Quadrature rules on manifolds: useful results

Giacomo Gigante

July 5th 2023
Università degli Studi di Bergamo

First result: Euclidean approximation of kernels

Theorem (Gariboldi, G. 2022)
There exists a smooth positive function q on $\mathcal{M} \times \mathcal{M}$ such that if h is even, smooth and compactly supported on \mathbb{R}, then for every n

$$
\begin{aligned}
& \sum_{m} h\left(\lambda_{m} / R\right) \varphi_{m}(x) \overline{\varphi_{m}(y)} \\
& =q(x, y) R^{d} \mathcal{F}_{d} h(R|x-y|)+O\left(R^{d-2}(1+R|x-y|)^{-n}\right)
\end{aligned}
$$

Ideas in the proof: The operator $\cos (t \sqrt{\Delta})$

- Let $\cos (t \sqrt{\Delta})(x, y) \in \mathcal{D}^{\prime}(\mathcal{M} \times \mathcal{M})$ be the kernel of the operator $f \mapsto \cos (t \sqrt{\Delta}) f=u(t, x)$, where $u(t, x)$ is the solution of problem

$$
\left\{\begin{array}{l}
\left(\frac{\partial^{2}}{\partial t^{2}}+\Delta\right) u(t, x)=0, \\
u(0, x)=f(x) \quad \frac{\partial u}{\partial t}(0, x)=0 .
\end{array} \quad(t \in \mathbb{R}, x \in \mathcal{M})\right.
$$

Notice that

$$
\cos (t \sqrt{\Delta})(x, y)=\sum_{m=0}^{+\infty} \cos \left(t \lambda_{m}\right) \varphi_{m}(x) \overline{\varphi_{m}(y)}
$$

- Similarly, let $\cos \left(t \sqrt{\Delta_{\mathbb{R}^{d}}}\right)(|x-y|) \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be the kernel of the operator $f \mapsto \cos \left(t \sqrt{\Delta_{\mathbb{R}^{d}}}\right) f=u(t, x)$,

$$
\left\{\begin{array}{l}
\left(\frac{\partial^{2}}{\partial t^{2}}+\Delta_{\mathbb{R}^{d}}\right) u(t, x)=0, \\
u(0, x)=f(x), \quad \frac{\partial u}{\partial t}(0, x)=0
\end{array} \quad\left(t \in \mathbb{R}, x \in \mathbb{R}^{d}\right)\right.
$$

Hadamard's parametrix for $\cos (t \sqrt{\Delta})$

The kernel $\cos (t \sqrt{\Delta})(x, y)$ can be approximated (for small t) by means of the corresponding kernel on \mathbb{R}^{d}, (and other radial distributions on $\mathbb{R}^{d} .$.)

$$
\begin{aligned}
\cos (t \sqrt{\Delta})(x, y) & =q_{0}(x, y) \cos \left(t \sqrt{\Delta_{\mathbb{R}^{d}}}\right)(|x-y|) \\
& +\sum_{v=1}^{M} q_{v}(x, y) B_{v}(t,|x-y|)+R_{M}(t, x, y)
\end{aligned}
$$

where

- $M>d+3$
- $q_{v} \in \mathcal{D}(\mathcal{M} \times \mathcal{M})$ and $q_{0}(x, y)>0$.
- $R_{M} \in \mathcal{C}^{M-d-3}([-\varepsilon, \varepsilon] \times \mathcal{M} \times \mathcal{M})$, and

$$
\left|\partial_{t, x, y}^{\beta} R_{M}(t, x, y)\right| \leq C|t|^{2 M+2-d-|\beta|}
$$

(see Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, 2014)

Suppose h even (and smooth and compactly supported). Formally:

