Geometry of vortices on Riemann surfaces IV

Oscar García-Prada ICMAT-CSIC, Madrid

ICTS, Bengaluru, 6-10 February 2023

Oscar García-Prada ICMAT-CSIC, Madrid Geometry of vortices on Riemann surfaces IV

1. Kähler–Yang–Mills equations

- M compact complex manifold with dim_{\mathbb{C}} M = n
- $E \rightarrow M$ holomorphic vector bundle over M

Kähler–Yang–Mills equations

for a Kähler metric g on M and a Hermitian metric h on E:

$$i\Lambda_g F_h = \lambda \operatorname{Id}_E$$

 $S_g - \alpha \Lambda_g^2 \operatorname{Tr} F_h^2 = c$

- F_h ∈ Ω²(M, End(E, h)) curvature of Chern connection of h on E
- $\Lambda_g F_h \in \Omega^0(M, \operatorname{End}(E, h))$ contraction of F_h with the Kähler form ω_g determined by g
- S_g scalar curvature of g
- $\alpha > 0$ coupling constant
- $\lambda \in \mathbb{R}$ and $c \in \mathbb{R}$ determined by the topology

• Taking traces in the first equation and integrating over *M*:

$$\lambda = \frac{2\pi}{\operatorname{vol}_g(M)} \frac{\deg_g(E)}{\operatorname{rank} E}$$

where $\deg_g(E) = \frac{1}{(n-1)!} \int_M c_1(E) \omega_g^{n-1}$
• Integrating the second equation over M :

$$c \operatorname{vol}_{g}(M) = \int_{M} (S_{g} - \alpha \Lambda_{g}^{2} \operatorname{Tr} F_{h}^{2})$$
$$= \deg_{g}(TM) - \alpha \int_{M} ch_{2}(E) \wedge \omega_{g}^{n-2}$$

 These equations were introduced in: [AGG2013] L. Álvarez-Cónsul, M. García-Fernández and O. García-Prada, Coupled equations for Kähler metrics and Yang-Mills connections, *Geometry and Topology* 17 (2013) 2731–2812.

Based on: Mario García-Fernández's PhD Thesis (2009).

2. Moment map interpretation of KYM equations

Let *E* be C^{∞} complex vector bundle over *M* and fix:

- *h* Hermitian metric on *E*
- ω symplectic form on M

Define ∞ -dimensional manifolds:

 $\mathscr{J} := \{ \text{complex structures } J : TM \to TM \text{ on } M \}$ $\mathscr{A} := \{ \text{unitary connections on } (E, h) \}$

Define $\mathscr{P} :=$ pairs $(J, A) \in \mathscr{J} \times \mathscr{A}$ such that:

- A induces a holomorphic structure on E over (M, J)
- (M, J, ω) is Kähler

 \mathscr{J} and \mathscr{A} have canonical symplectic structures $\omega_{\mathscr{J}}$ and $\omega_{\mathscr{A}}$ Symplectic form on \mathscr{P} : $\omega_{\alpha} := (\omega_{\mathscr{J}} + \alpha \omega_{\mathscr{A}})|_{\mathscr{P}}$ for fixed $\alpha \neq 0$ Group action?

Atiyah–Bott–Donaldson:

- \mathscr{G} group of automorphisms of (E, h) covering the identity on M
- \mathscr{G} acts symplectically on $(\mathscr{A}, \omega_{\mathscr{A}})$ with moment map $\mu_{\mathscr{A}} : \mathscr{A} \to (\operatorname{Lie} \mathscr{G})^*$ such that

$$\mu_{\mathscr{A}}(A) = 0 \Longleftrightarrow i\Lambda F_h = \lambda \operatorname{Id}_E$$

Fujiki–Donaldson–Quillen:

- $\mathscr{H} := \{ \mathsf{Hamiltonian symplectomorphisms} (M, \omega) \to (M, \omega) \}$
- \mathscr{H} acts symplectically on $(\mathscr{J}, \omega_{\mathscr{J}})$ with moment map $\mu_{\mathscr{J}} : \mathscr{J} \to (\operatorname{Lie} \mathscr{H})^*$ such that

$$\mu_{\mathscr{J}}(J) = 0 \Longleftrightarrow S_{J,\omega} = \text{constant}$$

(1月) (3日) (3日) 日

Hamiltonian extended gauge group \mathscr{G} :

