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Numerical integration, a simple observation

Goal: Estimate the error in numerical integration: e.g.∣∣∣∣∣
∫ 1

0
f (x)dx −

N

∑
j=1

1

N
f (xj )

∣∣∣∣∣ .

Pick any point xj ∈
[
j−1
N , j

N

)
, for j = 1, . . .N. Then, if f is Hölder

continuous of degree 0 < α ≤ 1∣∣∣∣∣
∫ 1

0
f (x)dx −

N

∑
j=1

1

N
f (xj )

∣∣∣∣∣ ≤ N

∑
j=1

∫ j/N

(j−1)/N
|f (xj )− f (x)| dx

≤ sup
|y−x |≤N−1

|f (y)− f (x)| ≤ 1

Nα
|f |0,α
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Numerical Approximation - the interval

We may also allow different weights.

Error for Lagrange interpolatory quadrature rules∣∣∣∣∣
∫ b

a
f (x)dx −

n

∑
i=1

ωi f (xi )

∣∣∣∣∣ ≤ (b− a)n+1

n!
max

x∈[a,b]
|f (n)(x)|

We need a priori estimates: for all (say) f ∈ Cα. Thus fix n = α ∈N,

and use composite rules: split [a, b] into M subintervals and apply the

rule to each subinterval∣∣∣∣∣ M∑
j=1

(∫ aj+1

aj
f (x)dx −

α

∑
i=1

ωi f (x
j
i )

)∣∣∣∣∣ ≤ M

∑
j=1

(
b− a

M

)α+1 1

α!
max

x∈[a,b]
|f (α)(x)|

≤ Cα(αM)−α max
x∈[a,b]

|f (α)(x)|
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Koksma’s inequality

In numerical integration, Koksma’s inequality gives a bound for the error

in the approximation of an integral by Riemann sums. Let f ∈ C ([0, 1]),

x1, x2, . . . , xN ∈ [0, 1], then∣∣∣∣∣
∫ 1

0
f (x) dx − 1

N

N

∑
j=1

f (xj )

∣∣∣∣∣ ≤ D∗ ({xj}Nj=1

)
V (f )

where

D∗
(
{xj}Nj=1

)
= sup

0≤t≤1

∣∣∣∣∣t − 1

N

N

∑
j=1

χ[0,t] (xj )

∣∣∣∣∣
= sup

0≤t≤1

∣∣∣∣∣
∫ 1

0
χ[0,t] (x) dx −

1

N

N

∑
j=1

χ[0,t] (xj )

∣∣∣∣∣
and

V (f ) = sup
0=y0<y1<···<yk=1

{
k

∑
j=1

|f (yk )− f (yk−1)|
}
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Discrepancy

• The quantity D∗
(
{xj}Nj=1

)
is called discrepancy of the distribution

of points x1, x2, . . . , xN and measures the error with respect to

functions of the kind

χ[0,t]

• In some sense the discrepancy measures how the points

x1, x2, . . . , xN are ”well distributed”.

• In view of Koksma’s inequality it is natural to ask if there are points

with low discrepancy.

• Of course for any given N the points xj =
j−1
N−1 give

D∗
(
{xj}Nj=1

)
=

1

N − 1
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Discrepancy

• The idea of discrepancy may seem trivial since equally spaced points

are obviuosly well distributed.

• It may be interesting to find infinite sequences xj such that

∫ 1

0
f (x) dx = lim

N→+∞

1

N

N

∑
j=1

f (xj )

• Let D∗ (N) be the discrepancy of the first N terms of the sequence

x1, x2, . . .

• Van der Corput (1935) conjectured that

D∗ (N) ≤ c

N

is impossible.