$$
\begin{aligned}
\sum_{m=0}^{+\infty} h\left(\lambda_{m}\right) \varphi_{m}(x) \overline{\varphi_{m}(y)} & =\sum_{m=0}^{+\infty}\left(\int_{-\infty}^{+\infty} \mathcal{F}_{1} h(t) \cos \left(t \lambda_{m}\right) d t\right) \varphi_{m}(x) \overline{\varphi_{m}(y)} \\
& =\int_{-\infty}^{+\infty} \mathcal{F}_{1} h(t)\left(\sum_{m=0}^{+\infty} \cos \left(t \lambda_{m}\right) \varphi_{m}(x) \overline{\varphi_{m}(y)}\right) d t \\
& =\int_{-\infty}^{+\infty} \mathcal{F}_{1} h(t) \cos (t \sqrt{\Delta})(x, y) d t \\
& \approx q_{0}(x, y) \int_{-\infty}^{+\infty} \mathcal{F}_{1} h(t) \cos \left(t \sqrt{\Delta_{\mathbb{R}^{d}}}\right)(|x-y|) d t \\
& =q_{0}(x, y) \int_{-\infty}^{+\infty} h(t) \mathcal{F}_{1}\left(\cos \left(\cdot \sqrt{\Delta_{\mathbb{R}^{d}}}\right)(|x-y|)\right)(t) d t \\
& =C_{d} q_{0}(x, y) \int_{-\infty}^{+\infty} h(t) \frac{J_{d / 2-1}(|t||x-y|)}{(|t||x-y|)^{d / 2-1}}|t|^{d-1} d t \\
& =q_{0}(x, y) \mathcal{F}_{d} h(|x-y|)
\end{aligned}
$$

Problem: Need $\mathcal{F}_{1} h$ supported in $[-\varepsilon, \varepsilon] \ldots$

Second result: Area regular partitions

The following result is well known

Theorem

For any sufficiently large integer N there is a partition of the sphere S^{d} into N regions of equal measure and small diameter $\leq c N^{-1 / d}$.

Stated and used by several authors:

- Stolarsky (1973)
- Beck and Chen (1987)
- Bourgain and Lindenstrauss (1988)

Proofs

- Constructive proof for $d=2$ with a small constant c, by Rakhmanov, Saff and Zhou (1994)
- Extension to general d by Leopardi (2007)
- Different proof by Feige and Schechtman (2002).

Figure 1: $N=33$. Rakhmanov, Saff and Zhou's construction (picture from Leopardi's thesis)

Definition (Ahlfors regular metric measure space of dimension $d>0$)
A complete metric space X with a Borel measure μ such that for all open balls $B(x, r)$ with $x \in X, 0<r \leq \operatorname{diam}(X)$

$$
\mu(B(x, r)) \asymp r^{d} .
$$

Definition (Ahlfors regular metric measure space of dimension $d>0$)
A complete metric space X with a Borel measure μ such that for all open balls $B(x, r)$ with $x \in X, 0<r \leq \operatorname{diam}(X)$

$$
\mu(B(x, r)) \asymp r^{d} .
$$

Example

- Compact connected Riemannian manifolds (e.g. the sphere).

Theorem (G., Leopardi, 2017)
Let (X, ρ, μ) be an Ahlfors regular metric measure space of dimension d :

- connected,
- with finite measure.

Then for any integer N there is a partition of X into N regions of measure $\mu(X) / N$, each contained in a ball of radius $\asymp N^{-1 / d}$ and containing a ball of radius $\asymp N^{-1 / d}$.

Theorem (G. David 1988, M. Christ 1990)
An Ahlfors regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of $X,\left\{Q_{\alpha}^{k} \subset X: k \in \mathbb{Z}, \alpha \in I_{k}\right\}$ s. t.

- $X=\cup_{\alpha \in I_{k}} Q_{\alpha}^{k}$ for all k (each generation covers X).
- $Q_{\alpha}^{k} \cap Q_{\beta}^{k}=\varnothing$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell>k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k}=\varnothing$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius an 2^{-k}.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1} 2^{-k}$.

$$
k=-1
$$

Theorem (G. David 1988, M. Christ 1990)
An Ahlfors regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of $X,\left\{Q_{\alpha}^{k} \subset X: k \in \mathbb{Z}, \alpha \in I_{k}\right\}$ s. t.

- $X=\cup_{\alpha \in I_{k}} Q_{\alpha}^{k}$ for all k (each generation covers X).
- $Q_{\alpha}^{k} \cap Q_{\beta}^{k}=\varnothing$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell>k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k}=\varnothing$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius an 2^{-k}.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1} 2^{-k}$.

$$
k=0
$$

Theorem (G. David 1988, M. Christ 1990)
An Ahlfors regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of $X,\left\{Q_{\alpha}^{k} \subset X: k \in \mathbb{Z}, \alpha \in I_{k}\right\}$ s. t.