Automorphisms of (E, h) covering Hamiltonian symplectomorphims of (M, ω)

$$\begin{array}{cccc} (E,h) & \stackrel{g}{\longrightarrow} & (E,h) \\ \downarrow & & \downarrow \\ (M,\omega) & \stackrel{\check{g}}{\longrightarrow} & (M,\omega) \end{array}$$

Extension

$$1 \to \mathscr{G} \to \widetilde{\mathscr{G}} \to \mathscr{H} \to 1$$

 \mathscr{G} : group of automorphisms of (E, h) covering the identity on M \mathscr{H} : group of Hamiltonian symplectomorphisms of (M, ω)

(日本)(日本)(日本)

•
$$\widetilde{\mathscr{G}}$$
 acts on \mathscr{J} via $\widetilde{\mathscr{G}} o \mathscr{H}$: $g \mapsto \check{g}$

 $\bullet \ \widetilde{\mathscr{G}}$ acts on \mathscr{A} in the usual way

Proposition

The action of $\widetilde{\mathscr{G}}$ on $(\mathscr{P}, \omega_{\alpha})$ has moment map

$$\mu_{lpha}:\mathscr{P}
ightarrow(\mathsf{Lie}\,\widetilde{\mathscr{G}})^*$$

such that

 $\mu_{\alpha}(J, A) = 0 \iff$ solution to Kähler–Yang–Mills equations For $\alpha > 0$, $(\mathscr{P}, \omega_{\alpha})$ has a canonical $\widetilde{\mathscr{G}}$ -invariant Kähler structure Moduli $\mathcal{M}_{\alpha} := \{$ solutions to Kähler–Yang–Mills equations $\}/\widetilde{\mathscr{G}}$ is Kähler for $\alpha > 0$

• (1) • (2) • (3) • (3) • (3)

Remarks:

- We recover the Hermitian–Yang–Mills equations, while the equation $S_{\omega,J} = \text{constant}$ (Yau–Tian–Donaldson theory) is deformed
- The coupling term in the second equation comes precisely from the non-triviality of the extension defining $\widetilde{\mathscr{G}}$.
- Equations 'decouple' for dim_{\mathbb{C}} M = 1 (as $F_h^2 = 0$ in this case)
- Solutions to the Kähler–Yang–Mills equations are absolute minima of a certain **Calabi–Yang–Mills** functional

(周) (日) (日)

Programme: Study existence of solutions

- Very hard problem: In general, this is a system of coupled fourth-order fully non linear partial differential equations!
- Motivation: Analytic approach to the algebraic geometric problem of studying the moduli space classifying pairs (*X*, *E*) consisting of a projective variety and a holomorphic vector bundle
- In the paper [AGG2013] we give some existence results for small α, by perturbation from constant scalar curvature Kähler metrics and Hermitian–Yang–Mills connections
- More concrete and interesting solutions over a polarised threefold not admitting any constant scalar curvature Kähler metric — were obtained by Keller and Tønnesen–Friedman (2012)
- Garcia-Fernandez-Tipler (2013) added new examples to this short list by simultaneous deformation of the complex structures of *M* and *E*

- In [AGG2013], we also study obstructions for the existence of solutions, generalizing the Futaki invariant, the Mabuchi *K*-energy and geodesic stability (Chen, Donaldson) that appear in the constant scalar curvature theory
- **Conjecture**: Existence of solutions to Kähler–Yang–Mills equations is equivalent to geodesic stability.
- Test this in a simpler situation where there is a group of symmetries acting on the picture: **dimensional reduction**
- One of the simplest cases to consider is M = X × ℙ¹, where X is a Riemann surface, with SU(2) as group of symmetries
- This study was initiated in: [AGG2017] L. Álvarez-Cónsul, M. García-Fernández and O. García-Prada, Gravitating vortices, cosmic strings and the Kähler–Yang–Mills equations, *Comm. Math. Phys.* 351 (2017) 361–385.

Building upon:

O. García-Prada, Invariant connections and vortices, *Comm. Math. Phys.*, **156** (1993) 527–546.

3. Dimensional reduction: Gravitating vortex equations

• X compact Riemann surface

$$L \rightarrow X$$
 holomorphic line bundle over X
 $\varphi \in H^0(X, L)$ holomorphic section of L

To the pair (L, φ) we can sssociate a rank 2 holomorphic vector bundle E over X × P¹:

$$0
ightarrow p^*L
ightarrow E
ightarrow q^* \mathcal{O}_{\mathbb{P}^1}(2)
ightarrow 0$$

where $p: X \times \mathbb{P}^1 \to X$ and $q: X \times \mathbb{P}^1 \to \mathbb{P}^1$ natural projections

