Geometry of vortices on Riemann surfaces III

Oscar García-Prada
ICMAT-CSIC, Madrid

ICTS, Bengaluru, 6-10 February 2023

1. Vortices and Higgs bundles

- X compact Riemann surface
- Higgs bundle (Hitchin 1987): pair (E, φ)
- $E \rightarrow X$ holomorphic vector bundle
- $\varphi: E \rightarrow E \otimes K, \quad K$ canonical line bundle of X
- $\mathcal{M}(n, d)$ Moduli space of polystable Higgs bundles of rank n and degree d
- Hitchin equations:

$$
F_{h}+\left[\varphi, \varphi^{*}\right]=\mu \operatorname{ld}_{E}, \quad \mu \in \Omega^{2}(X)
$$

- Non-abelian Hodge correspondence (Hitchin 1987, Donaldson 1987, Simpson 1988, Corlette 1988): $\mathcal{M}(n, d)$ homeomorphic to moduli of representations of (the universal central extension of) the fundamental group of X in $\mathrm{GL}(n, \mathbb{C})$
- To study topology of $\mathcal{M}(n, d)$ localize at fixed points of \mathbb{C}^{*}-action:

$$
\lambda \cdot(E, \varphi):=(E, \lambda \varphi) \quad \lambda \in \mathbb{C}^{*}
$$

- Fixed points:
- $\varphi=0, E$ polystable bundle
$-\varphi \neq 0 \Longleftrightarrow E=\left.\oplus E_{i} \quad \varphi\right|_{E_{i}}: E_{i} \rightarrow E_{i+1} \otimes K$
Gauge symmetry breaking: $\mathrm{U}(n) \rightsquigarrow \mathrm{U}\left(n_{1}\right) \times \cdots \times \mathrm{U}\left(n_{m}\right)$
- Moduli spaces of chains!
- Topology of moduli of chains \longleftrightarrow Topology of $\mathcal{M}(r, d)$ When n and d are coprime $\mathcal{M}(n, d)$ is smooth and can compute:
- $n=2$ Hitchin 1987 (Poincaré polynomial)
- $n=3$ Gothen 1994 (Poincaré polynomial)
- $n=4$ GP-Heinloth-Schmitt 2011 (motive)
- arbitrary n : GP-Heinloth 2013 (recursive formula for the motive)
- arbitrary n: Bradlow-GP-Gothen 2008 (homotopy groups)
- Variation of vortex parameters play a central role in these works!

2. Higgs pairs

- X compact Riemann surface of genus $g \geq 2$ with canonical line bundle K
- G reductive complex Lie group with Lie algebra \mathfrak{g}
- $\rho: G \rightarrow \mathrm{GL}(V)$ a representation of G in a complex vector space V
- A (G, V)-Higgs pair on X is a pair (E, φ) consisting of a holomorphic principal G-bundle $E \rightarrow X$ and $\varphi \in H^{0}(X, E(V) \otimes K)$,
where $E(V)=E \times_{G} V$ is the vector bundle associated to the representation ρ.
- There are suitable notions of σ-(semi,poly)stability for any $\sigma \in i_{\mathfrak{z}}{ }^{2}$, where $\mathfrak{z}=\mathfrak{z}_{\mathbb{R}} \oplus \mathfrak{i}_{\mathbb{R}}$ is the centre of \mathfrak{g}.
$\mathcal{M}_{\sigma}(G, V)$: moduli space of σ-polystable (G, V)-Higgs pairs.
We write $\mathcal{M}(G, V)$ when $\sigma=0$.
- When ρ is the adjoint representation $G \rightarrow \mathrm{GL}(\mathfrak{g})$ (G, \mathfrak{g})-Higgs pairs are the G-Higgs bundles introduced by Hitchin (1987).
$\mathcal{M}(G)$: moduli space of polystable G-Higgs bundles
- We may twist by any line bundle L in our definition of Higgs pairs of type (G, V), including the trivial line bundle (no twisting! Like in the vortex situation).
We consider twisting by K in preparation for a relation of Higgs pairs of certain type to G-Higgs bundles that we will discuss.

