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1. Vortices and Higgs bundles

X compact Riemann surface
Higgs bundle (Hitchin 1987): pair (E , ϕ)
- E → X holomorphic vector bundle
- ϕ : E → E ⊗ K , K canonical line bundle of X
M(n, d) Moduli space of polystable Higgs bundles of
rank n and degree d
Hitchin equations:

Fh + [ϕ,ϕ∗] = µ IdE , µ ∈ Ω2(X )

Non-abelian Hodge correspondence (Hitchin 1987,
Donaldson 1987, Simpson 1988, Corlette 1988): M(n, d)
homeomorphic to moduli of representations of (the universal
central extension of) the fundamental group of X in GL(n,C)
To study topology of M(n, d) localize at fixed points of
C∗-action:

λ · (E , ϕ) := (E , λϕ) λ ∈ C∗
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Fixed points:
- ϕ = 0, E polystable bundle
- ϕ 6= 0⇐⇒ E = ⊕Ei ϕ|Ei

: Ei → Ei+1 ⊗ K
Gauge symmetry breaking: U(n) U(n1)× · · · × U(nm)

Moduli spaces of chains!

Topology of moduli of chains ←→ Topology of M(r , d)
When n and d are coprime M(n, d) is smooth and can
compute:

n = 2 Hitchin 1987 (Poincaré polynomial)

n = 3 Gothen 1994 (Poincaré polynomial)

n = 4 GP–Heinloth–Schmitt 2011 (motive)

arbitrary n: GP–Heinloth 2013 (recursive formula for the
motive)

arbitrary n: Bradlow-GP–Gothen 2008 (homotopy groups)

Variation of vortex parameters play a central role in these
works!
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2. Higgs pairs

X compact Riemann surface of genus g ≥ 2 with canonical
line bundle K

G reductive complex Lie group with Lie algebra g

ρ : G → GL(V ) a representation of G in a complex vector
space V

A (G ,V )-Higgs pair on X is a pair (E , ϕ) consisting of
a holomorphic principal G -bundle E → X and
ϕ ∈ H0(X ,E (V )⊗ K ),
where E (V ) = E ×G V is the vector bundle associated to the
representation ρ.

There are suitable notions of σ-(semi,poly)stability for any
σ ∈ izR, where z = zR ⊕ izR is the centre of g.
Mσ(G ,V ): moduli space of σ-polystable (G ,V )-Higgs
pairs.
We write M(G ,V ) when σ = 0.
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When ρ is the adjoint representation G → GL(g)
(G , g)-Higgs pairs are the G -Higgs bundles introduced by
Hitchin (1987).

M(G ) : moduli space of polystable G -Higgs bundles

We may twist by any line bundle L in our definition of Higgs
pairs of type (G ,V ), including the trivial line bundle (no
twisting! Like in the vortex situation).
We consider twisting by K in preparation for a relation of
Higgs pairs of certain type to G -Higgs bundles that we will
discuss.
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3. Prehomogeneous vector spaces

Theory introduced by Mikio Sato in the early 1970s
G Complex reductive Lie group

A prehomogeneous vector space (phvs) for G is a complex
finite dimensional vector space V together with a holomorphic
representation ρ : G → GL(V ) such that there exists an open
G -orbit Ω in V . Such an open orbit is necessarily unique and
dense.

If V is a phvs, let Ω denote the open orbit in V and
S = V \ Ω be the singular set.
For x ∈ V , denote the G -stabilizer of x by G x .
A phvs vector space V is called regular if G x is reductive for
x ∈ Ω, otherwise it is called nonregular.
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Example 1:
The vector space Cn is a phvs for the standard representation
of GL(n,C). For this example, Ω = Cn \ {0}, and it is regular
only when n = 1.

Example 2:
The vector space Mp,q of p × q-matrices is a phvs for the
action of GL(p,C)× GL(q,C) given by

(A,B) ·M = AMB−1.

Here, Ω = {M ∈ Mp,q | rank(M) = min(p, q)}. This example
is regular only when p = q.

Example 1 is related to Bradlow pairs, while example 2 is
related to triples.

A phvs V is regular if and only if S = V \ Ω is hypersurface.
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Let V be a prehomogeneous vector space for G with
representation ρ. A non-constant rational function F : V → C
is called a relative invariant for the action of G if there exists
a character χ : G → C∗ such that

F (ρ(g)x) = χ(g)F (x) for every g ∈ G and x ∈ V .

