#### **Probing Hadron Structure at the Electron-Ion Collider, ICTS**

# Hadron Structure in Experiments Part. 2

Sanghwa Park (Jefferson Lab)







# Outline of the lecture

- What have we learned from Part. 1?
  - Basics of hadron structure experiments
    - Accelerators and particle detectors
    - Deep Inelastic Scattering experiments
    - DIS Kinematics reconstruction
- Part. 2: Collinear observables and measurements
  - Continue on DIS data PDF extraction
  - Parton distributions at large-x
  - Flavor asymmetry of sea
  - Polarized spin structure
- Part. 3: Beyond collinear

# Outline of the lecture

- What have we learned from Part. 1?
  - Basics of hadron structure experiments
    - Accelerators and particle detectors
    - Deep Inelastic Scattering experiments
    - DIS Kinematics reconstruction
- Part. 2: Collinear observables and measurements
  - Continue on DIS data PDF extraction
  - Parton distributions at large-x
  - Flavor asymmetry of sea
  - Polarized spin structure

# Experimentalist's perspective on PDF extraction



**Hard probe** "see"s quarks with probability of  $f(x, Q^2)$  for each flavor

Structure function extracted from the measured cross section (**observables**)



 $Q^2(GeV^2)$ 

# Experimentalist's perspective on PDF extraction

- We want to know well about all quark flavors, and gluon
- DIS "sees" the collection of quarks
  - Strong constraint on u quark

$$F_2(X, Q^2) = \sum_i e_i^2 x f_i(x, Q^2)$$

- Gluons only indirectly accessed
- Data only at a given set of  $Q^2$

Quark-gluon coupling: PDFs evolve with the scale! (DGLAP equations)



- Increase x, Q<sup>2</sup> level arm with good precision data
- Flavor separation measurements
- Process directly sensitive to the gluon

### World Data for Global QCD Analysis



### Global QCD analysis in practice

- Traditional global fits assume PDFs in a parameterized form at initial scale Q<sub>0</sub> -> evolve to any other Q using DGLAP evolution
- Standard five parameter form for most parton species

 $xf(x,Q_0^2) = Nx^{\alpha}(1-x)^{\beta}(1+\gamma\sqrt{x}+\delta x)$ 

- Some PDF parameters are prefixed/constrained. For example, normalization parameters for u, d are fixed by valence quark number sum rules and for gluon by the momentum sum rule.
- Number of free parameters to fit:
  - - $\lambda_{QCD}$  and PDF parameters, other non-DGLAP parameters (e.g. nuclear corrections)
  - Data normalizations
- Use the PDFs to calculate the chosen hard scattering processes
- Vary the parameters to optimized the fits (iteration)



### **Examples of global PDF fits**

Large-x treatment





b)

1

#### A. Accardi (HiX2019)

|            | JLab &<br>BONUS | HER<br>MES | HERA<br>I+II | Tevatron<br>W,Z | LHC         | ν+A<br>di-μ | Nucl.<br>&<br>offsh | HT<br>TMC   | Flex<br>d | low-W<br>DIS |
|------------|-----------------|------------|--------------|-----------------|-------------|-------------|---------------------|-------------|-----------|--------------|
| CJ15 *     | ~~              | ✓          | ✓            | ✓               | in<br>prog. | ×           | √√                  | ✓           | ✓         | ✓            |
| CT18       |                 |            | ✓            | 🗸 дд            | ✓           | 1           |                     |             | ✓         |              |
| MMHT14     |                 |            | מממ          | 🗸 дд            | ✓           | ×           | × .                 |             |           |              |
| NNPDF3.1   |                 |            | ✓            |                 | ✓           | 1           |                     | TMC<br>only |           |              |
| JR14       | <b>√</b>        |            |              |                 | ✓           | 1           | ×                   | 1           |           |              |
| ABMP16/AKP |                 |            |              | 🗸 дд            | ✓           | ✓           | √/√                 | ✓           | (✓)       | × .          |
| HERAPDF2.0 |                 |            | <b>√</b>     | ¤               |             |             |                     |             |           |              |



### **PDF** uncertainties



### **PDF uncertainties**



- Poorly constrained in small and large-x
  - Small-x: High energy physics at LHC Parton dynamics at high gluon density
  - Large-x: valence region
     Study non-perturbative dynamics of nucleon

### Nucleon structure at large-x, low Q<sup>2</sup>



• Fixed-target

- Valence structure of hadron
  - Partonic structure in the valence region defines a hadron
- F2n/F2p ratio (d/u ratio) at x-> 1 limit unknown
  - Predictions from different theory models
- Provide important input for PDF analysis at large-x
   Improve constraints on PDFs at large x, low Q2
  - -> (evolution) low x, high Q2