- $X=\cup_{\alpha \in I_{k}} Q_{\alpha}^{k}$ for all k (each generation covers X).
- $Q_{\alpha}^{k} \cap Q_{\beta}^{k}=\varnothing$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell>k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k}=\varnothing$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius an 2^{-k}.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1} 2^{-k}$.

$$
k=1
$$

Q_{1}^{1}	Q_{2}^{1}
Q_{3}^{1}	Q_{4}^{1}

Theorem (G. David 1988, M. Christ 1990)
An Ahlfors regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of $X,\left\{Q_{\alpha}^{k} \subset X: k \in \mathbb{Z}, \alpha \in I_{k}\right\}$ s. t.

- $X=\cup_{\alpha \in I_{k}} Q_{\alpha}^{k}$ for all k (each generation covers X).
- $Q_{\alpha}^{k} \cap Q_{\beta}^{k}=\varnothing$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell>k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k}=\varnothing$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius ao 2^{-k}.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1} 2^{-k}$.

$$
k=2
$$

A consequence

Corollary (Sierpinski)
Let (X, ρ, μ) be an Ahlfors regular metric measure space of dimension d and let S be a measurable subset of X with finite measure. Then, for any $0 \leq t \leq \mu(S)$ there exists a subset $T \subset S$ with measure $\mu(T)=t$.

Proof.
This is true for all non-atomic measures. Here it follows easily from the dyadic cube decomposition of X.

Lemma

For all k and $\alpha \in I_{k}$

$$
Q_{\alpha}^{k} \cup \bigcup_{B_{\beta}^{k} \cap B_{\alpha}^{k} \neq \varnothing} Q_{\beta}^{k} \subset 3 B_{\alpha}^{k} .
$$

Here $3 B_{\alpha}^{k}$ is the ball with the same center as B_{α}^{k} and triple radius.
Proof.

$$
Q_{\alpha}^{k} \cup \bigcup_{B_{\beta}^{k} \cap B_{\alpha}^{k} \neq \varnothing}^{\bigcup} Q_{\beta}^{k} \subset B_{\alpha}^{k} \cup \bigcup_{B_{\beta}^{k} \cap B_{\alpha}^{k} \neq \varnothing} B_{\beta}^{k} \subset 3 B_{\alpha}^{k} .
$$

We will say that cubes Q_{α}^{k} and Q_{β}^{k} are neighbours if the corresponding outer balls intersect.

Proof of the Theorem, 1

- Assume for simplicity that $\mu(X)=1$.

Proof of the Theorem, 1

- Assume for simplicity that $\mu(X)=1$.
- For any big enough N, let n be the greatest generation of cubes of X such that

$$
\mu\left(Q_{\alpha}^{n}\right) \geq \frac{2}{N} \quad \forall \alpha \in I_{n}
$$

Proof of the Theorem, 1

- Assume for simplicity that $\mu(X)=1$.
- For any big enough N, let n be the greatest generation of cubes of X such that

$$
\mu\left(Q_{\alpha}^{n}\right) \geq \frac{2}{N} \quad \forall \alpha \in I_{n}
$$

- Let Γ be the graph with vertices in the centers of the outer balls of the cubes, and edges corresponding to pairs of neighbouring cubes.

Proof of the Theorem, 1

- Assume for simplicity that $\mu(X)=1$.
- For any big enough N, let n be the greatest generation of cubes of X such that

$$
\mu\left(Q_{\alpha}^{n}\right) \geq \frac{2}{N} \quad \forall \alpha \in I_{n}
$$

- Let Γ be the graph with vertices in the centers of the outer balls of the cubes, and edges corresponding to pairs of neighbouring cubes.
- X connected $\Rightarrow \Gamma$ connected

Proof of the Theorem, 2

- Take a spanning tree S of Γ. It has leaves.

Proof of the Theorem, 2

- Take a spanning tree S of Γ. It has leaves.
- Mark one vertex as the root, and direct S from the leaves towards the root. $(\alpha, \beta) \in S$ means that there is an edge from α towards β.

Proof of the Theorem, 3

- For any $\beta \in I_{n}, \quad \mu\left(Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} Q_{\alpha}^{n}\right) \leq \frac{C}{N}, \quad C$ depending on X.

