Quadrature rules on manifolds: partitions

Giacomo Gigante

July 3, 2023
University of Bergamo

Numerical integration, a simple observation

Goal: Estimate the error in numerical integration: e.g.

$$
\left|\int_{0}^{1} f(x) d x-\sum_{j=1}^{N} \frac{1}{N} f\left(x_{j}\right)\right|
$$

Pick any point $x_{j} \in\left[\frac{j-1}{N}, \frac{j}{N}\right)$, for $j=1, \ldots N$. Then, if f is Hölder continuous of degree $0<\alpha \leq 1$

$$
\begin{aligned}
& \left|\int_{0}^{1} f(x) d x-\sum_{j=1}^{N} \frac{1}{N} f\left(x_{j}\right)\right| \leq \sum_{j=1}^{N} \int_{(j-1) / N}^{j / N}\left|f\left(x_{j}\right)-f(x)\right| d x \\
& \leq \sup _{|y-x| \leq N^{-1}}|f(y)-f(x)| \leq \frac{1}{N^{\alpha}}|f|_{0, \alpha}
\end{aligned}
$$

Numerical Approximation - the interval

We may also allow different weights.
Error for Lagrange interpolatory quadrature rules

$$
\left|\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)\right| \leq \frac{(b-a)^{n+1}}{n!} \max _{x \in[a, b]}\left|f^{(n)}(x)\right|
$$

Numerical Approximation - the interval

We may also allow different weights.
Error for Lagrange interpolatory quadrature rules

$$
\left|\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)\right| \leq \frac{(b-a)^{n+1}}{n!} \max _{x \in[a, b]}\left|f^{(n)}(x)\right|
$$

We need a priori estimates: for all (say) $f \in \mathcal{C}^{\alpha}$. Thus fix $n=\alpha \in \mathbb{N}$, and use composite rules: split $[a, b]$ into M subintervals and apply the rule to each subinterval

$$
\begin{aligned}
& \left|\sum_{j=1}^{M}\left(\int_{a_{j}}^{a_{j+1}} f(x) d x-\sum_{i=1}^{\alpha} \omega_{i} f\left(x_{i}^{j}\right)\right)\right| \leq \sum_{j=1}^{M}\left(\frac{b-a}{M}\right)^{\alpha+1} \frac{1}{\alpha!} \max _{x \in[a, b]}\left|f^{(\alpha)}(x)\right| \\
& \leq C_{\alpha}(\alpha M)^{-\alpha} \max _{x \in[a, b]}\left|f^{(\alpha)}(x)\right|
\end{aligned}
$$

Koksma's inequality

In numerical integration, Koksma's inequality gives a bound for the error in the approximation of an integral by Riemann sums. Let $f \in C([0,1])$, $x_{1}, x_{2}, \ldots, x_{N} \in[0,1]$, then

$$
\left|\int_{0}^{1} f(x) d x-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right| \leq \mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right) \mathcal{V}(f)
$$

where

$$
\begin{aligned}
\mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right) & =\sup _{0 \leq t \leq 1}\left|t-\frac{1}{N} \sum_{j=1}^{N} \chi_{[0, t]}\left(x_{j}\right)\right| \\
& =\sup _{0 \leq t \leq 1}\left|\int_{0}^{1} \chi_{[0, t]}(x) d x-\frac{1}{N} \sum_{j=1}^{N} \chi_{[0, t]}\left(x_{j}\right)\right|
\end{aligned}
$$

and

$$
\mathcal{V}(f)=\sup _{0=y_{0}<y_{1}<\cdots<y_{k}=1}\left\{\sum_{j=1}^{k}\left|f\left(y_{k}\right)-f\left(y_{k-1}\right)\right|\right\}
$$

Discrepancy

- The quantity $\mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right)$ is called discrepancy of the distribution of points $x_{1}, x_{2}, \ldots, x_{N}$ and measures the error with respect to functions of the kind

$$
\chi_{[0, t]}
$$

Discrepancy

- The quantity $\mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right)$ is called discrepancy of the distribution of points $x_{1}, x_{2}, \ldots, x_{N}$ and measures the error with respect to functions of the kind

$$
\chi_{[0, t]}
$$

- In some sense the discrepancy measures how the points $x_{1}, x_{2}, \ldots, x_{N}$ are "well distributed".

Discrepancy

- The quantity $\mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right)$ is called discrepancy of the distribution of points $x_{1}, x_{2}, \ldots, x_{N}$ and measures the error with respect to functions of the kind

$$
\chi_{[0, t]}
$$

- In some sense the discrepancy measures how the points $x_{1}, x_{2}, \ldots, x_{N}$ are "well distributed".
- In view of Koksma's inequality it is natural to ask if there are points with low discrepancy.

Discrepancy

- The quantity $\mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right)$ is called discrepancy of the distribution of points $x_{1}, x_{2}, \ldots, x_{N}$ and measures the error with respect to functions of the kind

$$
\chi_{[0, t]}
$$

- In some sense the discrepancy measures how the points $x_{1}, x_{2}, \ldots, x_{N}$ are "well distributed".
- In view of Koksma's inequality it is natural to ask if there are points with low discrepancy.
- Of course for any given N the points $x_{j}=\frac{j-1}{N-1}$ give

$$
\mathcal{D}^{*}\left(\left\{x_{j}\right\}_{j=1}^{N}\right)=\frac{1}{N-1}
$$

Discrepancy

- The idea of discrepancy may seem trivial since equally spaced points are obviuosly well distributed.

