
Quadrature rules on manifolds: useful results

Giacomo Gigante

July 5th 2023
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First result: Euclidean approximation of kernels

Theorem (Gariboldi, G. 2022)
There exists a smooth positive function q on M×M such that if h is

even, smooth and compactly supported on R, then for every n

∑
m

h(λm/R)ϕm(x)ϕm(y)

= q(x , y)RdFdh(R |x − y |) +O(Rd−2(1 + R |x − y |)−n)
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Ideas in the proof: The operator cos(t
√

∆)

• Let cos(t
√

∆)(x , y) ∈ D′(M×M) be the kernel of the operator

f 7→ cos(t
√

∆)f = u(t, x), where u(t, x) is the solution of problem{
( ∂2

∂t2 + ∆)u(t, x) = 0, (t ∈ R, x ∈ M)

u(0, x) = f (x) ∂u
∂t (0, x) = 0.

Notice that

cos(t
√

∆)(x , y) =
+∞

∑
m=0

cos(tλm)ϕm(x)ϕm(y)

• Similarly, let cos(t
√

∆Rd )(|x − y |) ∈ D′(Rd ×Rd ) be the kernel of

the operator f 7→ cos(t
√

∆Rd )f = u(t, x),{
( ∂2

∂t2 + ∆Rd )u(t, x) = 0, (t ∈ R, x ∈ Rd )

u(0, x) = f (x), ∂u
∂t (0, x) = 0.
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Hadamard’s parametrix for cos(t
√

∆)

The kernel cos(t
√

∆)(x , y) can be approximated (for small t) by means

of the corresponding kernel on Rd , (and other radial distributions on

Rd ...)

cos(t
√

∆)(x , y) = q0(x , y) cos(t
√

∆Rd )(|x − y |)

+
M

∑
ν=1

qν(x , y)Bν(t, |x − y |) + RM (t, x , y)

where

• M > d + 3

• qν ∈ D(M×M) and q0(x , y) > 0.

• RM ∈ CM−d−3([−ε, ε]×M×M), and

|∂β
t,x,yRM (t, x , y)| ≤ C |t|2M+2−d−|β|

(see Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, 2014)
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”Proof”

Suppose h even (and smooth and compactly supported). Formally:

+∞

∑
m=0

h(λm)ϕm(x)ϕm(y ) =
+∞

∑
m=0

(∫ +∞

−∞
F1h(t) cos(tλm)dt

)
ϕm(x)ϕm(y )

=
∫ +∞

−∞
F1h(t)

(
+∞

∑
m=0

cos(tλm)ϕm(x)ϕm(y )

)
dt

=
∫ +∞

−∞
F1h(t) cos(t

√
∆)(x , y )dt

≈ q0(x , y )
∫ +∞

−∞
F1h(t) cos(t

√
∆Rd )(|x − y |)dt

= q0(x , y )
∫ +∞

−∞
h(t)F1(cos(·

√
∆Rd )(|x − y |))(t)dt

= Cdq0(x , y )
∫ +∞

−∞
h(t)

Jd/2−1(|t||x − y |)
(|t||x − y |)d/2−1

|t|d−1dt

= q0(x , y )Fdh(|x − y |)

Problem: Need F1h supported in [−ε, ε]...
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Second result: Area regular partitions

The following result is well known

Theorem
For any sufficiently large integer N there is a partition of the sphere Sd

into N regions of equal measure and small diameter ≤ cN−1/d .

Stated and used by several authors:

• Stolarsky (1973)

• Beck and Chen (1987)

• Bourgain and Lindenstrauss (1988)

Proofs

• Constructive proof for d = 2 with a small constant c , by

Rakhmanov, Saff and Zhou (1994)

• Extension to general d by Leopardi (2007)

• Different proof by Feige and Schechtman (2002).
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Figure 1: N = 33. Rakhmanov, Saff and Zhou’s construction (picture from

Leopardi’s thesis)
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Definition (Ahlfors regular metric measure space of dimension

d > 0)
A complete metric space X with a Borel measure µ such that for all open

balls B(x , r) with x ∈ X , 0 < r ≤ diam(X )

µ(B(x , r)) � rd .

Example

• Compact connected Riemannian manifolds (e.g. the sphere).
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Theorem (G., Leopardi, 2017)
Let (X , ρ, µ) be an Ahlfors regular metric measure space of dimension d :

• connected,

• with finite measure.