Proof of the Theorem, 3

- For any $\beta \in I_{n}, \quad \mu\left(Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} Q_{\alpha}^{n}\right) \leq \frac{C}{N}, \quad C$ depending on X.
- In particular, $Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} Q_{\alpha}^{n}$ may contain at most C disjoint sets of measure N^{-1}.

Proof of the Theorem, 4

- One can fix an integer k, depending only on X, such that all cubes of generation $m=n+k$ have measure

$$
\mu\left(Q_{\alpha}^{m}\right) \leq \frac{1}{C N}
$$

Proof of the Theorem, 5. Leaves

- Let α be a leaf of generation n.

Proof of the Theorem, 5. Leaves

- Let α be a leaf of generation n.
- Since $2 / N \leq \mu\left(Q_{\alpha}^{n}\right) \leq C / N, Q_{\alpha}^{n}$ can contain $2 \leq N_{\alpha} \leq C$ subsets of measure $1 / N$.

Proof of the Theorem, 5. Leaves

- Let α be a leaf of generation n.
- Since $2 / N \leq \mu\left(Q_{\alpha}^{n}\right) \leq C / N, Q_{\alpha}^{n}$ can contain $2 \leq N_{\alpha} \leq C$ subsets of measure $1 / N$.
- Take N_{α} cubes of generation m inside Q_{α}^{n}.

Proof of the Theorem, 5. Leaves

- Let α be a leaf of generation n.
- Since $2 / N \leq \mu\left(Q_{\alpha}^{n}\right) \leq C / N, Q_{\alpha}^{n}$ can contain $2 \leq N_{\alpha} \leq C$ subsets of measure $1 / N$.
- Take N_{α} cubes of generation m inside Q_{α}^{n}.
- Their total measure is bounded by $N_{\alpha} \times(1 /(C N)) \leq 1 / N$.

Proof of the Theorem, 5. Leaves

- Let α be a leaf of generation n.
- Since $2 / N \leq \mu\left(Q_{\alpha}^{n}\right) \leq C / N, Q_{\alpha}^{n}$ can contain $2 \leq N_{\alpha} \leq C$ subsets of measure $1 / N$.
- Take N_{α} cubes of generation m inside Q_{α}^{n}.
- Their total measure is bounded by $N_{\alpha} \times(1 /(C N)) \leq 1 / N$.
- The measure of the remaining part of Q_{α}^{n} is at least $1 / N$.

Proof of the Theorem, 6. Leaves

- Take a subset $W_{\alpha}^{n} \subset Q_{\alpha}^{n}$, disjoint from the N_{α} cubes of generation m, of measure $\mu\left(X_{\alpha}^{n}\right)-N_{\alpha} / N$

Proof of the Theorem, 6. Leaves

- Take a subset $W_{\alpha}^{n} \subset Q_{\alpha}^{n}$, disjoint from the N_{α} cubes of generation m, of measure $\mu\left(X_{\alpha}^{n}\right)-N_{\alpha} / N$
- Extend each of the N_{α} cubes of generation m within Q_{α}^{n} to a subset of measure $1 / N$.

Proof of the Theorem, 6. Leaves

- Take a subset $W_{\alpha}^{n} \subset Q_{\alpha}^{n}$, disjoint from the N_{α} cubes of generation m, of measure $\mu\left(X_{\alpha}^{n}\right)-N_{\alpha} / N$
- Extend each of the N_{α} cubes of generation m within Q_{α}^{n} to a subset of measure $1 / N$.

Proof of the Theorem, 6. Leaves

- Take a subset $W_{\alpha}^{n} \subset Q_{\alpha}^{n}$, disjoint from the N_{α} cubes of generation m, of measure $\mu\left(X_{\alpha}^{n}\right)-N_{\alpha} / N$
- Extend each of the N_{α} cubes of generation m within Q_{α}^{n} to a subset of measure $1 / N$.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^{n}=Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} W_{\alpha}^{n}$.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^{n}=Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} W_{\alpha}^{n}$.
- Can do it so that the remainder $W_{\beta}^{n} \subset Q_{\beta}^{n}$.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^{n}=Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} W_{\alpha}^{n}$.
- Can do it so that the remainder $W_{\beta}^{n} \subset Q_{\beta}^{n}$.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^{n}=Q_{\beta}^{n} \cup \bigcup_{(\alpha, \beta) \in S} W_{\alpha}^{n}$.
- Can do it so that the remainder $W_{\beta}^{n} \subset Q_{\beta}^{n}$.

