Quadrature rules on manifolds: useful results

Giacomo Gigante July 5th 2023

Università degli Studi di Bergamo

Theorem (Gariboldi, G. 2022) There exists a smooth positive function q on $\mathcal{M} \times \mathcal{M}$ such that if h is even, smooth and compactly supported on \mathbb{R} , then for every n

$$\sum_{m} h(\lambda_m/R)\varphi_m(x)\overline{\varphi_m(y)}$$

= $q(x,y)R^d \mathcal{F}_d h(R|x-y|) + O(R^{d-2}(1+R|x-y|)^{-n})$

Ideas in the proof: The operator $\cos(t\sqrt{\Delta})$

• Let $\cos(t\sqrt{\Delta})(x, y) \in \mathcal{D}'(\mathcal{M} \times \mathcal{M})$ be the kernel of the operator $f \mapsto \cos(t\sqrt{\Delta})f = u(t, x)$, where u(t, x) is the solution of problem

$$\begin{cases} \left(\frac{\partial^2}{\partial t^2} + \Delta\right) u(t, x) = 0, & (t \in \mathbb{R}, x \in \mathcal{M}) \\ u(0, x) = f(x) & \frac{\partial u}{\partial t}(0, x) = 0. \end{cases}$$

Notice that

$$\cos(t\sqrt{\Delta})(x,y) = \sum_{m=0}^{+\infty} \cos(t\lambda_m)\varphi_m(x)\overline{\varphi_m(y)}$$

• Similarly, let $\cos(t\sqrt{\Delta_{\mathbb{R}^d}})(|x-y|) \in \mathcal{D}'(\mathbb{R}^d \times \mathbb{R}^d)$ be the kernel of the operator $f \mapsto \cos(t\sqrt{\Delta_{\mathbb{R}^d}})f = u(t,x)$,

$$\begin{cases} \left(\frac{\partial^2}{\partial t^2} + \Delta_{\mathbb{R}^d}\right) u(t, x) = 0, & (t \in \mathbb{R}, x \in \mathbb{R}^d) \\ u(0, x) = f(x), & \frac{\partial u}{\partial t}(0, x) = 0. \end{cases}$$

Hadamard's parametrix for $\cos(t\sqrt{\Delta})$

The kernel $\cos(t\sqrt{\Delta})(x, y)$ can be approximated (for small t) by means of the corresponding kernel on \mathbb{R}^d , (and other radial distributions on \mathbb{R}^d ...)

$$\cos(t\sqrt{\Delta})(x,y) = q_0(x,y)\cos(t\sqrt{\Delta_{\mathbb{R}^d}})(|x-y|)$$
$$+ \sum_{\nu=1}^M q_\nu(x,y)B_\nu(t,|x-y|) + R_M(t,x,y)$$

where

- *M* > *d* + 3
- $q_{\nu} \in \mathcal{D}(\mathcal{M} \times \mathcal{M})$ and $q_0(x, y) > 0$.
- $R_M \in \mathcal{C}^{M-d-3}([-\varepsilon, \varepsilon] \times \mathcal{M} \times \mathcal{M})$, and

$$|\partial_{t,x,y}^{\beta}R_{M}(t,x,y)| \leq C|t|^{2M+2-d-|\beta|}$$

(see Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, 2014)

"Proof"

Suppose h even (and smooth and compactly supported). Formally:

