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Abelian vortices



The (abelian) vortex equation for a Hermitian metric h on a line bundle L
over a Riemann surface Σ with section ϕ ∈ H0(Σ, L)

∗Fh −
i

2
(|ϕ|2h − τ) = 0

is a generalization of the equations on R2 which were introduced in 1950
by Ginzburg and Landau in the theory of superconductivity.

The equations, often called Bogomol’nyi equations, depend on a choice of
background metric g on Σ and a symmetry breaking parameter

0 < τ ∈ R.

In this physical setup, the Chern connection Ah = h−1∂h represents the
electromagnetic field and ϕ is understood as an order parameter for
Cooper pairs (|ϕ|2h being a measure of local density).



Abelian vortices have been extensively studied in the mathematics
literature after the seminal work of Jaffe and Taubes on the Euclidean

plane, and Witten on the hyperbollic plane.

Assuming that Σ is compact, the existence problem for abelian vortices
was solved independently by Noguchi, Bradlow, and Garcia-Prada:

Theorem (Noguchi ’87, Bradlow ’90, Garcia-Prada ’93)

L holomorphic line bundle over a compact Riemann surface Σ with Kähler
metric g , with section 0 ̸= ϕ ∈ H0(Σ, L). Fix 0 < τ ∈ R. Then,

iΛgFh +
1

2
(|ϕ|2h − τ) = 0

admits a solution h if and only if (where N :=
∫
Σ c1(L))

4πN

Volg
< τ.

In that case, the solution is unique.
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Proof: Assume that h is a solution. Integrating the equation

iFh +
1

2
(|ϕ|2h − τ)ω = 0 (1)

we obtain (ϕ ̸= 0)

4πN + (∥ϕ∥2L2 − τ)Volg = 0 =⇒ 4πN/Volg < τ.

Assume now 4πN/Volg < τ . Consider the SU(2)-equivariant bundle on
X = Σ× P1

0 → p∗L → E → q∗OP1(2) → 0

determined by

ϕ ∈ H0(Σ, L) ∼= H1(X , p∗L⊗ q∗OP1(−2)).

Then, for the Kähler form ωτ = p∗ω + 4
τ q

∗ωFS , Garcia-Prada proves that

E is slope [ωτ ]− stable ⇔ 4πN < τVolg

E admits ωτ −Hermite-Einstein metric ⇔ L admits a solution of (1)

The proof follows from the Donaldson-Uhlenbeck-Yau Theorem.
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Bradlow–Garcia-Prada–Noguchi’s Theorem identifies the moduli space of
abelian vortices on Σ with the symmetric product

M = SNΣ.

This moduli space carries an interesting Kähler metric, obtained by
infinite-dimensional Kähler reduction, extensively studied in the
mathematical physics literature (Manton, Romao, Baptista, ...).

‘We assume vortices have no back-reaction on the metric. They are not
gravitating. Some vortices - cosmic strings - have a gravitational effect.’

N.S. Manton, Programme on Moduli Spaces, Cambridge ’11.

Question: which equations describe mathematically ‘gravitating vortices’?

Question: what is the structure of its moduli space?
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Gravitating vortices



Motivated by the Kähler-Yang-Mills equations in higher dimensions, jointly with

Álvarez-Cónsul and Garćıa-Prada we introduced a notion of vortex on a Riemann

surface with back-reaction of the metric.
Gravitating vortices, cosmic strings, and the Kähler–Yang–Mills equations,
Comm. Math. Phys. 351 (2017) (Álvarez-Cónsul, GF, Garćıa-Prada).

Definition (Álvarez-Cónsul, GF, Garćıa-Prada ’17)

L holomorphic line bundle over a Riemann surface Σ, with section
0 ̸= ϕ ∈ H0(Σ, L). Fix 0 < τ ∈ R and 0 ⩽ α ∈ R.

The gravitating vortex equations for (g , h), where g is a Kähler metric on
Σ and h is a hermitian metric on L, are given by

iΛgFh +
1

2
(|ϕ|2h − τ) = 0,

Sg + α(∆g + τ)(|ϕ|2h − τ) = c .
(2)

The constant c ∈ R is topological, given explicitly by

c =
2π(χ(Σ)− 2ατN)

Volg
. (3)



Consider the SU(2)-equivariant bundle on X = Σ× P1 determined by

ϕ ∈ H0(Σ, L):

0 → p∗L → E → q∗OP1(2) → 0.