Theory introduced by Mikio Sato in the early 1970s
G Complex reductive Lie group

- A prehomogeneous vector space (phvs) for G is a complex finite dimensional vector space V together with a holomorphic representation $\rho: G \rightarrow \mathrm{GL}(V)$ such that there exists an open G-orbit Ω in V. Such an open orbit is necessarily unique and dense.
- If V is a phvs, let Ω denote the open orbit in V and $S=V \backslash \Omega$ be the singular set.
For $x \in V$, denote the G-stabilizer of x by G^{x}. A phvs vector space V is called regular if G^{x} is reductive for $x \in \Omega$, otherwise it is called nonregular.
- Example 1:

The vector space \mathbb{C}^{n} is a phvs for the standard representation of $\mathrm{GL}(n, \mathbb{C})$. For this example, $\Omega=\mathbb{C}^{n} \backslash\{0\}$, and it is regular only when $n=1$.

- Example 2:

The vector space $M_{p, q}$ of $p \times q$-matrices is a phvs for the action of $\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})$ given by

$$
(A, B) \cdot M=A M B^{-1}
$$

Here, $\Omega=\left\{M \in M_{p, q} \mid \operatorname{rank}(M)=\min (p, q)\right\}$. This example is regular only when $p=q$.

- Example 1 is related to Bradlow pairs, while example 2 is related to triples.
- A phvs V is regular if and only if $S=V \backslash \Omega$ is hypersurface.
- Let V be a prehomogeneous vector space for G with representation ρ. A non-constant rational function $F: V \rightarrow \mathbb{C}$ is called a relative invariant for the action of G if there exists a character $\chi: G \rightarrow \mathbb{C}^{*}$ such that

$$
F(\rho(g) x)=\chi(g) F(x) \text { for every } g \in G \text { and } x \in V
$$

- Up to a constant, a relative invariant is uniquely determined by its corresponding character. In particular, any relative invariant is a homogeneous function.
- Let $\chi: G \rightarrow \mathbb{C}^{*}$ be a character. Then there is a relative invariant for χ if and only if χ is trivial on the stabilizers of points in Ω, i.e., $\left.\chi\right|_{G^{x}}=1$ for all $x \in \Omega$.
- Example: The regular phvs $M_{p, p}$ from Example 2 has a relative invariant $F: M_{p, p} \rightarrow \mathbb{C}$ given by $F(M)=\operatorname{det}(M)$. The associated character $\chi: G \rightarrow \mathbb{C}^{*}$ is given by

$$
\chi(A, B)=\operatorname{det}(A) \operatorname{det}(B)^{-1}
$$

since

$$
F((A, B) \cdot M)=\operatorname{det}\left(A M B^{-1}\right)=\chi(A, B) F(M)
$$

4. ZZ-gradings and prehomogeneous vector spaces

- G semisimple complex Lie group with Lie algebra \mathfrak{g} and Killing form B.
- A \mathbb{Z}-grading of \mathfrak{g} is a decomposition

$$
\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i} \quad \text { such that } \quad\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}
$$

There is an element $\zeta \in \mathfrak{g}_{0}$ (grading element) such that $\mathfrak{g}_{i}=\{X \in \mathfrak{g} \mid[\zeta, x]=i x\}$

- Let $G_{0}<G$ be the centralizer of $\zeta ; G_{0}$ acts on each \mathfrak{g}_{i} by the adjoint action.

Important result due to Vinberg (1975): For $i \neq 0, \mathfrak{g}_{i}$ is a prehomogeneous vector space for the action of G_{0}.

5. \mathbb{Z}-gradings and the Toledo character

In the remaining I describe recent results due to Biquard-Collier-GP-Toledo.

- Without loss of generality, we can consider the prehomogeneous vector space $\left(G_{0}, \mathfrak{g}_{1}\right)$. Let $\Omega \subset \mathfrak{g}_{1}$ be the open G_{0}-orbit.
- Since \mathfrak{g}_{0} is the centralizer of $\zeta, B(\zeta,-): \mathfrak{g}_{0} \rightarrow \mathbb{C}$ defines a character. The Toledo character $\chi_{T}: \mathfrak{g}_{0} \rightarrow \mathbb{C}$ is defined by

$$
\chi_{T}(x)=B(\zeta, x) B(\gamma, \gamma),
$$

where γ is the longest root such that $\mathfrak{g}_{\gamma} \subset \mathfrak{g}_{1}$.