• A remarkable theorem of Schmidt (1973) says that D∗ (N) cannot

be o
(
logN
N

)
.
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Discrepancy

• This result is sharp since Van der Corput sequence

1

2
,

1

4
,

1

4
+

1

2
,

1

8
,

1

8
+

1

2
,

1

8
+

1

4
,

1

8
+

1

4
+

1

2
...

satisfies

D∗ (N) ≤ c
log (N)

N
.
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A proof of ”Koksma’s inequality”

Let g (x) = x − bxc − 1/2 be the saw tooth function. Then

∣∣∣∣∣
∫

T
f (x) dx − 1

N

N

∑
j=1

f (xj )

∣∣∣∣∣ ≤
∫

T

∣∣f ′ (x)∣∣ dx sup
t∈T

∣∣∣∣∣ 1

N

N

∑
j=1

g (t − xj )

∣∣∣∣∣

1

N

N

∑
j=1

f (xj )−
∫

T
f (x) dx = ∑

k 6=0

(
1

N

N

∑
j=1

e2πikxj

)
f̂ (k)

= ∑
k 6=0

1

2πik

(
1

N

N

∑
j=1

e2πikxj

)
2πik f̂ (k)
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A proof of ”Koksma’s inequality”

Since g (x) = ∑k 6=0
1

−2πik e
2πikx we have

∑
k 6=0

1

2πik

(
1

N

N

∑
j=1

e2πikxj

)
2πik f̂ (k)

= ∑
k∈Z

(
1

N

N

∑
j=1

g (· − xj )

)∧
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∫

T

1

N

N

∑
j=1

g(t + xj )f
′(t)dt
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Higher dimension

• The extension of Koksma’s inequality to several variables is a

delicate problem.

• A classical approach starts with the definition of Vitali variation.

• For a function f on [0, 1]d and a subinterval J of [0, 1]d let ∆ (f , J)

be the alternating sum of the values of f at the vertices of J (i.e.

adjacent vertices have opposite sign)

• The Vitali variation of f is

V (f ) = sup
partition P

of [0,1]d

{
∑
J∈P
|∆ (f , J)|

}

• The Hardy-Krause variation of f is

V (f ) = ∑
k

Vk (f )

where the sum is over the Vitali variations Vk (f ) of the restrictions

of f to all faces of all dimensions of [0, 1]d .

9
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• Hardy-Krause variation works well for smooth functions, but it

cannot be applied to most functions with simple discontinuities.

• The characteristic function of a convex polyhedron has bounded

Hardy-Krause variation only if the polyhedron is a d-dimensional

interval.
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• The discrepancy of a finite point set {xj}Nj=1 in [0, 1]d is defined by

D ({xj}) = sup
I

∣∣∣∣∣ 1

N

N

∑
j=1

χI (xj )− |I |
∣∣∣∣∣

where I is an interval of the form [0, t1]× [0, t2]× . . .× [0, td ].

• The classical Koksma-Hlawka inequality states that if f has bounded

Hardy-Krause variation, then∣∣∣∣∣N−1 N

∑
j=1

f (xj )−
∫
[0,1]d

f (x)dx

∣∣∣∣∣ ≤ D ({xj})V (f ) .
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Higher dimension discrepancy

For d > 1 equally spaced points do not work very well. Let N = Kd and

consider the points (grid)(
k1
K

, · · · ,
kd
K

)
, kj = 0, 1, . . . ,K − 1.

Then D ({xj}) ≈ N−1/d = K−1

However it is possible to choose points {xj}Nj=1 such that

D ({xj}) ≤ c
logd−1 N

N
.
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Higher dimension discrepancy

For example for d = 2 let

xj =

(
j

N
, r (j)

)
where r (j) is defined as follows. Let ak be the binary digits of j , that is

j = a0 + 2a1 + 22a2 + 23a3 + · · ·

then

r (j) =
a0
2

+
a1
22

+
a2
22

+
a3
23

+ · · ·

(the Van der Corput sequence !) It is not difficult to prove that for these

points

D (xj ) ≤
logN

N
.
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Higher dimension discrepancy
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Higher dimension discrepancy

Theorem (Roth, 1954)
Let {xj}Nj=1 ⊂ Td . There exists a rectangle R ⊂ Td having sides parallel

to the axes such that∣∣∣∣∣ 1

N

N

∑
j=1

χR (xj )− |R |
∣∣∣∣∣ ≥ cd

(logN)
d−1
2

N

with an absolute constant only depending on the dimension.