Proposition (Álvarez-Cónsul, GF, Garćıa-Prada ’17)

Fix 0 < τ ∈ R and 0 ⩽ α ∈ R. The gravitating vortex equations admit a solution
with Kähler form ω if and only if (X ,E ) admits a solution (gX ,H) of the
Kähler-Yang-Mills equations

iΛFH = λ Id,

SgX − αΛ2 tr FH ∧ FH = cX .
(4)

with Kähler form ωX = p∗ω + 4
τ q

∗ωFS .

Upshot: the gravitating vortex equations inherit a moment map
interpretation from the Kähler-Yang-Mills equations.

Coupled equations for Kähler metrics and Yang–Mills connections,
Geometry and Topology 17 (2013) (Álvarez-Cónsul, GF, Garćıa-Prada).
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When c = 0 (Σ = P1 and α = 1/τN), we find self-dual Einstein-Maxwell-Higgs
equations, describing phase transitions in the early universe:

iΛgFh +
1

2
(|ϕ|2h − τ) = 0,

Sg + α(∆g + τ)(|ϕ|2h − τ) = 0.
(5)

The higgs field ϕ decays to a minima of the potential V (ϕ) = (|ϕ|2 − τ)2

‘breaking the symmetry’. The ‘choice of point’ in the circle |ϕ|2 = τ may vary in
space-time causing topological defects (cosmic strings).

R. Abbott et al, Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run,
Physical Review Letters (2021).



Figure: Comtet-Gibbons’ solution ’88 on R1,1 × C∗ (pure gravity): −dt2 + dx3 + |z − z0|
− δ

π dzdz, deficit angle δ. From

A. Gangui ‘Superconducting strings’, Am. Scientists, 2000



Existence for c ≤ 0



Take functions u, f ∈ C∞(Σ) and consider g = (1−∆u)g0 and h = e2f h0, for a
suitable background geometry (g0, h0). Then, the gravitating vortex equations for
(g , h) are equivalent to

∆f +
1

2
(e2f |ϕ|2 − τ)e4ατ f−2αe2f |ϕ|2−2cu = −N,

∆u + e4ατ f−2αe2f |ϕ|2−2cu = 1.

Theorem (Álvarez-Cónsul, GF, Garćıa-Prada, Pingali ’21)

Let Σ be a compact connected Riemann surface with g(Σ) ⩾ 2. Then, there
exists a solution of the gravitating vortex equations with volume 2π provided that

0 ⩽ α ⩽
2g(Σ)− 2

τ(τ − 2N)
, 0 < τ − 2N

Gravitating vortices and the Einstein-Bogol’nyi Equations,
Math. Annalen (2021), (Álvarez-Cónsul, GF, Garćıa-Prada, Pingali).



Assume now that

c =
2π(χ(Σ)− 2ατN)

Volg
= 0.

Then Σ ∼= P1 and α = 1/τN, and the self-dual Einstein-Maxwell-Higgs equations

reduce to a single PDE for a function on the two-sphere

∆f +
1

2
(e2f |ϕ|2 − τ)e4ατ f−2αe2f |ϕ|2 = −N.

Theorem (Yang ’95 ’97, Han-Sohn ’19)

Let D =
∑

i nipi be the effective divisor on P1 corresponding to the pair (L, ϕ).

1 Assume that ni <
N
2 for all i . Then, for any V > 4πN/τ there exists a

solution of the self-dual Einstein-Maxwell-Higgs equations such that
Volg > V .

2 Assume that D = N
2 p0 +

N
2 p1. Then, the self-dual Einstein-Maxwell-Higgs

equations admit a solution on any Kähler class such that Volg > 4πN/τ .
Furthermore, the solution is S1-symmetric.
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N
2 p1. Then, the self-dual Einstein-Maxwell-Higgs

equations admit a solution on any Kähler class such that Volg > 4πN/τ .
Furthermore, the solution is S1-symmetric.

Yang’s method:

1) Yang considers the ε-rescaled PDE (for ((1−∆ϵu)gϵ, e
2f h0) and gε =

1
εg0)

∆f +
1

2ε
(e2f |ϕ|2 − τ)e4ατ f−2αe2f |ϕ|2 = −N.

Smoothing log |ϕ|2h0 , takes sequence of supersolutions. C 0-estimate requires

|ϕ|−2/N
h0

∈ Lp, p > 1.