Discrepancy

- The idea of discrepancy may seem trivial since equally spaced points are obviuosly well distributed.
- It may be interesting to find infinite sequences x_{j} such that

$$
\int_{0}^{1} f(x) d x=\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)
$$

Discrepancy

- The idea of discrepancy may seem trivial since equally spaced points are obviuosly well distributed.
- It may be interesting to find infinite sequences x_{j} such that

$$
\int_{0}^{1} f(x) d x=\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)
$$

- Let $D^{*}(N)$ be the discrepancy of the first N terms of the sequence x_{1}, x_{2}, \ldots

Discrepancy

- The idea of discrepancy may seem trivial since equally spaced points are obviuosly well distributed.
- It may be interesting to find infinite sequences x_{j} such that

$$
\int_{0}^{1} f(x) d x=\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)
$$

- Let $D^{*}(N)$ be the discrepancy of the first N terms of the sequence x_{1}, x_{2}, \ldots
- Van der Corput (1935) conjectured that

$$
\mathcal{D}^{*}(N) \leq \frac{c}{N}
$$

is impossible.

Discrepancy

- The idea of discrepancy may seem trivial since equally spaced points are obviuosly well distributed.
- It may be interesting to find infinite sequences x_{j} such that

$$
\int_{0}^{1} f(x) d x=\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)
$$

- Let $D^{*}(N)$ be the discrepancy of the first N terms of the sequence x_{1}, x_{2}, \ldots
- Van der Corput (1935) conjectured that

$$
\mathcal{D}^{*}(N) \leq \frac{c}{N}
$$

is impossible.

- A remarkable theorem of Schmidt (1973) says that $D^{*}(N)$ cannot be $o\left(\frac{\log N}{N}\right)$.

Discrepancy

- This result is sharp since Van der Corput sequence

$$
\begin{aligned}
& \frac{1}{2}, \\
& \frac{1}{4}, \frac{1}{4}+\frac{1}{2}, \\
& \frac{1}{8}, \\
& \frac{1}{8}+\frac{1}{2}, \quad \frac{1}{8}+\frac{1}{4}, \\
& \frac{1}{8}+\frac{1}{4}+\frac{1}{2}
\end{aligned}
$$

satisfies

$$
\mathcal{D}^{*}(N) \leq c \frac{\log (N)}{N} .
$$

A proof of "Koksma's inequality"

Let $g(x)=x-\lfloor x\rfloor-1 / 2$ be the saw tooth function. Then

$$
\left|\int_{\mathbb{T}} f(x) d x-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right| \leq \int_{\mathbb{T}}\left|f^{\prime}(x)\right| d x \sup _{t \in \mathbb{T}}\left|\frac{1}{N} \sum_{j=1}^{N} g\left(t-x_{j}\right)\right|
$$

A proof of "Koksma's inequality"

Let $g(x)=x-\lfloor x\rfloor-1 / 2$ be the saw tooth function. Then

$$
\begin{gathered}
\left|\int_{\mathbb{T}} f(x) d x-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right| \leq \int_{\mathbb{T}}\left|f^{\prime}(x)\right| d x \sup _{t \in \mathbb{T}}\left|\frac{1}{N} \sum_{j=1}^{N} g\left(t-x_{j}\right)\right| \\
\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)-\int_{\mathbb{T}} f(x) d x=\sum_{k \neq 0}\left(\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i k x_{j}}\right) \widehat{f}(k)
\end{gathered}
$$

A proof of "Koksma's inequality"

Let $g(x)=x-\lfloor x\rfloor-1 / 2$ be the saw tooth function. Then

$$
\begin{gathered}
\left|\int_{\mathbb{T}} f(x) d x-\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)\right| \leq \int_{\mathbb{T}}\left|f^{\prime}(x)\right| d x \sup _{t \in \mathbb{T}}\left|\frac{1}{N} \sum_{j=1}^{N} g\left(t-x_{j}\right)\right| \\
\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right)-\int_{\mathbb{T}} f(x) d x=\sum_{k \neq 0}\left(\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i k x_{j}}\right) \widehat{f}(k) \\
=\sum_{k \neq 0} \frac{1}{2 \pi i k}\left(\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i k x_{j}}\right) 2 \pi i k \widehat{f}(k)
\end{gathered}
$$

A proof of "Koksma's inequality"

Since $g(x)=\sum_{k \neq 0} \frac{1}{-2 \pi i k} e^{2 \pi i k x}$ we have

$$
\begin{aligned}
& \sum_{k \neq 0} \frac{1}{2 \pi i k}\left(\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i k x_{j}}\right) 2 \pi i k \widehat{f}(k) \\
& =\sum_{k \in \mathbb{Z}} \overline{\left(\frac{1}{N} \sum_{j=1}^{N} g\left(\cdot-x_{j}\right)\right)^{\wedge}(k) \widehat{f}^{\prime}(k)}
\end{aligned}
$$

A proof of "Koksma's inequality"

Since $g(x)=\sum_{k \neq 0} \frac{1}{-2 \pi i k} e^{2 \pi i k x}$ we have

$$
\begin{gathered}
\sum_{k \neq 0} \frac{1}{2 \pi i k}\left(\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i k x_{j}}\right) 2 \pi i k \widehat{f}(k) \\
=\sum_{k \in \mathbb{Z}} \overline{\left(\frac{1}{N} \sum_{j=1}^{N} g\left(\cdot-x_{j}\right)\right)^{\wedge}(k) \widehat{f^{\prime}}(k)} \\
=\int_{\mathbb{T}} \frac{1}{N} \sum_{j=1}^{N} g\left(t+x_{j}\right) f^{\prime}(t) d t
\end{gathered}
$$

Higher dimension

- The extension of Koksma's inequality to several variables is a delicate problem.