• Conjecture:

. . . ≥ cd
(logN)d−1

N

• Schmidt (1973): True for d ≤ 2.

• Bilyk, Lacey, Vagharshakyan (2008): ∃ ηd > 0 s.t.

. . . ≥ cd
(logN)

d−1
2 +ηd

N

15



Higher dimension discrepancy

Theorem (Roth, 1954)
Let {xj}Nj=1 ⊂ Td . There exists a rectangle R ⊂ Td having sides parallel

to the axes such that∣∣∣∣∣ 1

N

N

∑
j=1

χR (xj )− |R |
∣∣∣∣∣ ≥ cd

(logN)
d−1
2

N

with an absolute constant only depending on the dimension.

• Conjecture:

. . . ≥ cd
(logN)d−1

N
• Schmidt (1973): True for d ≤ 2.

• Bilyk, Lacey, Vagharshakyan (2008): ∃ ηd > 0 s.t.

. . . ≥ cd
(logN)

d−1
2 +ηd

N

15



Higher dimension discrepancy

Theorem (Roth, 1954)
Let {xj}Nj=1 ⊂ Td . There exists a rectangle R ⊂ Td having sides parallel

to the axes such that∣∣∣∣∣ 1

N

N

∑
j=1

χR (xj )− |R |
∣∣∣∣∣ ≥ cd

(logN)
d−1
2

N

with an absolute constant only depending on the dimension.

• Conjecture:

. . . ≥ cd
(logN)d−1

N
• Schmidt (1973): True for d ≤ 2.

• Bilyk, Lacey, Vagharshakyan (2008): ∃ ηd > 0 s.t.

. . . ≥ cd
(logN)

d−1
2 +ηd

N

15



Monte Carlo Integration

• A second drawback with the grid(
k1
K

, · · · ,
kd
K

)
, kj = 0, 1, . . . ,K − 1,

even if one repeats, a composite Lagrange interpolation rule in each

dimension to evaluate the integral, is that the number of function

evaluations increases exponentially with the dimension.

• If d = 200, taking just K = 2, that is evaluating f at the vertices of

[0, 1)d , gives 2200 > 1060 evaluations.

• One alternative is the Monte Carlo method. Let X be a probability

space with measure dx . Then∥∥∥∥∥
∫
X
f (x)dx −

N

∑
j=1

1

N
f (xj )

∥∥∥∥∥
L2(XN ,dx1 ...dxN )

=
1√
N
(Var(f ))1/2

• Works in high dimensions (the constant is 1 in all dimensions).

• It is hard to produce random points.
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Monte Carlo integration

∫
XN

∣∣∣∣∣
∫
X
f (x)dx −

N

∑
j=1

1

N
f (xj )

∣∣∣∣∣
2

dx1 . . . dxN

=
∫
XN

∣∣∣∣∣ N

∑
j=1

1

N

(∫
X
f (x)dx − f (xj )

)∣∣∣∣∣
2

dx1 . . . dxN

=
N

∑
j=1

N

∑
i=1

∫
XN

1

N

(∫
X
f (x)dx − f (xj )

)
1

N

(∫
X
f (x)dx − f (xi )

)
dx1 . . . dxN

=
N

∑
j=1

∫
X

1

N2

∣∣∣∣∫
X
f (x)dx − f (xj )

∣∣∣∣2 dxj
=

1

N

∫
X

∣∣∣∣∫
X
f (x)dx − f (y)

∣∣∣∣2 dy
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Quadrature rules on compact manifolds

• M is a smooth compact d-dimensional Riemannian manifold

without boundary, with normalized Riemannian measure dµ.

