive to GPD E
[Benali, et al., Nature Physics 16, 191-198 (2020)]
6 GeV data from HallA, NLO and HT analyses

Timelike Compton Scattering

- Time-reversal conjugate process of DVCS
- Both $\operatorname{Im}(\mathcal{H})$ and $\operatorname{Re}(\mathcal{H})$ can be accessed
- Comparison with DVCS: Universality test of GPDs
- Real part of the CFF and nucleon D-term:
pressure distribution in the nucleon [Burkert et al., Nature 557, 396-399 (2018)]
- First measurement by CLAS12 [CLAS, Phys. Rev. Lett. 127,262501 (2021)]

Exclusivity

- Example: DVCS process

$$
e+p \rightarrow e^{\prime}+\gamma+p^{\prime}
$$

- Would be ideal to have full event reconstruction
- Can measure recoil proton?
- Forward detector at collider
- Fixed target: slow recoil

A very simple event:

$$
e p \rightarrow e \gamma(p)
$$

Exclusivity

- Example: DVCS process

$$
e+p \rightarrow e^{\prime}+\gamma+p^{\prime}
$$

- Would be ideal to have full event reconstruction
- No recoil detector?
- Missing mass reconstruction

JLab HallA DVCS

$\Delta E / E \sim 3.6 \%$ pbF2

Exercise: measure π

- VIP as an observable (VIO?) of its own measurements, but also very useful for detector calibration, background suppression when looking for other final states.
- From Lecture 1:
- Neutral pion lifetime is $\sim 10^{-18}$ sec.
- Neutral pion decay modes:
- two photons decay (BR: ~0.988), Dalitz decay (BR: ~0.0117)

Q1: How would you detect the pion?
Q2: What detector would you use?
Q3: How do you know you detected pions?

Exercise: measure π^{0} Exercise: measure π

- Invariant mass of pion: $135 \mathrm{MeV} / \mathrm{c}^{2}$
- In two-particle collisions

$$
\begin{aligned}
& M^{2}=\left(E_{1}+E_{2}\right)^{2}-\left\|\mathbf{p}_{1}+\mathbf{p}_{2}\right\|^{2} \\
&= m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right) \\
&= 2 p_{1} p_{2}(1-\cos \theta) . \\
& \quad \quad \text { (for massless) }
\end{aligned}
$$

- For collider:
$M^{2}=2 p_{T 1} p_{T 2}\left(\cosh \left(\eta_{1}-\eta_{2}\right)-\cos \left(\phi_{1}-\phi_{2}\right)\right)$

Exclusivity : the CLAS12/JLab scheme

The full exclusivity of the event is insured by:

- Electron detection: Cerenkov detector, drift chambers and electromagnetic calorimeter
- Photon detection: sampling calorimeter or a small PbWO4-calorimeter close to the beamline
- Proton detection: Silicon and Micromegas detector

- Current and future experiments for hadron structure experiments

sPHENIX Cold QCD Program

Year	Species	$\sqrt{s_{N N}}$ $[\mathrm{GeV}]$	Cryo Weeks	Physics Weeks	Rec. Lum. $\|z\|<10 \mathrm{~cm}$	Samp. Lum. $\|z\|<10 \mathrm{~cm}$
2024	$p^{\dagger} p^{\uparrow}$	200	$24(28)$	$12(16)$	$0.3(0.4) \mathrm{pb}^{-1}[5 \mathrm{kHz}]$ $4.5(6.2) \mathrm{pb}^{-1}[10 \%-s t r]$	$45(62) \mathrm{pb}^{-1}$
2024	$p^{\uparrow}+\mathrm{Au}$	200	-	5	$0.003 \mathrm{pb}^{-1}[5 \mathrm{kHz}]$ $0.01 \mathrm{pb}^{-1}[10 \%-$ str $]$	$0.11 \mathrm{pb}^{-1}$

Jet, Heavy flavor, and direct photon measurements will allow us to detailed investigation of the transverse structure of the proton and nuclear effects

STAR Forward Upgrade and Cold QCD Plan

At $2.5<\eta<4$

- Si disks + small-strip Thin Gap Chamber (sTGC) for tracking;
- Electromagnetic and hadronic calorimeters.

Detector	$\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{A}$	$\mathrm{A}+\mathrm{A}$
ECal	$\sim 10 \% / \sqrt{E}$	$\sim 20 \% / \sqrt{E}$
HCal	$\sim 50 \% / \sqrt{E}+10 \%$	--
Tracking	Charge separation Photon background suppression	$0.2<p_{T}<2 \mathrm{GeV} / \mathrm{c}$, with $20-30 \% 1 / p_{T}$

Mid Rapidity	Forward Rapidity
$-1.5<\eta<1.5$	$2.5<\eta<4$
Physics Topics: Improve statistical precision: $>$ Sivers effect in dijet and W/Z production; Collins effect for hadrons in jets; Transversity and IFF $>$ Diffractive studies for spatial imaging of nucleon $>$ Measurement of GPD E_{g} through UPC J/ Ψ $>$ Nuclear PDF and fragmentation function;	Physics Topics: $>$ TMD measurements at high x - Transversity, Collins; - Sivers through DY and jets $>$ UPC J/ Ψ GPD at forward rapidity; $>$ Nuclear PDFs and FF: - R_{pA} for direct photons \& DY, and hadrons $>$ Gluon Saturation through dihadrons, γ-Jets, di-jets All of these measurements are critical to the scientific success of EIC to test universality and factorization

Slide from T. Lin (RHIC\&AGS Meeting, 2021)

COMPASS++/AMBER

Active TPC	Liquide	Vertex detector	Active absorber	Recoil detector	
SciFi trigger	H and He targets		Calorimetry	Forward PID	
Recoil detector					

COMPASS detector + Several upgrade

Hadron mass Hadron radii Pion and Kaon Structure Meson polarizabilities Strange sector hadron spectroscopy

Solenoidal Large Intensity Device

Take full advantage of JLab 12 GeV Upgrade High luminosity (1037-1039)
Large acceptance with full azimuthal coverage

Rich physics program

Electroweak couplings

Near threshold J/psi production

Summary

- Part. 1: Basics of hadron structure experiments
- Accelerators and particle detectors
- Deep Inelastic Scattering experiments
- DIS Kinematics reconstruction
- Part. 2: Collinear observables and measurements
- Continue on DIS data - PDF extraction
- Parton distributions at large-x
- Flavor asymmetry of sea
- Polarized spin structure
- Part. 3: Beyond collinear
- TMD measurements
- GPD measurements
- Future opportunities