Higher dimension

- The extension of Koksma's inequality to several variables is a delicate problem.
- A classical approach starts with the definition of Vitali variation.

Higher dimension

- The extension of Koksma's inequality to several variables is a delicate problem.
- A classical approach starts with the definition of Vitali variation.
- For a function f on $[0,1]^{d}$ and a subinterval J of $[0,1]^{d}$ let $\Delta(f, J)$ be the alternating sum of the values of f at the vertices of J (i.e. adjacent vertices have opposite sign)

Higher dimension

- The extension of Koksma's inequality to several variables is a delicate problem.
- A classical approach starts with the definition of Vitali variation.
- For a function f on $[0,1]^{d}$ and a subinterval J of $[0,1]^{d}$ let $\Delta(f, J)$ be the alternating sum of the values of f at the vertices of J (i.e. adjacent vertices have opposite sign)
- The Vitali variation of f is

$$
V(f)=\sup _{\substack{\text { partition } P \\ \text { of }[0,1]^{d}}}\left\{\sum_{J \in P}|\Delta(f, J)|\right\}
$$

Higher dimension

- The extension of Koksma's inequality to several variables is a delicate problem.
- A classical approach starts with the definition of Vitali variation.
- For a function f on $[0,1]^{d}$ and a subinterval J of $[0,1]^{d}$ let $\Delta(f, J)$ be the alternating sum of the values of f at the vertices of J (i.e. adjacent vertices have opposite sign)
- The Vitali variation of f is

$$
V(f)=\sup _{\substack{\text { partition } P \\ \text { of }[0,1]^{d}}}\left\{\sum_{J \in P}|\Delta(f, J)|\right\}
$$

- The Hardy-Krause variation of f is

$$
\mathcal{V}(f)=\sum_{k} V_{k}(f)
$$

where the sum is over the Vitali variations $V_{k}(f)$ of the restrictions of f to all faces of all dimensions of $[0,1]^{d}$.

- Hardy-Krause variation works well for smooth functions, but it cannot be applied to most functions with simple discontinuities.
- The characteristic function of a convex polyhedron has bounded Hardy-Krause variation only if the polyhedron is a d-dimensional interval.

- The discrepancy of a finite point set $\left\{x_{j}\right\}_{j=1}^{N}$ in $[0,1]^{d}$ is defined by

$$
\mathcal{D}\left(\left\{x_{j}\right\}\right)=\sup _{I}\left|\frac{1}{N} \sum_{j=1}^{N} x_{I}\left(x_{j}\right)-|I|\right|
$$

where I is an interval of the form $\left[0, t_{1}\right] \times\left[0, t_{2}\right] \times \ldots \times\left[0, t_{d}\right]$.

- The discrepancy of a finite point set $\left\{x_{j}\right\}_{j=1}^{N}$ in $[0,1]^{d}$ is defined by

$$
\mathcal{D}\left(\left\{x_{j}\right\}\right)=\sup _{I}\left|\frac{1}{N} \sum_{j=1}^{N} x_{I}\left(x_{j}\right)-|I|\right|
$$

where I is an interval of the form $\left[0, t_{1}\right] \times\left[0, t_{2}\right] \times \ldots \times\left[0, t_{d}\right]$.

- The classical Koksma-Hlawka inequality states that if f has bounded Hardy-Krause variation, then

$$
\left|N^{-1} \sum_{j=1}^{N} f\left(x_{j}\right)-\int_{[0,1]^{d}} f(x) d x\right| \leq \mathcal{D}\left(\left\{x_{j}\right\}\right) \mathcal{V}(f) .
$$

Higher dimension discrepancy

For $d>1$ equally spaced points do not work very well. Let $N=K^{d}$ and consider the points (grid)

$$
\left(\frac{k_{1}}{K}, \cdots, \frac{k_{d}}{K}\right), k_{j}=0,1, \ldots, K-1 .
$$

Then $\mathcal{D}\left(\left\{x_{j}\right\}\right) \approx N^{-1 / d}=K^{-1}$
However it is possible to choose points $\left\{x_{j}\right\}_{j=1}^{N}$ such that

$$
\mathcal{D}\left(\left\{x_{j}\right\}\right) \leq c \frac{\log ^{d-1} N}{N} .
$$

Higher dimension discrepancy

For example for $d=2$ let

$$
x_{j}=\left(\frac{j}{N}, r(j)\right)
$$

where $r(j)$ is defined as follows. Let a_{k} be the binary digits of j, that is

$$
j=a_{0}+2 a_{1}+2^{2} a_{2}+2^{3} a_{3}+\cdots
$$

then

$$
r(j)=\frac{a_{0}}{2}+\frac{a_{1}}{2^{2}}+\frac{a_{2}}{2^{2}}+\frac{a_{3}}{2^{3}}+\cdots
$$

(the Van der Corput sequence!) It is not difficult to prove that for these points

$$
D\left(x_{j}\right) \leq \frac{\log N}{N}
$$

Higher dimension discrepancy

Higher dimension discrepancy

Theorem (Roth, 1954)
Let $\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{T}^{d}$. There exists a rectangle $R \subset \mathbb{T}^{d}$ having sides parallel to the axes such that

$$
\left|\frac{1}{N} \sum_{j=1}^{N} \chi_{R}\left(x_{j}\right)-|R|\right| \geq c_{d} \frac{(\log N)^{\frac{d-1}{2}}}{N}
$$

with an absolute constant only depending on the dimension.