• Let ∆ be the (positive) Laplace - Beltrami operator on M
• ∆ is self-adjoint in L2 (M), it has a sequence of eigenvalues

0 = λ2
0 ≤ λ2

1 ≤ λ2
2 ≤ . . . and an orthonormal complete system of

eigenfunctions {ϕk}+∞
k=0 , ∆ϕk = λ2

k ϕk

• For example on Td , ∆ = −∑ ∂2/∂x2j , with eigenvalues{
4π2 |m|2

}
m∈Zd

and eigenfunctions {exp (2πimx)}k∈Zd .

• Another example is the d-dimensional sphere Sd , with ∆ the angular

component of the Laplacian in Rd+1, eigenvalues

{n (n+ d − 1)}+∞
n=0 and eigenfunctions the restriction to the sphere

of homogeneous harmonic polynomials of degree n.

• Set

f̂ (k) =
∫
M

f (x)ϕk (x)dµ(x)
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Sobolev spaces - equivalent definitions

For α > 0 and 1 ≤ p ≤ +∞ define the Sobolev space W α,p (M):

• f ∈ W α,p(M) if and only if (1 + ∆)α/2f ∈ Lp(M), i.e.

‖f ‖α,p = (
∫
M
|
+∞

∑
k=0

(1 + λ2)α/2 f̂ (k)ϕk (x)|pdµ(x))1/p < +∞

• (potential spaces) Let Bα (x , y), be the Bessel kernel

Bα (x , y) = ∑
(

1 + λ2
k

)−α/2
ϕk (x) ϕk (y).

then f ∈ W α,p(M) if and only if it is the Bessel potential of a

function g in Lp:

f (x) =
∫
M
Bα (x , y) g (y) dµ(x), ‖f ‖α,p := ‖g‖p

• (localization) f ∈ W α,p(M) iff for any smooth function h

compactly supported in a local chart x = ψ(y) : Rd →M,

h(ψ(y))f (ψ(y)) ∈ W α,p(Rd )

• if α > d
p , f ∈ W α,p(M) is Hölder continuous of degree α− d

p .
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Quadrature rules on compact manifolds

• For given points {xj} and weights {ωj}, we want to give a priori

estimates of the error∫
M

f (x) dµ(x)−
N

∑
j=1

ωj f (xj ) , f ∈ W α,p (M)

• A natural requirement is α > d/p. This guarantees the continuity of

f (otherwise f (xj ) may not be defined).

• As a motivation assume there exists a decomposition of

M = U1 ∪U2 ∪ ...∪UN and these pieces have measures N−1 and

diameters at most cN−1/d .

• Choosing a point xj in each Uj , one obtains the estimate∣∣∣∣∣N−1 N

∑
j=1

f (xj )−
∫
M

f (x)dµ(x)

∣∣∣∣∣ ≤ N

∑
j=1

∫
Uj

|f (xj )− f (x)| dµ(x)

≤ sup
|y−x |≤cN−1/d

{|f (y)− f (x)|} ≤ cN−(α−d/p)/d ‖f ‖W α,p(M)
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Quadrature rules on compact manifolds

• We will show that it is possible to improve the exponent

− (α/d − 1/p) to −α/d .

• This is the best possible
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Lower bounds

Theorem (Brandolini, Choirat, Colzani, G, Seri, Travaglini, 2014)
For all 1 ≤ p ≤ +∞ and α > d/p there exists c > 0 such that for all

nodes {xj}Nj=1 and weights {ωj}Nj=1 there exists f ∈ W α,p (M) such

that ∣∣∣∣∣
∫
M

f (x) dµ(x)−
N

∑
j=1

ωj f (xj )

∣∣∣∣∣ ≥ cN−α/d ‖f ‖α,p .

Previous results:

• K. Hesse, I.H. Sloan (2005-2006): M = Sd , p = 2.

• A. Kushpel (2009): M compact two–point homogeneous, p = +∞.
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Proof.

• Take an ε so small that, for all integers N ≥ 1 there are 2N disjoint

balls with diameters εN−1/d .