2) Follows by reduction to ODE.



Of course, the conditions in Yang’s Theorem correspond to

Mumford GIT stability for the linearised SL(2,C)-action on SNP1

ni <
N
2 , for every i ⇐⇒ D ∈ SNP1 stable

D = N
2 p0 +

N
2 p1 ⇐⇒ D ∈ SNP1 strictly polystable

Theorem (Álvarez-Cónsul - GF - Garćıa-Prada - Pingali - Yao ’21, ’23)

Let 0 < τ, α ∈ R. Let D = n0p0 + n1p1 be the effective divisor on P1, with
support given by two points, corresponding to the pair (L, ϕ). If (P1, L, ϕ)
admits a solution of the gravitating vortex equations, then

1 Volg > 4πN/τ ,

2 D is polystable with respect to the SL(2,C)-action on SNP1, that is,
n0 = n1 = N/2.

Method: direct application of the Futaki invariant

Fα,τ = 2α(τVolg − 4πN)(N − 2ni ).
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Theorem (Álvarez-Cónsul - GF - Garćıa-Prada - Pingali - Yao ’21, ’23)

Let 0 < τ, α ∈ R. Let D = n0p0 + n1p1 be the effective divisor on P1, with
support given by two points, corresponding to the pair (L, ϕ). If (P1, L, ϕ) admits
a solution of the gravitating vortex equations, then

1 Volg > 4πN/τ ,

2 D is polystable with respect to the SL(2,C)-action on SNP1, that is,
n0 = n1 = N/2.

In the original proof of this result in 2021, it was claimed the polystability
of D with arbitrary support. However, this proof has a serious gap

Gravitating vortices and the Einstein-Bogol’nyi Equations,
Math. Annalen (2021), (Álvarez-Cónsul, GF, Garćıa-Prada, Pingali).

The theorem above has been reproved with an alternative explicit proof in
Obstructions to the existence of solutions of the self-dual Einstein-Maxwell-Higgs equations on a compact surface,
Bulletin des Sciences Mathématiques (2023), (Álvarez-Cónsul, GF, Garćıa-Prada, Pingali, Yao).

Thanks to a collaborative effort with Chengjian Yao, a complete proof of
the general case seems to be now within reach.



Existence for c > 0
(positive curvature)



Assume now that α > 0 and

c =
2π(χ(Σ)− 2ατN)

Volg
> 0.

Then Σ ∼= P1 and 0 < α < 1/τN.

iΛgFh +
1

2
(|ϕ|2h − τ) = 0,

Sg + α(∆g + τ)(|ϕ|2h − τ) = c .

Theorem (GF - Pingali - Yao ’21)

Let D =
∑

i nipi be the effective divisor on P1 corresponding to the pair (L, ϕ).
Fix τ > 0 and α such that 0 < α < 1/τN (c > 0).

Assume that D ∈ SNP1 is SL(2,C)-polystable. Then, the gravitating vortex
equations admit a solution with coupling constant α for any Kähler class such
that Volg > 4πN/τ .
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Theorem (GF - Pingali - Yao ’21)

Let D =
∑

i nipi be the effective divisor on P1 corresponding to the pair (L, ϕ).
Fix τ > 0 and α such that 0 < α < 1/τN (c > 0).

Assume that D ∈ SNP1 is SL(2,C)-polystable. Then, the gravitating vortex
equations admit a solution with coupling constant α for any Kähler class such
that Volg > 4πN/τ .

Idea: apply continuity method in the parameter α starting at Yang’s solution for
α = 1/τN (c = 0 ∼ cosmic strings).

Difficulties:

Yang’s result only holds for Vg ≫ 4πN/τ when D ̸= N
2 p0 +

N
2 p1,

S1-symmetry potentially obstructs openness when D = N
2 p0 +

N
2 p1,

Need to rule out the formation of singularities on a sequence of solutions
when taking αk → α0 > 0.
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N
2 p1,

Theorem (GF - Pingali - Yao ’21)

Let D =
∑

i nipi be the effective divisor on P1 corresponding to (L, ϕ). Assume
that D is stable with respect to the SL(2,C)-action.

Then, the self-dual Einstein-Maxwell-Higgs equations (c = 0 and α = 1/τN)

admit a solution on any Kähler class such that Volg > 4πN/τ .