- Conjecture:

$$
\ldots \geq c_{d} \frac{(\log N)^{d-1}}{N}
$$

Higher dimension discrepancy

Theorem (Roth, 1954)
Let $\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{T}^{d}$. There exists a rectangle $R \subset \mathbb{T}^{d}$ having sides parallel to the axes such that

$$
\left|\frac{1}{N} \sum_{j=1}^{N} \chi_{R}\left(x_{j}\right)-|R|\right| \geq c_{d} \frac{(\log N)^{\frac{d-1}{2}}}{N}
$$

with an absolute constant only depending on the dimension.

- Conjecture:

$$
\ldots \geq c_{d} \frac{(\log N)^{d-1}}{N}
$$

- Schmidt (1973): True for $d \leq 2$.

Higher dimension discrepancy

Theorem (Roth, 1954)
Let $\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{T}^{d}$. There exists a rectangle $R \subset \mathbb{T}^{d}$ having sides parallel to the axes such that

$$
\left|\frac{1}{N} \sum_{j=1}^{N} \chi_{R}\left(x_{j}\right)-|R|\right| \geq c_{d} \frac{(\log N)^{\frac{d-1}{2}}}{N}
$$

with an absolute constant only depending on the dimension.

- Conjecture:

$$
\ldots \geq c_{d} \frac{(\log N)^{d-1}}{N}
$$

- Schmidt (1973): True for $d \leq 2$.
- Bilyk, Lacey, Vagharshakyan (2008): $\exists \eta_{d}>0$ s.t.

$$
\ldots \geq c_{d} \frac{(\log N)^{\frac{d-1}{2}+\eta_{d}}}{N}
$$

Monte Carlo Integration

- A second drawback with the grid

$$
\left(\frac{k_{1}}{K}, \cdots, \frac{k_{d}}{K}\right), k_{j}=0,1, \ldots, K-1,
$$

even if one repeats, a composite Lagrange interpolation rule in each dimension to evaluate the integral, is that the number of function evaluations increases exponentially with the dimension.

Monte Carlo Integration

- A second drawback with the grid

$$
\left(\frac{k_{1}}{K}, \cdots, \frac{k_{d}}{K}\right), k_{j}=0,1, \ldots, K-1,
$$

even if one repeats, a composite Lagrange interpolation rule in each dimension to evaluate the integral, is that the number of function evaluations increases exponentially with the dimension.

- If $d=200$, taking just $K=2$, that is evaluating f at the vertices of $[0,1)^{d}$, gives $2^{200}>10^{60}$ evaluations.

Monte Carlo Integration

- A second drawback with the grid

$$
\left(\frac{k_{1}}{K}, \cdots, \frac{k_{d}}{K}\right), k_{j}=0,1, \ldots, K-1,
$$

even if one repeats, a composite Lagrange interpolation rule in each dimension to evaluate the integral, is that the number of function evaluations increases exponentially with the dimension.

- If $d=200$, taking just $K=2$, that is evaluating f at the vertices of $[0,1)^{d}$, gives $2^{200}>10^{60}$ evaluations.
- One alternative is the Monte Carlo method. Let X be a probability space with measure $d x$. Then

$$
\left\|\int_{X} f(x) d x-\sum_{j=1}^{N} \frac{1}{N} f\left(x_{j}\right)\right\|_{L^{2}\left(X^{N}, d x_{1} \ldots d x_{N}\right)}=\frac{1}{\sqrt{N}}(\operatorname{Var}(f))^{1 / 2}
$$

Monte Carlo Integration

- A second drawback with the grid

$$
\left(\frac{k_{1}}{K}, \cdots, \frac{k_{d}}{K}\right), k_{j}=0,1, \ldots, K-1,
$$

even if one repeats, a composite Lagrange interpolation rule in each dimension to evaluate the integral, is that the number of function evaluations increases exponentially with the dimension.

- If $d=200$, taking just $K=2$, that is evaluating f at the vertices of $[0,1)^{d}$, gives $2^{200}>10^{60}$ evaluations.
- One alternative is the Monte Carlo method. Let X be a probability space with measure $d x$. Then

$$
\left\|\int_{X} f(x) d x-\sum_{j=1}^{N} \frac{1}{N} f\left(x_{j}\right)\right\|_{L^{2}\left(X^{N}, d x_{1} \ldots d x_{N}\right)}=\frac{1}{\sqrt{N}}(\operatorname{Var}(f))^{1 / 2}
$$

- Works in high dimensions (the constant is 1 in all dimensions).

Monte Carlo Integration

- A second drawback with the grid

$$
\left(\frac{k_{1}}{K}, \cdots, \frac{k_{d}}{K}\right), k_{j}=0,1, \ldots, K-1,
$$

even if one repeats, a composite Lagrange interpolation rule in each dimension to evaluate the integral, is that the number of function evaluations increases exponentially with the dimension.

- If $d=200$, taking just $K=2$, that is evaluating f at the vertices of $[0,1)^{d}$, gives $2^{200}>10^{60}$ evaluations.
- One alternative is the Monte Carlo method. Let X be a probability space with measure $d x$. Then

$$
\left\|\int_{X} f(x) d x-\sum_{j=1}^{N} \frac{1}{N} f\left(x_{j}\right)\right\|_{L^{2}\left(X^{N}, d x_{1} \ldots d x_{N}\right)}=\frac{1}{\sqrt{N}}(\operatorname{Var}(f))^{1 / 2}
$$

- Works in high dimensions (the constant is 1 in all dimensions).
- It is hard to produce random points.