### Predictions for $F_2(n/p)$ , d/u at $x \rightarrow 1$



$$F_2^p = x \Big[ \frac{4}{9} (u + \bar{u}) + \frac{1}{9} (d + \bar{d}) + \frac{1}{9} (s + \bar{s}) \Big]$$
$$F_2^n = x \Big[ \frac{4}{9} (d + \bar{d}) + \frac{1}{9} (u + \bar{u}) + \frac{1}{9} (s + \bar{s}) \Big]$$



#### **Testing ground for theory models**

|                       | F <sub>2</sub> (n/p) | d/u |
|-----------------------|----------------------|-----|
| SU(6)                 | 2/3                  | 1/2 |
| Diquark model/Feynman | 1/4                  | 0   |
| Quark model/Isgur     | 1/4                  | 0   |
| pQCD                  | 3/7                  | 1/5 |
| QCD counting rules    | 3/7                  | 1/5 |
| 12                    |                      |     |

# The case of Neutron

- No free neutron target exists
- Deuteron is a weakly bound system chosen as effective neutron target
- But,  $F2(d) \neq F2(n) + F2(p)$
- Large theory uncertainty from nuclear corrections
  - significant model dependence on deuteron wave function, off-shell corrections, ..
- Different approaches to extract the F2 ratio:
  - Model-dependent extraction from deuteron with precision data
  - Less model-dependence measurements:
    - 3H/3He DIS
    - Spectator tagging
  - Model-independent approach using parity-violating DIS (PVDIS)



# CEBAF at Jefferson Lab



### Successfully completed 12 GeV upgrade in 2017





Hall A: SRC, form factors, future new experiments (MOLLER, SoLID)



Hall B: understanding nucleon structure (GPDs and TMDs) CLAS12



Hall C: precision determination of valence quark properties of nucleons and nuclei



Hall D: exploring origin of confinement by studying exotic mesons

### Precision data on F<sub>2</sub> ratio



d/u

1.0

# **3H/3He DIS**

#### A=3 mirror nuclei



- 10.6 GeV beam, fixed scattered electron momentum (3.1 and 2.9 GeV), scattering angle 17-36 deg
- 3H, 3He, 2H, 1H targets
- Also measured EMC effects in 3He and 3H (first experimental data) and others



JAM analysis including MARATHON data [Phys. Rev. Lett. 127, 242001]

0.9

# Spectator tagging

Barely Off-shell Nucleon Structure experiment (@ Hall B)



Tagging spectator protons in coincidence with the scattered electrons

$$e + d \rightarrow e' + p_s + X$$



momentum in the backward hemisphere

proton with hadronic debris

### **6GeV results**

S. Tkachenko et al., Phys. Rev. C 89, 045206 (2014)



### **6GeV results**

S. Tkachenko et al., Phys. Rev. C 89, 045206 (2014)



Successor experiment BoNus12 took data in 2020 Extends kinematic coverage: 0.1 < x < 0.8, Q<sup>2</sup> of 1-14 GeV<sup>2</sup>, W up to 4GeV

### Constraints on d/u from JLab 12GeV

#### Projected 12 GeV d/u Extractions QCD Fit, Botje CTEQ6.6M BigBite <sup>3</sup>H/ <sup>3</sup>He DIS CLAS12 BoNuS 0.8 CLAS12 BoNuS, relaxed cuts SoLID PVDIS 0.6 SU(6) d/u 0.4 DSE 0.2 pQCD BoNuS sys. uncert. Broken SU(6) 0 0.3 0.5 0.6 0.8 0.9 0 0.1 0.2 0.4 0.7 х

### Sea Quarks and Flavor Asymmetry



• First hint of asymmetric sea from NMC: [Phys. Rev. Lett. 66 (1991) 2712]



• Significant flavor asymmetry confirmed as well as x dependence by Drell-Yan data: NA51 (1994), E866 (1997) [Phys. Rev. D 64, 052002 ]

### **Drell-Yan measurements at SeaQuest**



#### SEAQUEST SPECTROMETER



- Quark from hadron annihilates with antiquark from another hadron
- Virtual photon is created
- Decays into a lepton + antilepton
- Unique sensitivity to the anti-quark distributions
- New experiment  $X_{t}$  the 120 GeV (proton  $t_{targ}(x_{targ})$ ) of the search of t