$$\begin{split} \sum_{m=0}^{+\infty} h(\lambda_m)\varphi_m(x)\overline{\varphi_m(y)} &= \sum_{m=0}^{+\infty} \left(\int_{-\infty}^{+\infty} \mathcal{F}_1 h(t) \cos(t\lambda_m) dt \right) \varphi_m(x) \overline{\varphi_m(y)} \\ &= \int_{-\infty}^{+\infty} \mathcal{F}_1 h(t) \left(\sum_{m=0}^{+\infty} \cos(t\lambda_m) \varphi_m(x) \overline{\varphi_m(y)} \right) dt \\ &= \int_{-\infty}^{+\infty} \mathcal{F}_1 h(t) \cos(t\sqrt{\Delta})(x,y) dt \\ &\approx q_0(x,y) \int_{-\infty}^{+\infty} \mathcal{F}_1 h(t) \cos(t\sqrt{\Delta_{\mathbb{R}^d}}) (|x-y|) dt \\ &= q_0(x,y) \int_{-\infty}^{+\infty} h(t) \mathcal{F}_1 (\cos(\cdot\sqrt{\Delta_{\mathbb{R}^d}}) (|x-y|))(t) dt \\ &= C_d q_0(x,y) \int_{-\infty}^{+\infty} h(t) \frac{J_{d/2-1}(|t||x-y|)}{(|t||x-y|)^{d/2-1}} |t|^{d-1} dt \\ &= q_0(x,y) \mathcal{F}_d h(|x-y|) \end{split}$$

Problem: Need $\mathcal{F}_1 h$ supported in $[-\varepsilon, \varepsilon]$...

The following result is well known

Theorem

For any sufficiently large integer N there is a partition of the sphere S^d into N regions of equal measure and small diameter $\leq cN^{-1/d}$.

Stated and used by several authors:

- Stolarsky (1973)
- Beck and Chen (1987)
- Bourgain and Lindenstrauss (1988)

Proofs

- Constructive proof for d = 2 with a small constant c, by Rakhmanov, Saff and Zhou (1994)
- Extension to general *d* by Leopardi (2007)
- Different proof by Feige and Schechtman (2002).

Figure 1: N = 33. Rakhmanov, Saff and Zhou's construction (picture from Leopardi's thesis)

Definition (Ahlfors regular metric measure space of dimension d > 0) A complete metric space X with a Borel measure μ such that for all open balls B(x, r) with $x \in X$, $0 < r \le \text{diam}(X)$

 $\mu(B(x,r)) \asymp r^d.$

Definition (Ahlfors regular metric measure space of dimension d > 0) A complete metric space X with a Borel measure μ such that for all open balls B(x, r) with $x \in X$, $0 < r \le \text{diam}(X)$

 $\mu(B(x,r)) \asymp r^d.$

Example

• Compact connected Riemannian manifolds (e.g. the sphere).

Theorem (G., Leopardi, 2017) Let (X, ρ, μ) be an Ahlfors regular metric measure space of dimension d:

- connected.
- with finite measure.

Then for any integer N there is a partition of X into N regions of measure $\mu(X)/N$, each contained in a ball of radius $\asymp N^{-1/d}$ and containing a ball of radius $\asymp N^{-1/d}$.

An Ahlfors' regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of X, $\{Q_{\alpha}^{k} \subset X : k \in \mathbb{Z}, \alpha \in I_{k}\}$ s. t.

- $X = \bigcup_{\alpha \in I_k} Q_{\alpha}^k$ for all k (each generation covers X).
- $Q^k_{\alpha} \cap Q^k_{\beta} = \emptyset$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell > k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k} = \emptyset$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius $a_{0}2^{-k}$.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1}2^{-k}$.

An Ahlfors' regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of X, $\{Q_{\alpha}^{k} \subset X : k \in \mathbb{Z}, \alpha \in I_{k}\}$ s. t.

- $X = \bigcup_{\alpha \in I_k} Q_{\alpha}^k$ for all k (each generation covers X).
- $Q^k_{\alpha} \cap Q^k_{\beta} = \emptyset$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell > k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k} = \emptyset$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius $a_{0}2^{-k}$.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1}2^{-k}$.

k = 0

An Ahlfors' regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of X, $\{Q_{\alpha}^{k} \subset X : k \in \mathbb{Z}, \alpha \in I_{k}\}$ s. t.