Then for any integer N there is a partition of X into N regions of

measure µ(X )/N, each contained in a ball of radius � N−1/d and

containing a ball of radius � N−1/d .
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Theorem (G. David 1988, M. Christ 1990)
An Ahlfors regular metric measure space of dimension d admits a family

of dyadic cubes: a collection of subsets of X , {Qk
α ⊂ X : k ∈ Z, α ∈ Ik}

s. t.

• X = ∪α∈IkQ
k
α for all k (each generation covers X ).

• Qk
α ∩Qk

β = ∅ for all k and α 6= β (disjoint).

• If ` > k then either Q`
β ⊂ Qk

α or Q`
β ∩Qk

α = ∅ (dyadic).

• Each Qk
α contains a ball bkα (inner ball) of radius a02−k .

• Each Qk
α is contained in a ball Bk

α (outer ball) of radius a12−k .
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A consequence

Corollary (Sierpinski)
Let (X , ρ, µ) be an Ahlfors regular metric measure space of dimension d

and let S be a measurable subset of X with finite measure. Then, for any

0 ≤ t ≤ µ(S) there exists a subset T ⊂ S with measure µ(T ) = t.

Proof.
This is true for all non-atomic measures. Here it follows easily from the

dyadic cube decomposition of X .
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Lemma
For all k and α ∈ Ik

Qk
α ∪

⋃
Bk

β∩B
k
α 6=∅

Qk
β ⊂ 3Bk

α .

Here 3Bk
α is the ball with the same center as Bk

α and triple radius.

Proof.

Qk
α ∪

⋃
Bk

β∩B
k
α 6=∅

Qk
β ⊂ Bk

α ∪
⋃

Bk
β∩B

k
α 6=∅

Bk
β ⊂ 3Bk

α .

We will say that cubes Qk
α and Qk

β are neighbours if the corresponding

outer balls intersect.
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Proof of the Theorem, 1

• Assume for simplicity that µ(X ) = 1.

• For any big enough N, let n be the greatest generation of cubes of

X such that

µ(Qn
α ) ≥

2

N
∀α ∈ In

• Let Γ be the graph with vertices in the centers of the outer balls of

the cubes, and edges corresponding to pairs of neighbouring cubes.

• X connected ⇒ Γ connected
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Proof of the Theorem, 2

• Take a spanning tree S of Γ. It has leaves.

• Mark one vertex as the root, and direct S from the leaves towards

the root. (α, β) ∈ S means that there is an edge from α towards β.
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Proof of the Theorem, 3

• For any β ∈ In, µ(Qn
β ∪

⋃
(α,β)∈S Qn

α ) ≤ C
N , C depending on X .

• In particular, Qn
β ∪

⋃
(α,β)∈S Qn

α may contain at most C disjoint sets

of measure N−1.
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Proof of the Theorem, 4

• One can fix an integer k , depending only on X , such that all cubes

of generation m = n+ k have measure

µ(Qm
α ) ≤ 1

CN
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Proof of the Theorem, 5. Leaves

• Let α be a leaf of generation n.

• Since 2/N ≤ µ(Qn
α ) ≤ C/N, Qn

α can contain 2 ≤ Nα ≤ C subsets

of measure 1/N.

• Take Nα cubes of generation m inside Qn
α .

• Their total measure is bounded by Nα × (1/(CN)) ≤ 1/N.

• The measure of the remaining part of Qn
α is at least 1/N.
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Proof of the Theorem, 6. Leaves

• Take a subset W n
α ⊂ Qn

α , disjoint from the Nα cubes of generation

m, of measure µ(X n
α )−Nα/N

• Extend each of the Nα cubes of generation m within Qn
α to a subset

of measure 1/N.
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Proof of the Theorem, 7. Generic node

• Let β be a generic node of generation n.

• Repeat the above argument for the set X n
β = Qn

β ∪
⋃
(α,β)∈S W n

α .

• Can do it so that the remainder W n
β ⊂ Qn

β .