E866:  $0.015 < x_t < 0.3$ , average Q<sup>2</sup> of 54 GeV<sup>2</sup> SeaQueset:  $0.1 < x_t < 0.45$ , average Q<sup>2</sup> of 22-40 GeV<sup>2</sup>

$$\frac{\sigma_{pd}}{\sigma_{pp}} \approx \frac{4 + \frac{d(x_b)}{u(x_b)}}{4 + \frac{d(x_b)}{u(x_b)}\frac{\bar{d}(x_t)}{\bar{u}(x_t))}} \left(1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)}\right)$$

### SeaQuest Results



- SeaQuest results show that nature prefers dbar over ubar in the proton sea
- Non-perturbative mechanism other than gluon splitting must be the source
- Good agreement with meson baryon model and statistical parton distribution functions

### SeaQuest data in Global PDF analysis



[CJ, arXiv:2108.05786] [JAM, Phys. Rev. D 104, no. 7, 074031 (2021)] [CTEQ, SciPost Phys.Proc. 8 (2022) 005]



 Including SeaQuest data brings the d/u ratio above 1 and reduces the uncertainty

### Spin Structure of the Proton

### Polarized structure functions

• Polarized structure functions g1, g2:

$$\frac{d^{2}\sigma^{\uparrow\downarrow}}{d\Omega dE'} - \frac{d^{2}\sigma^{\uparrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^{2}E'}{Q^{2}E} \left[\frac{E + E'cos\theta}{M\nu} g_{1}(x,Q^{2}) - \frac{Q^{2}}{M\nu} g_{2}(x,Q^{2})\right]$$

$$\begin{bmatrix} \frac{d^{2}\sigma^{\rightarrow}}{dxdQ^{2}} - \frac{d^{2}\sigma^{\rightarrow}}{dxdQ^{2}k} \end{bmatrix} \sim g_{1}(x,Q^{2})$$

$$\approx g_{1}(x,Q^{2}) \sim \sum_{q} e_{q}^{2}\Delta q(x,Q^{2})$$

$$g_{1}(x,Q^{2}) \sim \sum_{q} e_{q}^{2}\Delta q(x,Q^{2})$$

$$quark spin distribution$$

$$A_{1}(x,Q^{2}) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} - \sigma_{3/2}} \approx \frac{g_{1}(x,Q^{2})}{F_{1}(x,Q^{2})}$$

### Polarized structure functions

#### • g<sub>2</sub> structure function and moment:

No simple interpretation

Provides information on the quark-gluon correlations through higher twist effects

$$g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \bar{g_2}(x, Q^2)$$

determined from twist-2 part of g1

higher twist term, not 1/Q suppressed w.r.t twist-2 term

 $x^2$  weighted moment, d2:

$$d_2(Q^2) = \int_0^1 x^2 [g_2(x, Q^2) - g_2^{WW}(x, Q^2)] dx$$

Twist-3 matrix element, related to color polarizabilities Calculable in lattice QCD

**Higher moments:** spin polarizabilities  $\gamma_0$  (longitudinal),  $\delta_{LT}$  (L-T) - benchmark for theory, lattice calculation and chiral perturbative theory at low Q<sup>2</sup>

### Spin Surprise in 1980s



# We have better understanding than 30 years ago, but yet....

#### How the spin of the proton is carried by its constituents inside?

**Proton Spin Decomposition** 



# HERMES and COMPASS





- HERMES @ HERA
  - Fixed-target experiment at HERA
  - Polarized lepton beam, 27.5 GeV (transverse<->longitudinal using spin rotator)
  - polarized gas target (<sup>1</sup>H,<sup>2</sup>H,<sup>3</sup>He) with rapid spin reversal

- COMPASS @ CERN
  - Polarized muon beams from M2 beamline (80% pol.), 160/200 GeV
  - Solid polarized state targets: 6LiD (d) ~ 50% pol. NH3 (p) ~80% pol.