Monte Carlo integration

$$
\begin{aligned}
& \int_{X^{N}}\left|\int_{X} f(x) d x-\sum_{j=1}^{N} \frac{1}{N} f\left(x_{j}\right)\right|^{2} d x_{1} \ldots d x_{N} \\
& =\int_{X^{N}}\left|\sum_{j=1}^{N} \frac{1}{N}\left(\int_{X} f(x) d x-f\left(x_{j}\right)\right)\right|^{2} d x_{1} \ldots d x_{N} \\
& =\sum_{j=1}^{N} \sum_{i=1}^{N} \int_{X^{N}} \frac{1}{N}\left(\int_{X} f(x) d x-f\left(x_{j}\right)\right) \overline{\frac{1}{N}\left(\int_{X} f(x) d x-f\left(x_{i}\right)\right)} d x_{1} \ldots d x_{N} \\
& =\sum_{j=1}^{N} \int_{X} \frac{1}{N^{2}}\left|\int_{X} f(x) d x-f\left(x_{j}\right)\right|^{2} d x_{j} \\
& =\frac{1}{N} \int_{X}\left|\int_{X} f(x) d x-f(y)\right|^{2} d y
\end{aligned}
$$

Quadrature rules on compact manifolds

- \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with normalized Riemannian measure $d \mu$.

Quadrature rules on compact manifolds

- \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with normalized Riemannian measure $d \mu$.
- Let Δ be the (positive) Laplace - Beltrami operator on \mathcal{M}

Quadrature rules on compact manifolds

- \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with normalized Riemannian measure $d \mu$.
- Let Δ be the (positive) Laplace - Beltrami operator on \mathcal{M}
- Δ is self-adjoint in $L^{2}(\mathcal{M})$, it has a sequence of eigenvalues $0=\lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$ and an orthonormal complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=0}^{+\infty}, \Delta \varphi_{k}=\lambda_{k}^{2} \varphi_{k}$

Quadrature rules on compact manifolds

- \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with normalized Riemannian measure $d \mu$.
- Let Δ be the (positive) Laplace - Beltrami operator on \mathcal{M}
- Δ is self-adjoint in $L^{2}(\mathcal{M})$, it has a sequence of eigenvalues $0=\lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$ and an orthonormal complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=0}^{+\infty}, \Delta \varphi_{k}=\lambda_{k}^{2} \varphi_{k}$
- For example on $\mathbb{T}^{d}, \Delta=-\sum \partial^{2} / \partial x_{j}^{2}$, with eigenvalues $\left\{4 \pi^{2}|m|^{2}\right\}_{m \in \mathbb{Z}^{d}}$ and eigenfunctions $\{\exp (2 \pi i m x)\}_{k \in \mathbb{Z}^{d}}$.

Quadrature rules on compact manifolds

- \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with normalized Riemannian measure $d \mu$.
- Let Δ be the (positive) Laplace - Beltrami operator on \mathcal{M}
- Δ is self-adjoint in $L^{2}(\mathcal{M})$, it has a sequence of eigenvalues $0=\lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$ and an orthonormal complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=0}^{+\infty}, \Delta \varphi_{k}=\lambda_{k}^{2} \varphi_{k}$
- For example on $\mathbb{T}^{d}, \Delta=-\sum \partial^{2} / \partial x_{j}^{2}$, with eigenvalues $\left\{4 \pi^{2}|m|^{2}\right\}_{m \in \mathbb{Z}^{d}}$ and eigenfunctions $\{\exp (2 \pi i m x)\}_{k \in \mathbb{Z}^{d}}$.
- Another example is the d-dimensional sphere S^{d}, with Δ the angular component of the Laplacian in \mathbb{R}^{d+1}, eigenvalues $\{n(n+d-1)\}_{n=0}^{+\infty}$ and eigenfunctions the restriction to the sphere of homogeneous harmonic polynomials of degree n.

Quadrature rules on compact manifolds

- \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with normalized Riemannian measure $d \mu$.
- Let Δ be the (positive) Laplace - Beltrami operator on \mathcal{M}
- Δ is self-adjoint in $L^{2}(\mathcal{M})$, it has a sequence of eigenvalues $0=\lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$ and an orthonormal complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=0}^{+\infty}, \Delta \varphi_{k}=\lambda_{k}^{2} \varphi_{k}$
- For example on $\mathbb{T}^{d}, \Delta=-\sum \partial^{2} / \partial x_{j}^{2}$, with eigenvalues $\left\{4 \pi^{2}|m|^{2}\right\}_{m \in \mathbb{Z}^{d}}$ and eigenfunctions $\{\exp (2 \pi i m x)\}_{k \in \mathbb{Z}^{d}}$.
- Another example is the d-dimensional sphere \mathbb{S}^{d}, with Δ the angular component of the Laplacian in \mathbb{R}^{d+1}, eigenvalues
$\{n(n+d-1)\}_{n=0}^{+\infty}$ and eigenfunctions the restriction to the sphere of homogeneous harmonic polynomials of degree n.
- Set

$$
\widehat{f}(k)=\int_{\mathcal{M}} f(x) \overline{\varphi_{k}(x)} d \mu(x)
$$

Sobolev spaces - equivalent definitions

For $\alpha>0$ and $1 \leq p \leq+\infty$ define the Sobolev space $W^{\alpha, p}(\mathcal{M})$:

- $f \in W^{\alpha, p}(\mathcal{M})$ if and only if $(1+\Delta)^{\alpha / 2} f \in L^{p}(\mathcal{M})$, i.e.

$$
\|f\|_{\alpha, p}=\left(\int_{\mathcal{M}}\left|\sum_{k=0}^{+\infty}\left(1+\lambda^{2}\right)^{\alpha / 2} \widehat{f}(k) \varphi_{k}(x)\right|^{p} d \mu(x)\right)^{1 / p}<+\infty
$$

Sobolev spaces - equivalent definitions

For $\alpha>0$ and $1 \leq p \leq+\infty$ define the Sobolev space $W^{\alpha, p}(\mathcal{M})$:

