Geometry of vortices on Riemann surfaces III

Oscar García-Prada ICMAT-CSIC, Madrid

ICTS, Bengaluru, 6-10 February 2023

向下 イヨト イヨト

1. Vortices and Higgs bundles

- X compact Riemann surface
- Higgs bundle (Hitchin 1987): pair (E, φ)
 - E
 ightarrow X holomorphic vector bundle
 - $\varphi: E \to E \otimes K$, *K* canonical line bundle of *X*
- $\mathcal{M}(n, d)$ Moduli space of polystable Higgs bundles of rank *n* and degree *d*
- Hitchin equations:

$$F_h + [\varphi, \varphi^*] = \mu \operatorname{Id}_E, \quad \mu \in \Omega^2(X)$$

- Non-abelian Hodge correspondence (Hitchin 1987, Donaldson 1987, Simpson 1988, Corlette 1988): M(n, d) homeomorphic to moduli of representations of (the universal central extension of) the fundamental group of X in GL(n, C)
- To study topology of $\mathcal{M}(n, d)$ localize at **fixed points** of \mathbb{C}^* -action:

$$\lambda \cdot (E, \varphi) := (E, \lambda \varphi) \quad \lambda \in \mathbb{C}^*_{rad}$$

• Fixed points:

- $\varphi = 0$, E polystable bundle
- $-\varphi \neq 0 \iff E = \oplus E_i \ \varphi|_{E_i} : E_i \to E_{i+1} \otimes K$

Gauge symmetry breaking: $U(n) \rightsquigarrow U(n_1) \times \cdots \times U(n_m)$

- Moduli spaces of chains!
- Topology of moduli of chains ↔ Topology of M(r, d) When n and d are coprime M(n, d) is smooth and can compute:
- *n* = 2 **Hitchin** 1987 (Poincaré polynomial)
- *n* = 3 **Gothen** 1994 (Poincaré polynomial)
- *n* = 4 **GP–Heinloth–Schmitt** 2011 (motive)
- arbitrary *n*: **GP–Heinloth** 2013 (recursive formula for the motive)
- arbitrary *n*: **Bradlow-GP–Gothen** 2008 (homotopy groups)
- Variation of vortex parameters play a central role in these works!

イロト イポト イヨト イヨト

2. Higgs pairs

- X compact Riemann surface of genus $g \ge 2$ with canonical line bundle K
- G reductive complex Lie group with Lie algebra \mathfrak{g}
- $\rho: G \to \operatorname{GL}(V)$ a representation of G in a complex vector space V
- A (G, V)-Higgs pair on X is a pair (E, φ) consisting of a holomorphic principal G-bundle E → X and φ ∈ H⁰(X, E(V) ⊗ K), where E(V) = E ×_G V is the vector bundle associated to the representation ρ.
- There are suitable notions of σ -(semi,poly)stability for any $\sigma \in i\mathfrak{z}_{\mathbb{R}}$, where $\mathfrak{z} = \mathfrak{z}_{\mathbb{R}} \oplus i\mathfrak{z}_{\mathbb{R}}$ is the centre of \mathfrak{g} . $\mathcal{M}_{\sigma}(G, V)$: moduli space of σ -polystable (G, V)-Higgs pairs.

We write $\mathcal{M}(G, V)$ when $\sigma = 0$.

イロト イボト イヨト

 When ρ is the adjoint representation G → GL(g) (G, g)-Higgs pairs are the G-Higgs bundles introduced by Hitchin (1987).

 $\mathcal{M}(G)$: moduli space of polystable *G*-Higgs bundles

We may twist by any line bundle L in our definition of Higgs pairs of type (G, V), including the trivial line bundle (no twisting! Like in the vortex situation).
 We consider twisting by K in preparation for a relation of Higgs pairs of certain type to G-Higgs bundles that we will discuss.

Theory introduced by Mikio Sato in the early 1970s

- G Complex reductive Lie group
 - A prehomogeneous vector space (phvs) for G is a complex finite dimensional vector space V together with a holomorphic representation ρ : G → GL(V) such that there exists an open G-orbit Ω in V. Such an open orbit is necessarily unique and dense.
 - If V is a phys, let Ω denote the open orbit in V and S = V \ Ω be the singular set.
 For x ∈ V, denote the G-stabilizer of x by G^x.
 A phys vector space V is called regular if G^x is reductive for x ∈ Ω, otherwise it is called nonregular.

イロト 不得 トイヨト イヨト

• Example 1:

The vector space \mathbb{C}^n is a phys for the standard representation of $GL(n,\mathbb{C})$. For this example, $\Omega = \mathbb{C}^n \setminus \{0\}$, and it is regular only when n = 1.

• Example 2:

The vector space $M_{p,q}$ of $p \times q$ -matrices is a phys for the action of $GL(p, \mathbb{C}) \times GL(q, \mathbb{C})$ given by

$$(A,B)\cdot M=AMB^{-1}.$$

Here, $\Omega = \{M \in M_{p,q} \mid \operatorname{rank}(M) = \min(p,q)\}$. This example is regular only when p = q.

- Example 1 is related to Bradlow pairs, while example 2 is related to triples.
- A phys V is regular if and only if $S = V \setminus \Omega$ is hypersurface.

イロト イボト イヨト

 Let V be a prehomogeneous vector space for G with representation ρ. A non-constant rational function F : V → C is called a **relative invariant** for the action of G if there exists a **character** χ : G → C^{*} such that

 $F(\rho(g)x) = \chi(g)F(x)$ for every $g \in G$ and $x \in V$.