### g1 measurements



# g1 measurements

World data of the polarized structure function g<sup>1</sup>:
 Limited (x,Q<sup>2</sup>) level arm compared to the unpolarized case



## g1 measurements

World data of the polarized structure function g<sup>1</sup>:
 Limited (x,Q<sup>2</sup>) level arm compared to the unpolarized case



### Flavor separations with SIDIS



### Flavor separations with SIDIS



# Helicity PDFs

- Combined quark and antiquark contribution well contained by polarized DIS data
- Antiquark mostly contained by SIDIS, but relatively large uncertainty due to the uncertainty on fragmentation functions
- Gluons only poorly contained by DIS (indirect access)

#### -> RHIC Spin Program

Prospects For Spin Physics at RHIC (2000)Ann.Rev.Nulc.Part.Sci.50:525-575 RHIC Spin White Paper (2015) <u>https://arxiv.org/abs/1501.01220</u> RHIC Cold QCD Plan (2016) <u>https://arxiv.org/abs/1602.03922</u> RHIC Cold QCD White Paper (2023) <u>https://arxiv.org/abs/2302.00605</u>



### Relativistic Heavy Ion Collider



P = 80-85% (at 200 MeV)

# Local Polarimetry

- Monitoring the beam polarization around the interaction point. Polarization measurements for physics corrections done by RHIC polarimeters (HJet, pC).
- Very forward neutron production in p+p: cross sections (ISR and FNAL) and transverse spin asymmetries measured at RHIC (IP12)



# Local Polarimetry

#### 18m from IP



**ZDC (Zero Degree Calorimeter)** 







Yellow beam, phi asymmetry (Run11)



Azimuthal angle dependence -> phi modulation



Yellow beam, phi asymmetry (Run11)

# p+A collisions at RHIC



Unpolarized anti-quark sea via W production. Provide baseline for heavy ion collisions

Gluon polarization inside the proton Study sea quarks via W production

Origin of large transverse spin asymmetry Transverse motion of partons inside the proton

p+A Collisions provides unique opportunities to study nuclear effects to quarks and gluons distributions, and their interaction and correlations

### Direct access to gluons

- gg and qg dominant at RHIC kenematics
- Access gluons at LO





### RHIC delivered: First evidence of non-zero gluon spin



- Workhorse measurements: Inclusive jet and pion production
  - Productions dominated by gg and qg scatterings
- Non-zero asymmetries observed (especially STAR jets)

### Evidence of non-zero gluon polarization

• First evidence of non-zero gluon polarization in the proton for x > 0.05

![](_page_42_Figure_2.jpeg)

### Access low-x: Higher energy

Phys. Rev. D 93, 011501(R)

![](_page_43_Figure_1.jpeg)

 Non-zero A<sub>LL</sub> also confirmed by STAR jet and PHENIX pi0 at 510 GeV (x reach to ~10<sup>-2</sup>)

### **Direct photon measurements**

- Proposed as a golden channel to study the gluon spin (RHIC Spin Proposal, 1992)
- Theoretically clean measurement: only sensitive to initial partonic hard process and doesn't involve strong interaction
- Direct photons are produced dominantly by qg Compton scattering
  - linearly sensitive to gluon helicity distribution

$$A_{LL}^{pp \to \gamma X} \sim \frac{\Delta q(x_q)}{q(x_q)} \cdot \frac{\Delta g(x_g)}{g(x_g)} \cdot a_{LL}^{qg \to \gamma q}$$

• Mixed gg and qg contributions: Recent analysis by JAM collaboration showed that existing data cannot rule out negative  $\Delta g$  scenario [JAM, Phys. Rev. D 105, 074022 (2022)]

![](_page_44_Figure_7.jpeg)

## Direct photon ALL

![](_page_45_Figure_1.jpeg)

- First published measurement of direct photon A<sub>LL</sub>
- Compared with two scenarios for gluon spin
- Data consistent with the positive gluon spin contributions and disfavor the negative  $\Delta g$  scenario

### Dijet measurements

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

Correlation measurements allow one to access parton kinematics at LO

$$M = \sqrt{s} \sqrt{x_1 x_2}$$
  
$$\eta_3 + \eta_4 = \ln(x_1 / x_2)$$

### Flavor Separation: W production

![](_page_47_Figure_1.jpeg)

$$u_{L} \overline{d}_{R} \rightarrow W^{+}$$
$$d_{L} \overline{u}_{R} \rightarrow W^{-}$$

- Probing light quark sea via maximally parity violating W production
- W couples only to left-handed quark and right-handed antiquark
- W+/W- distinguishes between quarks and antiquarks
- No fragmentation functions needed

### Parity violating spin asymmetry

- Parity violating spin asymmetries can directly access to quark helicities
- Combined with weak decay kinematics
  - Quark flavor mixed at mid-rapidity
  - Sensitive to antiquark at forward/backward rapidity

![](_page_48_Figure_5.jpeg)

### W single spin asymmetries

![](_page_49_Figure_1.jpeg)

### Light sea quarks $\Delta \bar{u}, \Delta \bar{d}$

![](_page_50_Figure_1.jpeg)

Asymmetric polarized light antiquark sea!