- $f \in W^{\alpha, p}(\mathcal{M})$ if and only if $(1+\Delta)^{\alpha / 2} f \in L^{p}(\mathcal{M})$, i.e.

$$
\|f\|_{\alpha, p}=\left(\int_{\mathcal{M}}\left|\sum_{k=0}^{+\infty}\left(1+\lambda^{2}\right)^{\alpha / 2} \widehat{f}(k) \varphi_{k}(x)\right|^{p} d \mu(x)\right)^{1 / p}<+\infty
$$

- (potential spaces) Let $B^{\alpha}(x, y)$, be the Bessel kernel

$$
B^{\alpha}(x, y)=\sum\left(1+\lambda_{k}^{2}\right)^{-\alpha / 2} \varphi_{k}(x) \overline{\varphi_{k}(y)}
$$

then $f \in W^{\alpha, p}(\mathcal{M})$ if and only if it is the Bessel potential of a function g in L^{p} :

$$
f(x)=\int_{M} B^{\alpha}(x, y) g(y) d \mu(x), \quad\|f\|_{\alpha, p}:=\|g\|_{p}
$$

Sobolev spaces - equivalent definitions

For $\alpha>0$ and $1 \leq p \leq+\infty$ define the Sobolev space $W^{\alpha, p}(\mathcal{M})$:

- $f \in W^{\alpha, p}(\mathcal{M})$ if and only if $(1+\Delta)^{\alpha / 2} f \in L^{p}(\mathcal{M})$, i.e.

$$
\|f\|_{\alpha, p}=\left(\int_{\mathcal{M}}\left|\sum_{k=0}^{+\infty}\left(1+\lambda^{2}\right)^{\alpha / 2} \widehat{f}(k) \varphi_{k}(x)\right|^{p} d \mu(x)\right)^{1 / p}<+\infty
$$

- (potential spaces) Let $B^{\alpha}(x, y)$, be the Bessel kernel

$$
B^{\alpha}(x, y)=\sum\left(1+\lambda_{k}^{2}\right)^{-\alpha / 2} \varphi_{k}(x) \overline{\varphi_{k}(y)}
$$

then $f \in W^{\alpha, p}(\mathcal{M})$ if and only if it is the Bessel potential of a function g in L^{p} :

$$
f(x)=\int_{M} B^{\alpha}(x, y) g(y) d \mu(x), \quad\|f\|_{\alpha, p}:=\|g\|_{p}
$$

- (localization) $f \in W^{\alpha, p}(\mathcal{M})$ iff for any smooth function h compactly supported in a local chart $x=\psi(y): \mathbb{R}^{d} \rightarrow \mathcal{M}$,

$$
h(\psi(y)) f(\psi(y)) \in W^{\alpha, p}\left(\mathbb{R}^{d}\right)
$$

Sobolev spaces - equivalent definitions

For $\alpha>0$ and $1 \leq p \leq+\infty$ define the Sobolev space $W^{\alpha, p}(\mathcal{M})$:

- $f \in W^{\alpha, p}(\mathcal{M})$ if and only if $(1+\Delta)^{\alpha / 2} f \in L^{p}(\mathcal{M})$, i.e.

$$
\|f\|_{\alpha, p}=\left(\int_{\mathcal{M}}\left|\sum_{k=0}^{+\infty}\left(1+\lambda^{2}\right)^{\alpha / 2} \widehat{f}(k) \varphi_{k}(x)\right|^{p} d \mu(x)\right)^{1 / p}<+\infty
$$

- (potential spaces) Let $B^{\alpha}(x, y)$, be the Bessel kernel

$$
B^{\alpha}(x, y)=\sum\left(1+\lambda_{k}^{2}\right)^{-\alpha / 2} \varphi_{k}(x) \overline{\varphi_{k}(y)}
$$

then $f \in W^{\alpha, p}(\mathcal{M})$ if and only if it is the Bessel potential of a function g in L^{p} :

$$
f(x)=\int_{M} B^{\alpha}(x, y) g(y) d \mu(x), \quad\|f\|_{\alpha, p}:=\|g\|_{p}
$$

- (localization) $f \in W^{\alpha, p}(\mathcal{M})$ iff for any smooth function h compactly supported in a local chart $x=\psi(y): \mathbb{R}^{d} \rightarrow \mathcal{M}$,

$$
h(\psi(y)) f(\psi(y)) \in W^{\alpha, p}\left(\mathbb{R}^{d}\right)
$$

- if $\alpha>\frac{d}{p}, f \in W^{\alpha, p}(\mathcal{M})$ is Hölder continuous of degree $\alpha-\frac{d}{p}$.

Quadrature rules on compact manifolds

- For given points $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$, we want to give a priori estimates of the error

$$
\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right), \quad f \in W^{\alpha, p}(\mathcal{M})
$$

Quadrature rules on compact manifolds

- For given points $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$, we want to give a priori estimates of the error

$$
\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right), \quad f \in W^{\alpha, p}(\mathcal{M})
$$

- A natural requirement is $\alpha>d / p$. This guarantees the continuity of f (otherwise $f\left(x_{j}\right)$ may not be defined).

Quadrature rules on compact manifolds

- For given points $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$, we want to give a priori estimates of the error

$$
\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right), \quad f \in W^{\alpha, p}(\mathcal{M})
$$

- A natural requirement is $\alpha>d / p$. This guarantees the continuity of f (otherwise $f\left(x_{j}\right)$ may not be defined).
- As a motivation assume there exists a decomposition of $\mathcal{M}=U_{1} \cup U_{2} \cup \ldots \cup U_{N}$ and these pieces have measures N^{-1} and diameters at most $c N^{-1 / d}$.