- This construction due to Feige-Schechtman (2002, for the sphere), modified with the use of the David-Christ dyadic decomposition.

Third result: Cassels inequality

As reported by H. L. Montgomery. For any choice of N real numbers x_{1}, \ldots, x_{N} and for any positive integer X,

$$
\sum_{m=1}^{X}\left|\sum_{j=1}^{N} e^{2 \pi i m x_{j}}\right|^{2} \geq \frac{1}{2} N(X+1)-\frac{1}{2} N^{2}
$$

For the sake of simplicity, throughout this talk we will always

- consider $X \gtrsim N$,
- disregard precise constants.

Thus we can simplify the form of the inequality to

$$
\sum_{m=1}^{X}\left|\sum_{j=1}^{N} e^{2 \pi i m x_{j}}\right|^{2} \geq C N X
$$

A quick interpretation of the inequality

$$
\sum_{m=1}^{X}\left|\sum_{j=1}^{N} e^{2 \pi i m x_{j}}\right|^{2} \geq C N X
$$

can be rewritten as

$$
\left(\frac{1}{X} \sum_{m=1}^{X}\left|\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i m x_{j}}-\int_{0}^{1} e^{2 \pi i m x} d x\right|^{2}\right)^{1 / 2} \geq C \frac{1}{\sqrt{N}}
$$

Thus, no matter how well I choose the points x_{1}, \ldots, x_{N}, the corresponding Riemann sums give an error of order at least $N^{-1 / 2}$ when tested on the first X exponentials, in ℓ^{2} average.

In other words, it can be seen as a result on irregularity of distributions.

Montgomery's generalizations

- Positive weights ω_{j} :

$$
\sum_{m=1}^{X}\left|\sum_{j=1}^{N} \omega_{j} e^{2 \pi i m x_{j}}\right|^{2} \geq C\left(\sum_{j=1}^{N} \omega_{j}^{2}\right) X .
$$

- Higher dimensions: for any $x_{1}, \ldots, x_{N} \in \mathbb{T}^{2}$, and for any X_{1}, X_{2} with $X_{1} X_{2} \gg N$

$$
\sum_{\left|m_{1}\right| \leq x_{1},\left|m_{2}\right| \leq X_{2}, m \neq 0}\left|\sum_{j=1}^{N} e^{2 \pi i m \cdot x_{j}}\right|^{2} \geq C N X_{1} X_{2} .
$$

Generalizing to manifolds. Previous results.

D. Bilyk, F. Dai and S. Steinerberger (2019) proved the following version of Cassels-Montgomery inequality for manifolds.

For any choice of points x_{1}, \ldots, x_{N} in \mathcal{M} and for any choice of positive weights $\omega_{1}, \ldots, \omega_{N}$,

$$
\sum_{\lambda_{m} \leq L}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} \geq C\left(\sum_{j=1}^{N} \omega_{j}^{2}\right) L^{d}(\log L)^{-d / 2}
$$

It is easy to show that there is a choice of points x_{1}, \ldots, x_{N} in \mathcal{M} such that

$$
\sum_{\lambda_{m} \leq L}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} \approx\left(\sum_{j=1}^{N} \omega_{j}^{2}\right) L^{d}
$$

Thus the result of Bilyk, Dai and Steinerberger is sharp up to a logarithmic factor.

The proof of Bilyk, Dai and Steinerberger

Take the heat kernel
$p_{t}(x, y)=\sum_{m=0}^{+\infty} e^{-\lambda_{m}^{2} t} \varphi_{m}(x) \overline{\varphi_{m}(y)} \approx \frac{1}{(4 \pi t)^{d / 2}} e^{-\frac{(d(x, y))^{2}}{4 t}}>0 \quad(t$ small $)$

- $e^{-\lambda_{m}^{2} t} \leq 1$.
- Taking $t=c L^{-2} \log L$, get $p_{t}(x, x) \geq C L^{d}(\log L)^{-d / 2}$.