- $X = \bigcup_{\alpha \in I_k} Q_{\alpha}^k$ for all k (each generation covers X).
- $Q_{\alpha}^{k} \cap Q_{\beta}^{k} = \emptyset$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell > k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k} = \emptyset$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius $a_{0}2^{-k}$.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1}2^{-k}$.

Q_1^1	Q_2^1
Q_3^1	Q_4^1

k = 1

An Ahlfors' regular metric measure space of dimension d admits a family of dyadic cubes: a collection of subsets of X, $\{Q_{\alpha}^{k} \subset X : k \in \mathbb{Z}, \alpha \in I_{k}\}$ s. t.

- $X = \bigcup_{\alpha \in I_k} Q_{\alpha}^k$ for all k (each generation covers X).
- $Q^k_{\alpha} \cap Q^k_{\beta} = \emptyset$ for all k and $\alpha \neq \beta$ (disjoint).
- If $\ell > k$ then either $Q_{\beta}^{\ell} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{\ell} \cap Q_{\alpha}^{k} = \emptyset$ (dyadic).
- Each Q_{α}^{k} contains a ball b_{α}^{k} (inner ball) of radius $a_{0}2^{-k}$.
- Each Q_{α}^{k} is contained in a ball B_{α}^{k} (outer ball) of radius $a_{1}2^{-k}$.

Q_1^2	Q_2^2	

k=2

Corollary (Sierpinski)

Let (X, ρ, μ) be an Ahlfors regular metric measure space of dimension d and let S be a measurable subset of X with finite measure. Then, for any $0 \le t \le \mu(S)$ there exists a subset $T \subset S$ with measure $\mu(T) = t$.

Proof.

This is true for all non-atomic measures. Here it follows easily from the dyadic cube decomposition of X.

Lemma For all k and $\alpha \in I_k$

$$Q^k_{\alpha} \cup \bigcup_{B^k_{\beta} \cap B^k_{\alpha}
eq \emptyset} Q^k_{\beta} \subset 3B^k_{\alpha}.$$

Here $3B_{\alpha}^{k}$ is the ball with the same center as B_{α}^{k} and triple radius.

Proof.

$$Q^k_{\alpha} \cup \bigcup_{B^k_{\beta} \cap B^k_{\alpha} \neq \emptyset} Q^k_{\beta} \subset B^k_{\alpha} \cup \bigcup_{B^k_{\beta} \cap B^k_{\alpha} \neq \emptyset} B^k_{\beta} \subset 3B^k_{\alpha}.$$

We will say that cubes Q^k_{α} and Q^k_{β} are *neighbours* if the corresponding outer balls intersect.

• Assume for simplicity that $\mu(X) = 1$.

- Assume for simplicity that $\mu(X) = 1$.
- For any big enough *N*, let *n* be the greatest generation of cubes of *X* such that

$$\mu(Q^n_{\alpha}) \geq \frac{2}{N} \quad \forall \alpha \in I_n$$

- Assume for simplicity that $\mu(X) = 1$.
- For any big enough *N*, let *n* be the greatest generation of cubes of *X* such that

$$\mu(Q_{\alpha}^{n}) \geq \frac{2}{N} \quad \forall \alpha \in I_{n}$$

 Let Γ be the graph with vertices in the centers of the outer balls of the cubes, and edges corresponding to pairs of neighbouring cubes.

- Assume for simplicity that $\mu(X) = 1$.
- For any big enough *N*, let *n* be the greatest generation of cubes of *X* such that

$$\mu(Q_{\alpha}^{n}) \geq \frac{2}{N} \quad \forall \alpha \in I_{n}$$

- Let Γ be the graph with vertices in the centers of the outer balls of the cubes, and edges corresponding to pairs of neighbouring cubes.
- X connected $\Rightarrow \Gamma$ connected

• Take a spanning tree S of Γ . It has leaves.

- Take a spanning tree S of Γ . It has leaves.
- Mark one vertex as the root, and direct S from the leaves towards the root. (α, β) ∈ S means that there is an edge from α towards β.