Idea: start with Yang’s solution at large volume Volg ≫ 4πN/τ and apply

continuity method with parameter Volg (requires Cheeger-Gromov theory).
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S1-symmetry potentially obstructs openness when D = N
2 p0 +

N
2 p1.

Proposition (GF - Pingali - Yao ’21)

Let D =
∑

i nipi be the effective divisor on P1 corresponding to (L, ϕ). Assume
that D is polystable with respect to the SL(2,C)-action.

Then, the existence of gravitating vortices is an open condition for α > 0.

Proof: when D is stable, the proof follows from the moment map framework
applying the Implicit Function Theorem.

For D = N
2 p0 +

N
2 p1 we apply the following theorem (Lebrun-Simanca type

argument)

Theorem (Álvarez-Cónsul - GF - Garćıa-Prada ’13, GF - Pingali - Yao ’21)

Given a solution of the gravitating vortex equations with α > 0, for any nearby

α′ ∼ α there exists an extremal pair with coupling constant α′.

The proof follows from the vanishing of the Futaki invariant, which implies that

an extremal pair with coupling constant α′ is a gravitating vortex.
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Need to rule out the formation of singularities on a sequence of solutions
when taking αk → α0 > 0.

This is achieved in several steps. The first is the following:

Lemma (GF - Pingali - Yao ’21)

A tuple (Σ, L, ϕ, g , h, α, τ) solving the gravitating vortex equations with g(Σ) = 0
is equivalent to (g , η,Φ) such that

1 g is a smooth Riemannian metric on S2,

2 η is a smooth closed real 2-form on S2 such that
∫
S2 η = 2πN,

3 Φ ∈ C∞(S2) is a non-negative function Φ ⩾ 0 (state function), vanishing
precisely at the pj ∈ S2, and such that log Φ ∈ L1loc(S

2),

solving the RGV system

η +
1

2
(Φ− τ)volg = 0, ∆g log Φ = (τ − Φ)− 4π

∑
j

njδpj

Sg + α(∆g + τ)(Φ− τ) = c .

(6)

Σ = (S2, J) is the Riemann surface determined by g , |ϕ|2h = Φ, and η = iFh.



Need to rule out the formation of singularities on a sequence of solutions
when taking αk → α0 > 0.

The second step is the following key a priori estimates:

Theorem (GF - Pingali - Yao ’21)

Let (g , η,Φ) be a smooth solution of RGV. Then,

1 0 ⩽ Φ ⩽ τ

2 1
2π

∫
S2 Φvolg = τ − 2N

3 (scalar curvature estimate)

c ⩽ Sg ⩽
(3 + 2ατ)τ

2

4 (state function estimate)

−τ 2

4
⩽ −∆gΦ =

|∇Φ|2

Φ
− Φ(τ − Φ) ⩽

1

α

(
3τ

2
− c

)



The third step is given by Cheeger-Gromov’s Theory:

Proposition (GF - Pingali - Yao ’21)

Let (gn, ηn,Φn) be a sequence of solutions of RGV with αn → α0, where
0 < α0 < 1/τN.

Then, there exists a sequence σn ∈ SL(2,C) (for a suitable complex structure)
such that σ∗

n(gn, ηn,Φn) converges in C 1,β sense to a smooth solution of RGV
with constant α0 and divisor D∞ ∈ SL(2,C) · D.

Proof: By a priori estimates, the volume is bounded along the sequence

2π ⩽ Volgn ⩽ 2πe2αnτ ,

and the diameter of gn is bounded from above by Bonnet’s estimate

diam(S2, gn) ⩽ π√
cne−2αnτ

=: Dn.

By Relative Volume Comparison, the volume ratio is bounded from below:

VolgnB(p, r)

πr2
⩾

VolgnB(p,Dn)

πD2
n

⩾
2

D2
n

, ∀p ∈ S2, r ∈ (0,Dn],
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By Cheeger-Gromov-Taylor we have an estimate on the injectivity radius:

inj(S2, gn) ⩾ i0 > 0

independent of n.

Finally, by a priori estimates we have uniform bounds for Sn and |∇nSn|n along
the sequence. The statement follows by Cheeger-Gromov compactness combined
with a slice theorem for complex structures.

Remark: the uniform bounds for |∇nSn|n require to introduce a sequence of
rescaled metric kn = e2αnΦn , but let me ignore that ...
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Thank you!