- Let $e \in \mathfrak{g}_{1}$ and (h, e, f) be an $\mathfrak{s l}_{2}$-triple with $h \in \mathfrak{g}_{0}$. We define the Toledo rank of e by

$$
\operatorname{rank}_{T}(e)=\frac{1}{2} \chi_{T}(h),
$$

and the Toledo rank of $\left(G_{0}, \mathfrak{g}_{1}\right)$ by

$$
\operatorname{rank}_{T}\left(G_{0}, \mathfrak{g}_{1}\right)=\operatorname{rank}_{T}(e) \text { for } e \in \Omega
$$

6. \mathbb{Z}-gradings and Hodge bundles

- For a \mathbb{Z}-grading we consider $\left(G_{0}, \mathfrak{g}_{i}\right)$-Higgs pairs over X. Let (E, φ) be a $\left(G_{0}, \mathfrak{g}_{i}\right)$-Higgs pair. Extending the structure group defines a G-Higgs bundle $\left(E_{G}, \varphi\right)$, where $E_{G}=E \times{ }_{G_{0}} G$, and we use $E\left(\mathfrak{g}_{i}\right) \subset E_{G}(\mathfrak{g})$.
- A G-Higgs bundle (E, φ) is called a Hodge bundle of type (G_{0}, \mathfrak{g}_{i}) if it reduces to a $\left(G_{0}, \mathfrak{g}_{i}\right)$-Higgs pair.
- A result of Simpson (1992) states that the \mathbb{C}^{*}-fixed points in the moduli space of G-Higgs bundles (under the action of rescaling the Higgs field) are Hodge bundles for some Z-grading.
- Via de non-abelian Hodge correspondence, Hodge bundles correspond to holonomies of complex variations of Hodge structure.
- Let (E, φ) be a $\left(G_{0}, \mathfrak{g}_{1}\right)$-Higgs pair and $\chi_{T}: \mathfrak{g}_{0} \rightarrow \mathbb{C}$ be the Toledo character associated to $\left(G_{0}, \mathfrak{g}_{1}\right)$.
For a rational number q sufficiently large $q \chi_{T}$ lifts to a character $\widetilde{\chi}_{T}: G_{0} \rightarrow \mathbb{C}^{*}$.
- The Toledo invariant $\tau(E, \varphi)$ is defined by

$$
\tau(E, \varphi)=\frac{1}{q} \operatorname{deg}_{\widetilde{\chi_{T}}}(E) .
$$

7. Arakelov-Milnor inequality

Theorem (Biquard-Collier-GP-Toledo, 2021)

Let (E, φ) be $\left(G_{0}, \mathfrak{g}_{1}\right)$-Higgs pair over X. Assume for simplicity that there is no twisting by K. Let $\zeta \in \mathfrak{g}_{0}$ be the grading element and $\sigma=\alpha \zeta$ for $\alpha \in \mathbb{R}$.

- If (E, φ) is α-semistable then the Toledo invariant $\tau(E, \varphi)$ satisfies the following inequality

$$
\alpha\left(B(\gamma, \gamma) B(\zeta, \zeta)-\operatorname{rank}_{T}(\varphi)\right) \leq \tau(E, \varphi) \leq \alpha B(\gamma, \gamma) B(\zeta, \zeta)
$$

- In particular, let $\alpha_{m}=\frac{\tau(E, \varphi)}{B(\gamma, \gamma) B(\zeta, \zeta)}$ and
$\alpha_{M}=\frac{\tau(E, \varphi)}{B(\gamma, \gamma) B(\zeta, \zeta)-\operatorname{rank}_{T}\left(\hat{G}_{0}, \hat{\mathfrak{g}}_{1}\right)}$ if $\left(G_{0}, \mathfrak{g}_{1}\right)$ is non-regular
or ∞ in the regular case (where $\left(\hat{G}_{0}, \hat{\mathfrak{g}}_{1}\right)$ is maximal regular sub phvs of $\left(\hat{G}_{0}, \hat{\mathfrak{g}}_{1}\right)$. Then

$$
\alpha_{m} \leq \alpha \leq \alpha_{M}
$$