• For any $\beta \in I_n$, $\mu(Q_{\beta}^n \cup \bigcup_{(\alpha,\beta) \in S} Q_{\alpha}^n) \leq \frac{C}{N}$, C depending on X.

- For any $\beta \in I_n$, $\mu(Q_{\beta}^n \cup \bigcup_{(\alpha,\beta) \in S} Q_{\alpha}^n) \leq \frac{C}{N}$, C depending on X.
- In particular, Qⁿ_β ∪ U_{(α,β)∈S} Qⁿ_α may contain at most C disjoint sets of measure N⁻¹.

• One can fix an integer k, depending only on X, such that all cubes of generation m = n + k have measure

$$\mu(Q^m_{\alpha}) \leq \frac{1}{CN}$$

• Let α be a leaf of generation n.

- Let α be a leaf of generation n.
- Since 2/N ≤ µ(Qⁿ_α) ≤ C/N, Qⁿ_α can contain 2 ≤ N_α ≤ C subsets of measure 1/N.

- Let α be a leaf of generation n.
- Since 2/N ≤ μ(Qⁿ_α) ≤ C/N, Qⁿ_α can contain 2 ≤ N_α ≤ C subsets of measure 1/N.
- Take N_{α} cubes of generation *m* inside Q_{α}^n .

- Let α be a leaf of generation n.
- Since 2/N ≤ µ(Qⁿ_α) ≤ C/N, Qⁿ_α can contain 2 ≤ N_α ≤ C subsets of measure 1/N.
- Take N_{α} cubes of generation *m* inside Q_{α}^n .
- Their total measure is bounded by $N_{\alpha} \times (1/(CN)) \leq 1/N$.

- Let α be a leaf of generation n.
- Since 2/N ≤ µ(Qⁿ_α) ≤ C/N, Qⁿ_α can contain 2 ≤ N_α ≤ C subsets of measure 1/N.
- Take N_{α} cubes of generation *m* inside Q_{α}^{n} .
- Their total measure is bounded by $N_{\alpha} \times (1/(CN)) \leq 1/N$.
- The measure of the remaining part of Q_{α}^{n} is at least 1/N.

 Take a subset Wⁿ_α ⊂ Qⁿ_α, disjoint from the N_α cubes of generation m, of measure μ(Xⁿ_α) − N_α/N

- Take a subset $W_{\alpha}^n \subset Q_{\alpha}^n$, disjoint from the N_{α} cubes of generation m, of measure $\mu(X_{\alpha}^n) N_{\alpha}/N$
- Extend each of the N_{α} cubes of generation *m* within Q_{α}^{n} to a subset of measure 1/N.

- Take a subset $W_{\alpha}^n \subset Q_{\alpha}^n$, disjoint from the N_{α} cubes of generation m, of measure $\mu(X_{\alpha}^n) N_{\alpha}/N$
- Extend each of the N_{α} cubes of generation *m* within Q_{α}^{n} to a subset of measure 1/N.

- Take a subset $W_{\alpha}^n \subset Q_{\alpha}^n$, disjoint from the N_{α} cubes of generation m, of measure $\mu(X_{\alpha}^n) N_{\alpha}/N$
- Extend each of the N_{α} cubes of generation *m* within Q_{α}^{n} to a subset of measure 1/N.

Proof of the Theorem, 7. Generic node

• Let β be a generic node of generation n.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set Xⁿ_β = Qⁿ_β ∪ U_{(α,β)∈S} Wⁿ_α.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^n = Q_{\beta}^n \cup \bigcup_{(\alpha,\beta) \in S} W_{\alpha}^n$.
- Can do it so that the remainder $W_{\beta}^{n} \subset Q_{\beta}^{n}$.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^n = Q_{\beta}^n \cup \bigcup_{(\alpha,\beta) \in S} W_{\alpha}^n$.
- Can do it so that the remainder $W_{\beta}^{n} \subset Q_{\beta}^{n}$.