• This construction due to Feige-Schechtman (2002, for the sphere),

modified with the use of the David-Christ dyadic decomposition.
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Third result: Cassels inequality

As reported by H. L. Montgomery. For any choice of N real numbers

x1, . . . , xN and for any positive integer X ,

X

∑
m=1

∣∣∣∣∣ N

∑
j=1

e2πimxj

∣∣∣∣∣
2

≥ 1

2
N(X + 1)− 1

2
N2.

For the sake of simplicity, throughout this talk we will always

• consider X & N,

• disregard precise constants.

Thus we can simplify the form of the inequality to

X

∑
m=1

∣∣∣∣∣ N

∑
j=1

e2πimxj

∣∣∣∣∣
2

≥ C NX .
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A quick interpretation of the inequality

X

∑
m=1

∣∣∣∣∣ N

∑
j=1

e2πimxj

∣∣∣∣∣
2

≥ C NX

can be rewritten as 1

X

X

∑
m=1

∣∣∣∣∣ 1

N

N

∑
j=1

e2πimxj −
∫ 1

0
e2πimxdx

∣∣∣∣∣
2
1/2

≥ C
1√
N

.

Thus, no matter how well I choose the points x1, . . . , xN , the

corresponding Riemann sums give an error of order at least N−1/2 when

tested on the first X exponentials, in `2 average.

In other words, it can be seen as a result on irregularity of distributions.
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Montgomery’s generalizations

• Positive weights ωj :

X

∑
m=1

∣∣∣∣∣ N

∑
j=1

ωje
2πimxj

∣∣∣∣∣
2

≥ C

(
N

∑
j=1

ω2
j

)
X .

• Higher dimensions: for any x1, . . . , xN ∈ T2, and for any X1, X2

with X1X2 � N

∑
|m1|≤X1, |m2|≤X2,m 6=0

∣∣∣∣∣ N

∑
j=1

e2πim·xj

∣∣∣∣∣
2

≥ C NX1X2.
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Generalizing to manifolds. Previous results.

D. Bilyk, F. Dai and S. Steinerberger (2019) proved the following version

of Cassels-Montgomery inequality for manifolds.

For any choice of points x1, . . . , xN in M and for any choice of positive

weights ω1, . . . , ωN ,

∑
λm≤L

∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

≥ C

(
N

∑
j=1

ω2
j

)
Ld (log L)−d/2.

It is easy to show that there is a choice of points x1, . . . , xN in M such

that

∑
λm≤L

∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

≈
(

N

∑
j=1

ω2
j

)
Ld

Thus the result of Bilyk, Dai and Steinerberger is sharp up to a

logarithmic factor.
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The proof of Bilyk, Dai and Steinerberger

Take the heat kernel

pt(x , y) =
+∞

∑
m=0

e−λ2
mt ϕm(x)ϕm(y) ≈

1

(4πt)d/2
e−

(d(x ,y ))2

4t > 0 (t small)

• e−λ2
mt ≤ 1.

• Taking t = cL−2 log L, get pt(x , x) ≥ C Ld (log L)−d/2.

Thus

∑
λm≤L

∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

≥
+∞

∑
m=0

e−λ2
mt

∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

− ∑
λm>L

. . .

=
N

∑
j=1

ωj

N

∑
k=1

ωk

+∞

∑
m=0

e−λ2
mt ϕm(xj )ϕ(xk )− . . . =

N

∑
j=1

N

∑
k=1

ωjωkpt(xj , xk )− . . .

≥
N

∑
j=1

ω2
j pt(xj , xj )− . . . ≥ C

(
N

∑
j=1

ω2
j

)
Ld (log L)−d/2 − . . . .
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Our contribution

L. Brandolini, B. Gariboldi, G. (2020): sharp version of the

Cassels-Montgomery inequality for manifolds.

Theorem
For any choice of points x1, . . . , xN in M and for any choice of positive

weights ω1, . . . , ωN ,

∑
λm≤L

∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

≥ C

(
N

∑
j=1

ω2
j

)
Ld .
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Proof

• Assume WLOG that ω1 ≥ ω2 ≥ . . ..
• Call X = ]{m : λm ≤ L} ≈ Ld

• Take an area regular partition of M = ∪Xi=1Ui

µ(Ui ) = 1/X , B(zi , c1X
−1/d ) ⊆ Ui ⊆ B(zi , c2X

−1/d )

• Assume, for the sake of simplicity, that each region Ui contains at

most 1 point xj . Call Vj the region that contains xj .