Thus

$$
\begin{aligned}
& \sum_{\lambda_{m} \leq L}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} \geq \sum_{m=0}^{+\infty} e^{-\lambda_{m}^{2} t}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2}-\sum_{\lambda_{m}>L} \ldots \\
& =\sum_{j=1}^{N} \omega_{j} \sum_{k=1}^{N} \omega_{k} \sum_{m=0}^{+\infty} e^{-\lambda_{m}^{2} t} \varphi_{m}\left(x_{j}\right) \overline{\varphi\left(x_{k}\right)}-\ldots=\sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} p_{t}\left(x_{j}, x_{k}\right)-\ldots \\
& \geq \sum_{j=1}^{N} \omega_{j}^{2} p_{t}\left(x_{j}, x_{j}\right)-\ldots \geq C\left(\sum_{j=1}^{N} \omega_{j}^{2}\right) L^{d}(\log L)^{-d / 2}-\ldots
\end{aligned}
$$

Our contribution

L. Brandolini, B. Gariboldi, G. (2020): sharp version of the Cassels-Montgomery inequality for manifolds.

Theorem

For any choice of points x_{1}, \ldots, x_{N} in \mathcal{M} and for any choice of positive weights $\omega_{1}, \ldots, \omega_{N}$,

$$
\sum_{\lambda_{m} \leq L}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} \geq C\left(\sum_{j=1}^{N} \omega_{j}^{2}\right) L^{d}
$$

Proof

- Assume WLOG that $\omega_{1} \geq \omega_{2} \geq \ldots$.
- Call $X=\sharp\left\{m: \lambda_{m} \leq L\right\} \approx L^{d}$
- Take an area regular partition of $\mathcal{M}=\cup_{i=1}^{X} U_{i}$

$$
\mu\left(U_{i}\right)=1 / X, \quad B\left(z_{i}, c_{1} X^{-1 / d}\right) \subseteq U_{i} \subseteq B\left(z_{i}, c_{2} X^{-1 / d}\right)
$$

- Assume, for the sake of simplicity, that each region U_{i} contains at most 1 point x_{j}. Call V_{j} the region that contains x_{j}.
- Let h be a smooth even compactly supported function on [$-1,1$], with $h(t) \leq 1$ and $\mathcal{F}_{d} h(s) \geq 0$ (d-dimensional Fourier transform of h, thought of as a radial function).
- Recall the kernel theorem: there exists $q_{0}>0$ s.t.

$$
\begin{aligned}
& \sum_{m} h\left(\frac{\lambda_{m}}{L}\right) \varphi_{m}(x) \overline{\varphi_{m}(y)} \\
& =q_{0}(x, y) L^{d} \mathcal{F}_{d} h(L|x-y|)+O\left(\frac{L^{d-2}}{(1+L|x-y|)^{M}}\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
\sum_{\lambda_{m} \leq L}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} & \geq \sum_{m=0}^{+\infty} h\left(\frac{\lambda_{m}}{L}\right)\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} \\
& =\sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} \sum_{m=0}^{+\infty} h\left(\frac{\lambda_{m}}{L}\right) \varphi_{m}\left(x_{j}\right) \overline{\varphi_{m}\left(x_{k}\right)} \\
& \geq \sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} q_{0}\left(x_{j}, x_{k}\right) L^{d} \mathcal{F}_{d} h\left(L\left|x_{j}-x_{k}\right|\right) \\
& -C \sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} \frac{L^{d-2}}{\left(1+L\left|x_{j}-x_{k}\right|\right)^{M}}
\end{aligned}
$$

Main term:

$$
\sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} q_{0}\left(x_{j}, x_{k}\right) L^{d} \mathcal{F}_{d} h\left(L\left|x_{j}-x_{k}\right|\right) \geq C \sum_{j=0}^{N} \omega_{j}^{2} L^{d} \mathcal{F}_{d} h(0)
$$

Proof: the remainder term

We say that V_{j} is near V_{k} (and write $j \sim k$) if $\left|z_{j}-z_{k}\right| \leq C L^{-1}$.
Otherwise we will write $j \nsim k$.

$$
\begin{aligned}
& \sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} \frac{L^{d-2}}{\left(1+L\left|x_{j}-x_{k}\right|\right)^{M}} \\
& \leq 2 L^{d-2} \sum_{j=1}^{N} \sum_{k=j, k \sim j}^{N} \omega_{j} \omega_{k}+2 L^{d-2} \sum_{j=1}^{N-1} \sum_{k=j+1, k \nsim j}^{N} \omega_{j} \omega_{k}\left(L\left|x_{j}-x_{k}\right|\right)^{-M}
\end{aligned}
$$