Quadrature rules on compact manifolds

- For given points $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$, we want to give a priori estimates of the error

$$
\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right), \quad f \in W^{\alpha, p}(\mathcal{M})
$$

- A natural requirement is $\alpha>d / p$. This guarantees the continuity of f (otherwise $f\left(x_{j}\right)$ may not be defined).
- As a motivation assume there exists a decomposition of $\mathcal{M}=U_{1} \cup U_{2} \cup \ldots \cup U_{N}$ and these pieces have measures N^{-1} and diameters at most $c N^{-1 / d}$.
- Choosing a point x_{j} in each U_{j}, one obtains the estimate

$$
\begin{aligned}
& \left|N^{-1} \sum_{j=1}^{N} f\left(x_{j}\right)-\int_{\mathcal{M}} f(x) d \mu(x)\right| \leq \sum_{j=1}^{N} \int_{U_{j}}\left|f\left(x_{j}\right)-f(x)\right| d \mu(x) \\
& \leq \sup _{|y-x| \leq c N^{-1 / d}}\{|f(y)-f(x)|\} \leq c N^{-(\alpha-d / p) / d}\|f\|_{W^{\alpha, p}(\mathcal{M})}
\end{aligned}
$$

Quadrature rules on compact manifolds

- We will show that it is possible to improve the exponent
$-(\alpha / d-1 / p)$ to $-\alpha / d$.

Quadrature rules on compact manifolds

- We will show that it is possible to improve the exponent
$-(\alpha / d-1 / p)$ to $-\alpha / d$.
- This is the best possible

Lower bounds

Theorem (Brandolini, Choirat, Colzani, G, Seri, Travaglini, 2014) For all $1 \leq p \leq+\infty$ and $\alpha>d / p$ there exists $c>0$ such that for all nodes $\left\{x_{j}\right\}_{j=1}^{N}$ and weights $\left\{\omega_{j}\right\}_{j=1}^{N}$ there exists $f \in W^{\alpha, p}(\mathcal{M})$ such that

$$
\left|\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \geq c N^{-\alpha / d}\|f\|_{\alpha, p} .
$$

Lower bounds

Theorem (Brandolini, Choirat, Colzani, G, Seri, Travaglini, 2014) For all $1 \leq p \leq+\infty$ and $\alpha>d / p$ there exists $c>0$ such that for all nodes $\left\{x_{j}\right\}_{j=1}^{N}$ and weights $\left\{\omega_{j}\right\}_{j=1}^{N}$ there exists $f \in W^{\alpha, p}(\mathcal{M})$ such that

$$
\left|\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \geq c N^{-\alpha / d}\|f\|_{\alpha, p} .
$$

Previous results:

- K. Hesse, I.H. Sloan (2005-2006): $\mathcal{M}=\mathcal{S}^{d}, p=2$.
- A. Kushpel (2009): \mathcal{M} compact two-point homogeneous, $p=+\infty$.

Proof.

- Take an ε so small that, for all integers $N \geq 1$ there are $2 N$ disjoint balls with diameters $\varepsilon N^{-1 / d}$.

Proof.

- Take an ε so small that, for all integers $N \geq 1$ there are $2 N$ disjoint balls with diameters $\varepsilon N^{-1 / d}$.
- At least N balls have no points x_{j} inside.

Proof.

- Take an ε so small that, for all integers $N \geq 1$ there are $2 N$ disjoint balls with diameters $\varepsilon N^{-1 / d}$.
- At least N balls have no points x_{j} inside.
- Take a bump function ψ_{j} supported on each one of the N empty balls with:

$$
\left\|\psi_{j}\right\|_{\alpha, p} \leq c N^{\frac{\alpha}{d}-\frac{1}{p}} \quad \int_{\mathcal{M}} \psi_{j}(x) d \mu(x)=N^{-1} .
$$

Proof.

- Take an ε so small that, for all integers $N \geq 1$ there are $2 N$ disjoint balls with diameters $\varepsilon N^{-1 / d}$.
- At least N balls have no points x_{j} inside.
- Take a bump function ψ_{j} supported on each one of the N empty balls with:

$$
\left\|\psi_{j}\right\|_{\alpha, p} \leq c N^{\frac{\alpha}{d}-\frac{1}{p}} \quad \int_{\mathcal{M}} \psi_{j}(x) d \mu(x)=N^{-1} .
$$

- Let $f(x)=\sum_{j=1}^{N} \psi_{j}(x)$:

$$
\begin{gathered}
\|f\|_{\alpha, p} \leq c N^{\frac{\alpha}{d}} \quad \int_{\mathcal{M}} f(x) d \mu(x)=1 \\
\left|\int_{\mathcal{M}} f(x) d \mu(x)-\sum_{j=0}^{N} \omega_{j} f\left(x_{j}\right)\right|=\left|\int_{\mathcal{M}} f(x) d \mu(x)\right|=1 \geq \frac{1}{c N^{\frac{\alpha}{d}}}\|f\|_{\alpha, p} .
\end{gathered}
$$

Probabilistic result

Theorem (Brandolini, Choirat, Colzani, G., Seri, Travaglini, 2014)
Let $d / 2<\alpha<d / 2+1$. Let $\mathcal{M}=\cup_{j=1}^{N} U_{j}$ (disjoint union), $\left|U_{j}\right|=\omega_{j}$.
Then there is a constant $c>0$ independent of N such that

$$
\begin{aligned}
& \left(\int_{U_{1}} \cdots \int_{U_{N}\|f\|_{\alpha, 2} \leq 1} \sup \left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right|^{2} \frac{d x_{1}}{\omega_{1}} \cdots \frac{d x_{N}}{\omega_{N}}\right)^{1 / 2} \\
& \leq c \max _{1 \leq j \leq N} \operatorname{diam}\left(U_{j}\right)^{\alpha} .
\end{aligned}
$$

In particular, if one manages to obtain $\operatorname{diam}\left(U_{j}\right) \leq c N^{-1 / d}$ (uniformly in j and N), then

$$
\ldots \leq c N^{-\alpha / d} .
$$

(here $d x_{j}=d \mu\left(x_{j}\right)$). Previous results: Brauchart, Saff, Sloan, Womersley (2014) for the sphere and with $\omega_{j}=1 / N$.