• At least N balls have no points xj inside.

• Take a bump function ψj supported on each one of the N empty

balls with:

‖ψj‖α,p ≤ cN
α
d −

1
p

∫
M

ψj (x) dµ(x) = N−1.

• Let f (x) = ∑N
j=1 ψj (x):

‖f ‖α,p ≤ cN
α
d

∫
M

f (x) dµ(x) = 1.

|
∫
M

f (x)dµ(x)−
N

∑
j=0

ωj f (xj )| = |
∫
M

f (x)dµ(x)| = 1 ≥ 1

cN
α
d
‖f ‖α,p.
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Probabilistic result

Theorem (Brandolini, Choirat, Colzani, G., Seri, Travaglini, 2014)
Let d/2 < α < d/2 + 1. Let M = ∪Nj=1Uj (disjoint union), |Uj | = ωj .

Then there is a constant c > 0 independent of N such that∫
U1

...
∫
UN

sup
‖f ‖α,2≤1

∣∣∣∣∣
∫
M

f (x)dx −
N

∑
j=1

ωj f (xj )

∣∣∣∣∣
2
dx1
ω1

...
dxN
ωN

1/2

≤ c max
1≤j≤N

diam(Uj )
α.

In particular, if one manages to obtain diam(Uj ) ≤ cN−1/d (uniformly

in j and N), then

... ≤ cN−α/d .

(here dxj = dµ(xj )). Previous results: Brauchart, Saff, Sloan, Womersley

(2014) for the sphere and with ωj = 1/N.
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General result

Theorem (Brandolini, Chen, Colzani, G, Travaglini, 2019)
Let 1 < p ≤ +∞, 1/p + 1/q = 1, d/p < α < d . Let M = ∪Nj=1Uj

(disjoint union), ωj = |Uj | ≈ N−1 and diam(Uj ) ≈ N−1/d .(∫
U1

...
∫
UN

sup
‖f ‖α,p≤1

∣∣∣∣∣
∫
M

f (x)dx −
N

∑
j=1

ωj f (xj )

∣∣∣∣∣
q
dx1
ω1

...
dxN
ωN

)1/q

≈


N−α/d α < d/2 + 1

N−1/2−1/d (logN)1/2 α = d/2 + 1

N−1/2−1/d α > d/2 + 1
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Marcinkiewicz-Zygmund inequality

Theorem (1937)
Let M = ∪Nj=1Uj (disjoint union), ωj = |Uj |. For every measurable g on

M,(∫
U1

...
∫
UN

∣∣∣∣∣
∫
M

g(x)dx −
N

∑
j=1

ωjg(xj )

∣∣∣∣∣
q
dx1
ω1

...
dxN
ωN

)1/q

≈

∫
U1

...
∫
UN

(
N

∑
j=1

∣∣∣∣∫
Uj

g(y)dy −ωjg(xj )

∣∣∣∣2
)q/2

dx1
ω1

...
dxN
ωN

1/q
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We have seen that

• For any choice of nodes {xj} and weights {ωj},

sup
‖f ‖α,p≤1

∣∣∣∣∣
∫
M

f (x)dx −
N

∑
j=1

ωj f (xj )

∣∣∣∣∣ ≥ cN−α/d

• With probability close to 1, any choice of points xj ∈ Uj , where

M = ∪Nj=1Uj , with ωj = |Uj | ≈ 1/N and diam(Uj ) ≈ N−1/d

gives

sup
‖f ‖α,p≤1

∣∣∣∣∣
∫
M

f (x)dx −
N

∑
j=1

ωj f (xj )

∣∣∣∣∣ ≤ cN−α/d

iff d/p < α < min(d , d/2 + 1).

• Are there choices of nodes xj ∈ Uj that give the best decay for

α ≥ min(d , d/2 + 1)?

• If one fixes {ωj} (e.g. ωj = 1/N for all j) beforehand, can we

construct partitions as desired?
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