- Up to a constant, a relative invariant is uniquely determined by its corresponding character. In particular, any relative invariant is a **homogeneous function**.
- Let χ : G → C^{*} be a character. Then there is a relative invariant for χ if and only if χ is trivial on the stabilizers of points in Ω, i.e., χ|_{G^x} = 1 for all x ∈ Ω.

Example: The regular phys M_{p,p} from Example 2 has a relative invariant F : M_{p,p} → C given by F(M) = det(M). The associated character χ : G → C^{*} is given by

$$\chi(A,B) = \det(A)\det(B)^{-1}$$

since

$$F((A, B) \cdot M) = \det(AMB^{-1}) = \chi(A, B)F(M).$$

• (1) • (

4. \mathbb{Z} -gradings and prehomogeneous vector spaces

- G semisimple complex Lie group with Lie algebra g and Killing form B.
- \bullet A $\mathbb{Z}\text{-}\textbf{grading}$ of $\mathfrak g$ is a decomposition

$$\mathfrak{g} = igoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$$
 such that $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}.$

There is an element $\zeta \in \mathfrak{g}_0$ (grading element) such that $\mathfrak{g}_i = \{X \in \mathfrak{g} \mid [\zeta, x] = ix\}$

• Let $G_0 < G$ be the centralizer of ζ ; G_0 acts on each \mathfrak{g}_i by the adjoint action.

Important result due to **Vinberg** (1975): For $i \neq 0$, \mathfrak{g}_i is a **prehomogeneous vector space** for the action of G_0 .

5. \mathbb{Z} -gradings and the Toledo character

In the remaining I describe recent results due to **Biquard–Collier–GP–Toledo**.

- Without loss of generality, we can consider the prehomogeneous vector space (G₀, g₁). Let Ω ⊂ g₁ be the open G₀-orbit.
- Since g₀ is the centralizer of ζ, B(ζ, −) : g₀ → C defines a character. The Toledo character χ_T : g₀ → C is defined by

$$\chi_{T}(x) = B(\zeta, x)B(\gamma, \gamma) ,$$

where γ is the longest root such that $\mathfrak{g}_{\gamma} \subset \mathfrak{g}_1$.

Let e ∈ g₁ and (h, e, f) be an sl₂-triple with h ∈ g₀. We define the Toledo rank of e by

$$\operatorname{rank}_{T}(e) = \frac{1}{2}\chi_{T}(h),$$

and the Toledo rank of $({\it G}_0,\mathfrak{g}_1)$ by

$$\operatorname{rank}_{\mathcal{T}}(G_0,\mathfrak{g}_1)=\operatorname{rank}_{\mathcal{T}}(e) \ \ ext{for} \ e\in\Omega.$$

6. \mathbb{Z} -gradings and Hodge bundles

- For a Z-grading we consider (G₀, g_i)-Higgs pairs over X. Let (E, φ) be a (G₀, g_i)-Higgs pair. Extending the structure group defines a G-Higgs bundle (E_G, φ), where E_G = E × G₀ G, and we use E(g_i) ⊂ E_G(g).
- A G-Higgs bundle (E, φ) is called a Hodge bundle of type (G₀, g_i) if it reduces to a (G₀, g_i)-Higgs pair.
- A result of Simpson (1992) states that the C*-fixed points in the moduli space of G-Higgs bundles (under the action of rescaling the Higgs field) are Hodge bundles for some Z-grading.
- Via de non-abelian Hodge correspondence, Hodge bundles correspond to holonomies of **complex variations of Hodge structure**.

イロト 不得 トイラト イラト 二日

- Let (E, φ) be a (G₀, g₁)-Higgs pair and χ_T : g₀ → C be the Toledo character associated to (G₀, g₁).
 For a rational number q sufficiently large qχ_T lifts to a character χ̃_T : G₀ → C*.
- The **Toledo invariant** $\tau(E, \varphi)$ is defined by

$$au(E, arphi) = rac{1}{q} \deg_{\widetilde{\chi_{ au}}}(E).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

7. Arakelov-Milnor inequality

Theorem (Biquard–Collier–GP–Toledo, 2021) Let (E, φ) be (G_0, \mathfrak{g}_1) -Higgs pair over X. Assume for simplicity that there is no twisting by K. Let $\zeta \in \mathfrak{g}_0$ be the grading element and $\sigma = \alpha \zeta$ for $\alpha \in \mathbb{R}$.

If (E, φ) is α-semistable then the Toledo invariant τ(E, φ) satisfies the following inequality

$$\alpha(B(\gamma,\gamma)B(\zeta,\zeta)-\mathsf{rank}_{\mathcal{T}}(\varphi))\leq \ \tau(E,\varphi)\leq \alpha B(\gamma,\gamma)B(\zeta,\zeta).$$

• In particular, let
$$\alpha_m = rac{ au(E,arphi)}{B(\gamma,\gamma)B(\zeta,\zeta)}$$
 and

 $\alpha_{M} = \frac{\tau(E,\varphi)}{B(\gamma,\gamma)B(\zeta,\zeta) - \operatorname{rank}_{T}(\hat{G}_{0},\hat{\mathfrak{g}}_{1})} \text{ if } (G_{0},\mathfrak{g}_{1}) \text{ is non-regular}$

or ∞ in the regular case (where $(\hat{G}_0, \hat{\mathfrak{g}}_1)$ is maximal regular sub phvs of $(\hat{G}_0, \hat{\mathfrak{g}}_1)$. Then

$$\alpha_{m} \leq \alpha \leq \alpha_{M}.$$

・ロト ・回ト ・ヨト ・ヨト … ヨ