There is only a uniformly bounded (by, say, κ) number of balls V_{k} near V_{j}. Also $\omega_{j} \geq \omega_{k}$ when $k \geq j$. Thus

$$
L^{d-2} \sum_{j=1}^{N} \sum_{k=j, k \sim j}^{N} \omega_{j} \omega_{k} \leq \kappa L^{d-2} \sum_{j=1}^{N} \omega_{j}^{2}
$$

Proof: the remainder term

For any big r and for any fixed j, how many regions V_{k} are there such that $\left|z_{k}-z_{j}\right| \leq r L^{-1}$?

$$
\approx \frac{\left(r L^{-1}\right)^{d}}{\left(X^{-1 / d}\right)^{d}} \approx r^{d}
$$

Therefore,

$$
\begin{aligned}
& L^{d-2} \sum_{j=1}^{N-1} \sum_{k=j+1, k \nsim j}^{N} \omega_{j} \omega_{k}\left(L\left|x_{j}-x_{k}\right|\right)^{-M} \\
& \leq L^{d-2} \sum_{j=1}^{N-1} \omega_{j} \sum_{s=1}^{+\infty} \sum_{k>j, 2^{s-1}<L\left|z_{j}-z_{k}\right| \leq 2^{s}} \omega_{k}\left(L\left|x_{j}-x_{k}\right|\right)^{-M} \\
& \leq c L^{d-2} \sum_{j=1}^{N-1} \omega_{j} \sum_{s=1}^{+\infty} 2^{-s M} \sum_{k>j, L\left|z_{j}-z_{k}\right| \leq 2^{s}} \omega_{k} \\
& \leq c L^{d-2} \sum_{j=1}^{N-1} \omega_{j} \sum_{s=1}^{+\infty} 2^{-s M} 2^{s d} \omega_{j} \leq c L^{d-2} \sum_{j=1}^{N} \omega_{j}^{2}
\end{aligned}
$$

An application

Let $L>0$ and assume there exist points $\left\{x_{j}\right\}_{j=1}^{N}$ and weights $\left\{\omega_{j}\right\}_{j=1}^{N}$ such that for all $\lambda_{m}^{2} \leq L^{2}$,

$$
\int_{\mathcal{M}} \varphi_{m}(x) d x=\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)
$$

Then there exists a constant $C>0$ independent of L and N such that

$$
1 \geq C L^{d} \sum_{j=1}^{N} \omega_{j}^{2}
$$

In particular

$$
C L^{d} \leqslant N
$$

Proof

Let

$$
P(x)=\sum_{\lambda_{m} \leq L} \sum_{i=1}^{N} \omega_{i} \overline{\varphi_{m}\left(x_{i}\right)} \varphi_{m}(x)
$$

then

$$
\begin{aligned}
\int_{\mathcal{M}} P(x) d x & =\int_{\mathcal{M}} \sum_{\lambda_{m} \leq L} \sum_{i=1}^{N} \omega_{i} \overline{\varphi_{m}\left(x_{i}\right)} \varphi_{m}(x) d x \\
& =\sum_{\lambda_{m} \leq L} \sum_{i=1}^{N} \omega_{i} \overline{\varphi_{m}\left(x_{i}\right)} \int_{\mathcal{M}} \varphi_{m}(x) d x=\sum_{i=1}^{N} \omega_{i}=1
\end{aligned}
$$

On the other hand, by Cassels inequality,

$$
\begin{aligned}
1 & =\sum_{j=1}^{N} \omega_{j} P\left(x_{j}\right)=\sum_{j=1}^{N} \omega_{j} \sum_{\lambda_{m} \leq L} \sum_{i=1}^{N} \omega_{i} \overline{\varphi_{m}\left(x_{i}\right)} \varphi_{m}\left(x_{j}\right) \\
& =\sum_{\lambda_{m} \leq L}\left|\sum_{j=1}^{N} \omega_{j} \varphi_{m}\left(x_{j}\right)\right|^{2} \geq C L^{d} \sum_{j=1}^{N} \omega_{j}^{2} .
\end{aligned}
$$