• Let h be a smooth even compactly supported function on [−1, 1],

with h(t) ≤ 1 and Fdh(s) ≥ 0 (d–dimensional Fourier transform of

h, thought of as a radial function).

• Recall the kernel theorem: there exists q0 > 0 s.t.

∑
m

h

(
λm

L

)
ϕm(x)ϕm(y)

= q0(x , y)LdFdh(L|x − y |) +O

(
Ld−2

(1 + L|x − y |)M

)
25



Proof

∑
λm≤L

∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

≥
+∞

∑
m=0

h

(
λm

L

) ∣∣∣∣∣ N

∑
j=1

ωj ϕm(xj )

∣∣∣∣∣
2

=
N

∑
j=1

N

∑
k=1

ωjωk

+∞

∑
m=0

h

(
λm

L

)
ϕm(xj )ϕm(xk )

≥
N

∑
j=1

N

∑
k=1

ωjωkq0(xj , xk )L
dFdh(L|xj − xk |)

− C
N

∑
j=1

N

∑
k=1

ωjωk
Ld−2

(1 + L|xj − xk |)M

Main term:

N

∑
j=1

N

∑
k=1

ωjωkq0(xj , xk )L
dFdh(L|xj − xk |) ≥ C

N

∑
j=0

ω2
j L

dFdh(0)
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Proof: the remainder term

We say that Vj is near Vk (and write j ∼ k) if |zj − zk | ≤ CL−1.

Otherwise we will write j � k .

N

∑
j=1

N

∑
k=1

ωjωk
Ld−2

(1 + L|xj − xk |)M

≤ 2Ld−2
N

∑
j=1

N

∑
k=j,k∼j

ωjωk + 2Ld−2
N−1

∑
j=1

N

∑
k=j+1,k�j

ωjωk (L|xj − xk |)−M

There is only a uniformly bounded (by, say, κ) number of balls Vk near

Vj . Also ωj ≥ ωk when k ≥ j . Thus

Ld−2
N

∑
j=1

N

∑
k=j,k∼j

ωjωk ≤ κLd−2
N

∑
j=1

ω2
j .
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Proof: the remainder term

For any big r and for any fixed j , how many regions Vk are there such

that |zk − zj | ≤ rL−1 ?

≈ (rL−1)d

(X−1/d )d
≈ rd

Therefore,

Ld−2
N−1

∑
j=1

N

∑
k=j+1,k�j

ωjωk (L|xj − xk |)−M

≤ Ld−2
N−1

∑
j=1

ωj

+∞

∑
s=1

∑
k>j, 2s−1<L|zj−zk |≤2s

ωk (L|xj − xk |)−M

≤ cLd−2
N−1

∑
j=1

ωj

+∞

∑
s=1

2−sM ∑
k>j,L|zj−zk |≤2s

ωk

≤ cLd−2
N−1

∑
j=1

ωj

+∞

∑
s=1

2−sM2sdωj ≤ cLd−2
N

∑
j=1

ω2
j
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An application

Let L > 0 and assume there exist points {xj}Nj=1 and weights {ωj}Nj=1

such that for all λ2
m ≤ L2,

∫
M

ϕm (x) dx =
N

∑
j=1

ωj ϕm (xj ) .

Then there exists a constant C > 0 independent of L and N such that

1 ≥ CLd
N

∑
j=1

ω2
j .

In particular

CLd 6 N.
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Proof

Let

P (x) = ∑
λm≤L

N

∑
i=1

ωi ϕm (xi )ϕm (x) ,

then∫
M

P (x) dx =
∫
M

∑
λm≤L

N

∑
i=1

ωi ϕm (xi )ϕm (x) dx

= ∑
λm≤L

N

∑
i=1

ωi ϕm (xi )
∫
M

ϕm (x) dx =
N

∑
i=1

ωi = 1.

On the other hand, by Cassels inequality,

1 =
N

∑
j=1

ωjP (xj ) =
N

∑
j=1

ωj ∑
λm≤L

N

∑
i=1

ωi ϕm (xi )ϕm (xj )

= ∑
λm≤L

∣∣∣∣∣ N

∑
j=1

ωj ϕm (xj )

∣∣∣∣∣
2

≥ CLd
N

∑
j=1

ω2
j .
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