Proof of the Theorem, 7. Generic node

- Let β be a generic node of generation n.
- Repeat the above argument for the set $X_{\beta}^{n} = Q_{\beta}^{n} \cup \bigcup_{(\alpha,\beta) \in S} W_{\alpha}^{n}$.
- Can do it so that the remainder $W^n_\beta \subset \dot{Q}^n_\beta$.

• This construction due to Feige-Schechtman (2002, for the sphere), modified with the use of the David-Christ dyadic decomposition.

As reported by H. L. Montgomery. For any choice of N real numbers x_1, \ldots, x_N and for any positive integer X,

$$\sum_{m=1}^{X} \left| \sum_{j=1}^{N} e^{2\pi i m x_j} \right|^2 \ge \frac{1}{2} N(X+1) - \frac{1}{2} N^2.$$

For the sake of simplicity, throughout this talk we will always

- consider $X \gtrsim N$,
- disregard precise constants.

Thus we can simplify the form of the inequality to

$$\sum_{m=1}^{X} \left| \sum_{j=1}^{N} e^{2\pi i m x_j} \right|^2 \ge C N X.$$

A quick interpretation of the inequality

$$\sum_{m=1}^{X} \left| \sum_{j=1}^{N} e^{2\pi i m x_j} \right|^2 \ge C NX$$

can be rewritten as

$$\left(\frac{1}{X}\sum_{m=1}^{X}\left|\frac{1}{N}\sum_{j=1}^{N}e^{2\pi i m x_j}-\int_{0}^{1}e^{2\pi i m x}dx\right|^{2}\right)^{1/2}\geq C\,\frac{1}{\sqrt{N}}.$$

Thus, no matter how well I choose the points x_1, \ldots, x_N , the corresponding Riemann sums give an error of order at least $N^{-1/2}$ when tested on the first X exponentials, in ℓ^2 average.

In other words, it can be seen as a result on irregularity of distributions.

Montgomery's generalizations

• Positive weights ω_j :

$$\sum_{m=1}^{X} \left| \sum_{j=1}^{N} \omega_j e^{2\pi i m x_j} \right|^2 \ge C \left(\sum_{j=1}^{N} \omega_j^2 \right) X.$$

Higher dimensions: for any x₁,..., x_N ∈ T², and for any X₁, X₂ with X₁X₂ ≫ N

$$\sum_{|m_1| \le X_1, |m_2| \le X_2, m \ne 0} \left| \sum_{j=1}^N e^{2\pi i m \cdot x_j} \right|^2 \ge C N X_1 X_2$$

D. Bilyk, F. Dai and S. Steinerberger (2019) proved the following version of Cassels-Montgomery inequality for manifolds.

For any choice of points x_1, \ldots, x_N in \mathcal{M} and for any choice of positive weights $\omega_1, \ldots, \omega_N$,

$$\sum_{\lambda_m \leq L} \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 \geq C \left(\sum_{j=1}^N \omega_j^2 \right) L^d (\log L)^{-d/2}$$

It is easy to show that there is a choice of points x_1, \ldots, x_N in \mathcal{M} such that

$$\sum_{\lambda_m \leq L} \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 \approx \left(\sum_{j=1}^N \omega_j^2 \right) L^d$$

Thus the result of Bilyk, Dai and Steinerberger is sharp up to a logarithmic factor.

The proof of Bilyk, Dai and Steinerberger

Take the heat kernel

$$p_t(x,y) = \sum_{m=0}^{+\infty} e^{-\lambda_m^2 t} \varphi_m(x) \overline{\varphi_m(y)} \approx \frac{1}{(4\pi t)^{d/2}} e^{-\frac{(d(x,y))^2}{4t}} > 0 \quad (t \text{ small})$$

•
$$e^{-\lambda_m^2 t} \leq 1.$$

• Taking $t = cL^{-2} \log L$, get $p_t(x, x) \ge C L^d (\log L)^{-d/2}$.