Up to a constant, a relative invariant is uniquely determined
by its corresponding character. In particular, any relative
invariant is a homogeneous function.

Let χ : G → C∗ be a character. Then there is a relative
invariant for χ if and only if χ is trivial on the stabilizers of
points in Ω, i.e., χ|G x = 1 for all x ∈ Ω.
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Example: The regular phvs Mp,p from Example 2 has a
relative invariant F : Mp,p → C given by F (M) = det(M).
The associated character χ : G → C∗ is given by

χ(A,B) = det(A) det(B)−1

since

F ((A,B) ·M) = det(AMB−1) = χ(A,B)F (M).
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4. Z-gradings and prehomogeneous vector spaces

G semisimple complex Lie group with Lie algebra g and
Killing form B.

A Z-grading of g is a decomposition

g =
⊕
i∈Z

gi such that [gi , gj ] ⊂ gi+j .

There is an element ζ ∈ g0 (grading element) such that
gi = {X ∈ g | [ζ, x ] = ix}
Let G0 < G be the centralizer of ζ; G0 acts on each gi by the
adjoint action.

Important result due to Vinberg (1975): For i 6= 0, gi is a
prehomogeneous vector space for the action of G0.
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5. Z-gradings and the Toledo character

In the remaining I describe recent results due to
Biquard–Collier–GP–Toledo.

Without loss of generality, we can consider the
prehomogeneous vector space (G0, g1). Let Ω ⊂ g1 be the
open G0-orbit.

Since g0 is the centralizer of ζ, B(ζ,−) : g0 → C defines a
character. The Toledo character χT : g0 → C is defined by

χT (x) = B(ζ, x)B(γ, γ) ,

where γ is the longest root such that gγ ⊂ g1.

Let e ∈ g1 and (h, e, f ) be an sl2-triple with h ∈ g0. We
define the Toledo rank of e by

rankT (e) =
1

2
χT (h),

and the Toledo rank of (G0, g1) by

rankT (G0, g1) = rankT (e) for e ∈ Ω.
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6. Z-gradings and Hodge bundles

For a Z-grading we consider (G0, gi )-Higgs pairs over X .
Let (E , ϕ) be a (G0, gi )-Higgs pair. Extending the structure
group defines a G -Higgs bundle (EG , ϕ), where
EG = E ×G0 G , and we use E (gi ) ⊂ EG (g).

A G -Higgs bundle (E , ϕ) is called a Hodge bundle of type
(G0, gi ) if it reduces to a (G0, gi )-Higgs pair.

A result of Simpson (1992) states that the C∗-fixed points
in the moduli space of G -Higgs bundles (under the action of
rescaling the Higgs field) are Hodge bundles for some
Z-grading.

Via de non-abelian Hodge correspondence, Hodge bundles
correspond to holonomies of complex variations of Hodge
structure.
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7. Toledo invariant

Let (E , ϕ) be a (G0, g1)-Higgs pair and χT : g0 → C be the
Toledo character associated to (G0, g1).
For a rational number q sufficiently large qχT lifts to a
character χ̃T : G0 → C∗.
The Toledo invariant τ(E , ϕ) is defined by

τ(E , ϕ) =
1

q
degχ̃T

(E ).
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7. Arakelov–Milnor inequality

Theorem (Biquard–Collier–GP–Toledo, 2021)
Let (E , ϕ) be (G0, g1)-Higgs pair over X . Assume for simplicity
that there is no twisting by K . Let ζ ∈ g0 be the grading element
and σ = αζ for α ∈ R.

If (E , ϕ) is α-semistable then the Toledo invariant τ(E , ϕ)
satisfies the following inequality

α(B(γ, γ)B(ζ, ζ)− rankT (ϕ)) ≤ τ(E , ϕ) ≤ αB(γ, γ)B(ζ, ζ).

In particular, let αm = τ(E ,ϕ)
B(γ,γ)B(ζ,ζ) and

αM =
τ(E , ϕ)

B(γ, γ)B(ζ, ζ)− rankT (Ĝ0, ĝ1)
if (G0, g1) is non-regular

or ∞ in the regular case (where (Ĝ0, ĝ1) is maximal regular
sub phvs of (Ĝ0, ĝ1). Then

αm ≤ α ≤ αM .
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