General result

Theorem (Brandolini, Chen, Colzani, G, Travaglini, 2019)
Let $1<p \leq+\infty, 1 / p+1 / q=1, d / p<\alpha<d$. Let $\mathcal{M}=\cup_{j=1}^{N} U_{j}$ (disjoint union), $\omega_{j}=\left|U_{j}\right| \approx N^{-1}$ and $\operatorname{diam}\left(U_{j}\right) \approx N^{-1 / d}$.

$$
\begin{aligned}
& \left(\int_{U_{1}} \cdots \int_{U_{N}\|f\|_{\alpha, p} \leq 1} \sup _{\mathcal{M}}\left|\int_{M_{0}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right|^{q} \frac{d x_{1}}{\omega_{1}} \cdots \frac{d x_{N}}{\omega_{N}}\right)^{1 / q} \\
& \approx \begin{cases}N^{-\alpha / d} & \alpha<d / 2+1 \\
N^{-1 / 2-1 / d}(\log N)^{1 / 2} & \alpha=d / 2+1 \\
N^{-1 / 2-1 / d} & \alpha>d / 2+1\end{cases}
\end{aligned}
$$

Marcinkiewicz-Zygmund inequality

Theorem (1937)
Let $\mathcal{M}=\cup_{j=1}^{N} U_{j}$ (disjoint union), $\omega_{j}=\left|U_{j}\right|$. For every measurable g on \mathcal{M},

$$
\begin{aligned}
& \left(\int_{U_{1}} \ldots \int_{U_{N}}\left|\int_{\mathcal{M}} g(x) d x-\sum_{j=1}^{N} \omega_{j} g\left(x_{j}\right)\right|^{q} \frac{d x_{1}}{\omega_{1}} \ldots \frac{d x_{N}}{\omega_{N}}\right)^{1 / q} \\
& \approx\left(\int_{U_{1}} \ldots \int_{U_{N}}\left(\sum_{j=1}^{N}\left|\int_{U_{j}} g(y) d y-\omega_{j} g\left(x_{j}\right)\right|^{2}\right)^{q / 2} \frac{d x_{1}}{\omega_{1}} \cdots \frac{d x_{N}}{\omega_{N}}\right)^{1 / q}
\end{aligned}
$$

We have seen that

- For any choice of nodes $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$,

$$
\sup _{\|f\|_{\alpha, p \leq 1} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \geq c N^{-\alpha / d}
$$

We have seen that

- For any choice of nodes $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$,

$$
\sup _{\|f\|_{\alpha, p} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \geq c N^{-\alpha / d}
$$

- With probability close to 1 , any choice of points $x_{j} \in U_{j}$, where $\mathcal{M}=\cup_{j=1}^{N} U_{j}$, with $\omega_{j}=\left|U_{j}\right| \approx 1 / N$ and $\operatorname{diam}\left(U_{j}\right) \approx N^{-1 / d}$ gives

$$
\sup _{\|f\|_{\alpha, p} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \leq c N^{-\alpha / d}
$$

iff $d / p<\alpha<\min (d, d / 2+1)$.

We have seen that

- For any choice of nodes $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$,

$$
\sup _{\|f\|_{\alpha, p} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \geq c N^{-\alpha / d}
$$

- With probability close to 1 , any choice of points $x_{j} \in U_{j}$, where $\mathcal{M}=\cup_{j=1}^{N} U_{j}$, with $\omega_{j}=\left|U_{j}\right| \approx 1 / N$ and $\operatorname{diam}\left(U_{j}\right) \approx N^{-1 / d}$ gives

$$
\sup _{\|f\|_{\alpha, p} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \leq c N^{-\alpha / d}
$$

iff $d / p<\alpha<\min (d, d / 2+1)$.

- Are there choices of nodes $x_{j} \in U_{j}$ that give the best decay for $\alpha \geq \min (d, d / 2+1)$?

We have seen that

- For any choice of nodes $\left\{x_{j}\right\}$ and weights $\left\{\omega_{j}\right\}$,

$$
\sup _{\|f\|_{\alpha, p} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \geq c N^{-\alpha / d}
$$

- With probability close to 1 , any choice of points $x_{j} \in U_{j}$, where $\mathcal{M}=\cup_{j=1}^{N} U_{j}$, with $\omega_{j}=\left|U_{j}\right| \approx 1 / N$ and $\operatorname{diam}\left(U_{j}\right) \approx N^{-1 / d}$ gives

$$
\sup _{\|f\|_{\alpha, p} \leq 1}\left|\int_{\mathcal{M}} f(x) d x-\sum_{j=1}^{N} \omega_{j} f\left(x_{j}\right)\right| \leq c N^{-\alpha / d}
$$

iff $d / p<\alpha<\min (d, d / 2+1)$.

- Are there choices of nodes $x_{j} \in U_{j}$ that give the best decay for $\alpha \geq \min (d, d / 2+1)$?
- If one fixes $\left\{\omega_{j}\right\}$ (e.g. $\omega_{j}=1 / N$ for all j) beforehand, can we construct partitions as desired?