Thus

$$\begin{split} &\sum_{\lambda_m \leq L} \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 \geq \sum_{m=0}^{+\infty} e^{-\lambda_m^2 t} \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 - \sum_{\lambda_m > L} \dots \\ &= \sum_{j=1}^N \omega_j \sum_{k=1}^N \omega_k \sum_{m=0}^{+\infty} e^{-\lambda_m^2 t} \varphi_m(x_j) \overline{\varphi(x_k)} - \dots = \sum_{j=1}^N \sum_{k=1}^N \omega_j \omega_k p_t(x_j, x_k) - \dots \\ &\geq \sum_{j=1}^N \omega_j^2 p_t(x_j, x_j) - \dots \geq C \left(\sum_{j=1}^N \omega_j^2 \right) L^d (\log L)^{-d/2} - \dots \end{split}$$

L. Brandolini, B. Gariboldi, G. (2020): sharp version of the Cassels-Montgomery inequality for manifolds.

Theorem

For any choice of points x_1, \ldots, x_N in \mathcal{M} and for any choice of positive weights $\omega_1, \ldots, \omega_N$,

$$\sum_{\lambda_m \leq L} \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 \geq C \left(\sum_{j=1}^N \omega_j^2 \right) L^d.$$

Proof

- Assume WLOG that $\omega_1 \geq \omega_2 \geq \ldots$
- Call $X = \sharp\{m : \lambda_m \le L\} \approx L^d$
- Take an area regular partition of $\mathcal{M} = \cup_{i=1}^X U_i$

$$u(U_i) = 1/X, \quad B(z_i, c_1 X^{-1/d}) \subseteq U_i \subseteq B(z_i, c_2 X^{-1/d})$$

- Assume, for the sake of simplicity, that each region U_i contains at most 1 point x_j. Call V_j the region that contains x_j.
- Let *h* be a smooth even compactly supported function on [-1, 1], with $h(t) \leq 1$ and $\mathcal{F}_d h(s) \geq 0$ (*d*-dimensional Fourier transform of *h*, thought of as a radial function).
- Recall the kernel theorem: there exists $q_0 > 0$ s.t.

$$\sum_{m} h\left(\frac{\lambda_{m}}{L}\right) \varphi_{m}(x) \overline{\varphi_{m}(y)}$$
$$= q_{0}(x, y) L^{d} \mathcal{F}_{d} h(L|x-y|) + O\left(\frac{L^{d-2}}{(1+L|x-y|)^{M}}\right)$$

Proof

$$\begin{split} \sum_{\lambda_m \leq L} \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 &\geq \sum_{m=0}^{+\infty} h\left(\frac{\lambda_m}{L}\right) \left| \sum_{j=1}^N \omega_j \varphi_m(x_j) \right|^2 \\ &= \sum_{j=1}^N \sum_{k=1}^N \omega_j \omega_k \sum_{m=0}^{+\infty} h\left(\frac{\lambda_m}{L}\right) \varphi_m(x_j) \overline{\varphi_m(x_k)} \\ &\geq \sum_{j=1}^N \sum_{k=1}^N \omega_j \omega_k q_0(x_j, x_k) L^d \mathcal{F}_d h(L|x_j - x_k|) \\ &- C \sum_{j=1}^N \sum_{k=1}^N \omega_j \omega_k \frac{L^{d-2}}{(1 + L|x_j - x_k|)^M} \end{split}$$

Main term:

$$\sum_{j=1}^{N}\sum_{k=1}^{N}\omega_{j}\omega_{k}q_{0}(x_{j},x_{k})L^{d}\mathcal{F}_{d}h(L|x_{j}-x_{k}|) \geq C\sum_{j=0}^{N}\omega_{j}^{2}L^{d}\mathcal{F}_{d}h(0)$$

We say that V_j is near V_k (and write $j \sim k$) if $|z_j - z_k| \leq CL^{-1}$. Otherwise we will write $j \sim k$.