• Extensions as above are parametrized by

$$egin{aligned} & H^1(X imes \mathbb{P}^1, p^*L\otimes q^*\mathcal{O}_{\mathbb{P}^1}(-2))\cong H^0(X,L)\otimes H^1(\mathbb{P}^1,\mathcal{O}_{\mathbb{P}^1}(-2))\ &\cong H^0(X,L) \end{aligned}$$

by Künneth formula, and Serre duality $H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(-2)) \cong H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})^* \cong \mathbb{C}$

SU(2)-action:

• SU(2) acts on $X \times \mathbb{P}^1$:

Trivially on X and $\mathbb{P}^1 = \operatorname{SU}(2)/\operatorname{U}(1)$

- SU(2)-action can be lifted to E: Trivially on p*L and standard on q*O_{P1}(2) Trivial action of SU(2) on H⁰(X, L) ⇒ E is a SU(2)-equivariant holomorphic vector bundle
- SU(2)-invariant Kähler metrics on $X imes \mathbb{P}^1$ have the shape

$$\omega_ au= p^*\omega_X\oplus rac{4}{ au}q^*\omega_{\mathbb{P}^1}^{FS}$$

au > 0; $\omega_{\mathbb{P}^1}^{FS}$ Fubini–Study metric (volume normalised to 2π)

(周) (日) (日)

Proposition: Let *E* be the SU(2)-equivariant rank 2 holomorphic vector bundle over *X* × P¹ defined by (*L*, φ). A SU(2)-invariant solution to the Kähler–Yang–Mills equations on *E* → *X* × P¹ is equivalent to a solution of the following equations:

Gravitating vortex equations

for a metric g on X and a Hermitian metric h on L

$$i\Lambda_g F_h + |\varphi|_h^2 - \tau = 0$$

$$S_g + \alpha (\Delta_g + \tau)(|\varphi|_h^2 - \tau) = c$$

Gravitating vortex = solution of the gravitating vortex equations

- $\tau > 0$, $\alpha > 0$ real parameters
- *c* is determined by the topology

・ 同 ト ・ ヨ ト ・ ヨ ト

The first equation

$$i\Lambda_g F_h + |\varphi|_h^2 - \tau = 0$$

is the abelian vortex equation

• Integrating it, we obtain

$$2\pi \deg L + \|\varphi\|_{L^2}^2 = \tau \operatorname{vol}_g(X)$$

Assuming $\varphi \neq$ 0, this implies that in order to have solutions we must have

$$\deg L \leq \frac{\tau \operatorname{vol}_g(X)}{2\pi}$$

Theorem (Noguchi, 1987; Bradlow, 1990; GP, 1991)

Existence of solutions to the vortex equation $\iff \deg L \leq \frac{\tau \operatorname{vol}_g(X)}{2\pi}$ • Coming back to the gravitating vortex equations, by integrating the first equation we have

$$\int_X (\varphi|_h^2 - \tau) = \frac{2\pi \deg(L)}{\operatorname{vol}_g(X)}$$

On the other hand

$$\int_X \Delta_g(|arphi|_h^2 - au) = 0$$
 and $\int_X S_g = rac{2\pi\chi(X)}{\operatorname{vol}_g(X)}$

• With this, and integrating the second equation we have

$$c = rac{2\pi}{\operatorname{vol}_g(X)}(\chi(X) - lpha au \operatorname{deg}(L))$$

In particular we have

$$c \ge 0 \Longrightarrow X = \mathbb{P}^1$$

Oscar García-Prada ICMAT-CSIC, Madrid Geometry of vortices on Riemann surfaces IV

イロト イボト イヨト イヨト

э

Physics: cosmic strings and topological defects

- When c = 0 our equations are known in the physics literature as Einstein–Bogomol'nyi equations also known as self-dual Einstein–Maxwell–Higgs equations and their solutions are called Nielsen–Olesen cosmic strings
- Cosmic strings are a model (by spontaneous symmetry breaking) for **topological defects** in the early universe.
- $\alpha = 2\pi G$, G > 0 is universal gravitation constant
- The abelian vortex equation appears in the **theory of** superconductivity

Physics literature: Linet (1988), Comtet–Gibbons (1988), Spruck–Yisong Yang (1995), Yisong Yang (1995) ...

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

4. Existence of solutions when c = 0

Theorem (Yisong Yang, 1995, 1997)

Let $D = \sum n_i p_i$ be an effective divisor on \mathbb{P}^1 corresponding to a pair (L, φ) s.t. c = 0 and deg $L = N = \sum n_i < \frac{\tau \operatorname{vol}_g(X)}{2\pi}$. Then the Einstein–Bogomol'nyi equations on $(\mathbb{P}^1, L, \varphi)$ have solutions if

$$n_i < rac{N}{2}$$
 for all i . (*)

A solution also exists if $D = \frac{N}{2}p_1 + \frac{N}{2}p_2$, with $p_1 \neq p_2$ and N even.

 Fix metrics g₀ on X and h₀ on L and solve for g = e^{2u}g₀ and h = e^{2f}h₀ ⇒ the gravitating vortex equations are equivalent to equations for f, u ∈ C[∞](X):

$$\Delta_{g_0} f + e^{2u} (e^{2f} |\varphi|_{h_0}^2 - \tau) = -\frac{2\pi \deg L}{\operatorname{vol}_{g_0}(X)}$$
$$\Delta_{g_0} (u + \alpha e^{2f} - 2\alpha \tau f) + c(1 - e^{2u}) = 0$$

- $c = 0 \Longrightarrow u = \text{const.} \alpha e^{2f} + 2\alpha \tau f \Longrightarrow \text{plug } u \text{ in the first equation.}$
- Yang applies the continuity method to solve the resulting Kazdan–Warner type equation, finding it suffices to assume

$$n_i < rac{N}{2}$$
 for all $i,$ (*)

or $D = \frac{N}{2}p_1 + \frac{N}{2}p_2$, with $p_1 \neq p_2$ and N even.

- Yang (1995) mentions that (*) "is a technical restriction on the local string number. It is not clear at this moment whether it may be dropped".
- In fact *) has an algebraic-geometric meaning that comes from the **geometry** of the problem.
- This is done in the paper: [AGGP2021] L. Álvarez-Cónsul, M. García-Fernández, O. García-Prada, and V.P. Pingali, Gravitating vortices and the Einstein-Bogomol'nyi equations, *Math. Ann.* **379** (2021) 1651–1684.

Yang's "technical restriction" has an algebro-geometric meaning, for the natural action of SL(2, ℂ) on Sym^N P¹ = PH⁰(O_{P¹}(N)) — the moduli space of vortices on P¹ with vortex number N:

$$n_i < \frac{N}{2}$$
 for all $i \iff D \in \operatorname{Sym}^N \mathbb{P}^1$ is GIT stable
 $D = \frac{N}{2}p_1 + \frac{N}{2}p_2 \iff D \in \operatorname{Sym}^N \mathbb{P}^1$ is strictly GIT polystable
In [AGGP2021] we claim:

Theorem

If there exists a solucion to the gravitating vortex equations on $(\mathbb{P}^1, L, \varphi)$ then the divisor D defined by (L, φ) is GIT polystable. In particular, the converse of Yang's theorem also holds.

• However, few months ago we discovered a **gap of our proof** and this is now in the process of being fixed in collaboration with Chengjian Yao. This will appear soon.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

5. Gravitating vortices for $g \ge 2$

Theorem ([AGGP2021])

Let X be a compact Riemann surface with $g \ge 2$. Let L a holomorphic line bundle over X of degree N equipped with a holomorphic section $\varphi \ne 0$. Let $\tau > 0$ a real constant such that $0 < N < \tau$. Define

$$0 < \alpha_* = \frac{2g-2}{\tau(\tau - N)}.$$

The the set of $\alpha \ge 0$ for which the gravitating vortex equations have a smooth solution with volume 2π is open and contains $[0, \alpha_*]$. Furthermore, the solution is unique in $[0, \alpha_*]$.

 The proof involves the continuity method. Openness uses the symplectic point of view presented above, while closedness requires an *a priori* estimates as usual. The bound on α is needed for this.

Analogue of the uniformization theorem for pairs (X, D) consisting of a compact Riemann surface X of g ≥ 0 and an effective divisor D on X

6. Gravitating vortices for g = 0 and $c \neq 0$

In the more recent paper

M. Garcia-Fernandez, V.P. Pingali and C. Yao, Gravitating vortices with positive curvature, *Advances in Mathematics* **388** (2021).

the authors give a complete solution to the case c > 0.

• More on gravitating vortices in talks next week!

(日本)(日本)(日本)

THANK YOU!

Oscar García-Prada ICMAT-CSIC, Madrid Geometry of vortices on Riemann surfaces IV

・ロト ・回ト ・ヨト ・ヨト 三日