$$\sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{j} \omega_{k} \frac{L^{d-2}}{(1+L|x_{j}-x_{k}|)^{M}}$$

$$\leq 2L^{d-2} \sum_{j=1}^{N} \sum_{k=j,k\sim j}^{N} \omega_{j} \omega_{k} + 2L^{d-2} \sum_{j=1}^{N-1} \sum_{k=j+1,k\sim j}^{N} \omega_{j} \omega_{k} (L|x_{j}-x_{k}|)^{-M}$$

There is only a uniformly bounded (by, say, κ) number of balls V_k near V_i . Also $\omega_i \ge \omega_k$ when $k \ge j$. Thus

$$L^{d-2}\sum_{j=1}^{N}\sum_{k=j,k\sim j}^{N}\omega_{j}\omega_{k}\leq \kappa L^{d-2}\sum_{j=1}^{N}\omega_{j}^{2}.$$

Proof: the remainder term

For any big r and for any fixed j, how many regions V_k are there such that $|z_k - z_j| \le rL^{-1}$?

$$pprox rac{(rL^{-1})^d}{(X^{-1/d})^d} pprox r^d$$

Therefore,

$$\begin{split} L^{d-2} \sum_{j=1}^{N-1} \sum_{k=j+1, k \neq j}^{N} \omega_j \omega_k (L|x_j - x_k|)^{-M} \\ &\leq L^{d-2} \sum_{j=1}^{N-1} \omega_j \sum_{s=1}^{+\infty} \sum_{k>j, 2^{s-1} < L|z_j - z_k| \le 2^s} \omega_k (L|x_j - x_k|)^{-M} \\ &\leq c L^{d-2} \sum_{j=1}^{N-1} \omega_j \sum_{s=1}^{+\infty} 2^{-sM} \sum_{k>j, L|z_j - z_k| \le 2^s} \omega_k \\ &\leq c L^{d-2} \sum_{j=1}^{N-1} \omega_j \sum_{s=1}^{+\infty} 2^{-sM} 2^{sd} \omega_j \le c L^{d-2} \sum_{j=1}^{N} \omega_j^2 \end{split}$$

Let L > 0 and assume there exist points $\{x_j\}_{j=1}^N$ and weights $\{\omega_j\}_{j=1}^N$ such that for all $\lambda_m^2 \leq L^2$,

$$\int_{\mathcal{M}} \varphi_m(x) \, dx = \sum_{j=1}^N \omega_j \varphi_m(x_j) \, .$$

Then there exists a constant C > 0 independent of L and N such that

$$1 \ge CL^d \sum_{j=1}^N \omega_j^2.$$

In particular

 $CL^d \leq N$.

Proof

Let

$$P(x) = \sum_{\lambda_{m} \leq L} \sum_{i=1}^{N} \omega_{i} \overline{\varphi_{m}(x_{i})} \varphi_{m}(x),$$

then

$$\int_{\mathcal{M}} P(x) dx = \int_{\mathcal{M}} \sum_{\lambda_m \le L} \sum_{i=1}^{N} \omega_i \overline{\varphi_m(x_i)} \varphi_m(x) dx$$
$$= \sum_{\lambda_m \le L} \sum_{i=1}^{N} \omega_i \overline{\varphi_m(x_i)} \int_{\mathcal{M}} \varphi_m(x) dx = \sum_{i=1}^{N} \omega_i = 1.$$

On the other hand, by Cassels inequality,

$$1 = \sum_{j=1}^{N} \omega_j P(x_j) = \sum_{j=1}^{N} \omega_j \sum_{\lambda_m \le L} \sum_{i=1}^{N} \omega_i \overline{\varphi_m(x_i)} \varphi_m(x_j)$$
$$= \sum_{\lambda_m \le L} \left| \sum_{j=1}^{N} \omega_j \varphi_m(x_j) \right|^2 \ge C L^d \sum_{j=1}^{N} \omega_j^2.$$