Geometry of vortices on Riemann surfaces II

Oscar García-Prada
ICMAT-CSIC, Madrid

ICTS, Bengaluru, 6-10 February 2023

1. Vortices and the Hermitian-Yang-Mills equations

- $\left(M, \omega_{M}\right) \quad$ compact Kähler manifold with $\operatorname{dim}_{\mathbb{C}} M=n$ (normalisation $\operatorname{vol}(M)=2 \pi)$
- $E \rightarrow M$ holomorphic vector bundle over M

Hermitian-Yang-Mills equations

for a Hermitian metric h on E :

$$
i \wedge F_{h}=\mu \operatorname{ld}_{E}
$$

- $F_{h} \in \Omega^{2}(M, \operatorname{End}(E, h))$ curvature of Chern connection of h on E
- $\Lambda F_{h} \in \Gamma(M, \operatorname{End}(E, h)) \quad$ contraction of F_{h} with ω
- Taking traces in the equation and $\int_{M}(-)$ dvol $_{M}$:

$$
\mu=\mu(E)=\frac{\operatorname{deg}_{\omega_{M}}(E)}{\operatorname{rank} E}
$$

where $\operatorname{deg}_{\omega_{M}}(E)=\int_{M} c_{1}(E) \omega_{M}^{n-1}$

Recall Hitchin-Kobyashi correspondence:

Definition (Mumford-Takemoto)

- E is stable if $\mu\left(E^{\prime}\right)<\mu(E)$ for every coherent subsheaf $0 \neq E^{\prime} \subsetneq E$
- E is polystable if $E \cong \oplus E_{i}$ with E_{i} stable of the same slope

Donaldson-Uhlenbeck-Yau (1986-87)

\exists of solutions to the HYM equations on $E \Longleftrightarrow E$ polystable Irreducible solution $\Longleftrightarrow E$ stable

Relation of the Hermitian-Yang-Mills equations to vortices

- First, we will look at the vortex equations from an equivalent point of view: Fix a holomorphic line bundle L and a holomorphic section $\varphi \in H^{0}(X, L)$, and look for a Hermitian metric h satisfying

$$
i \wedge F_{h}+|\varphi|_{h}^{2}-\tau=0
$$

where $F_{h} \in \Omega^{2}(X)$ is the curvature of the Chern connection of h on L

- Fix a pair (L, φ) as above over compact Riemann surface X Associated to (L, φ) there is rank 2 holomorphic vector bundle E over $X \times \mathbb{P}^{1}$:

$$
0 \rightarrow p^{*} L \rightarrow E \rightarrow q^{*} \mathcal{O}_{\mathbb{P}^{1}}(2) \rightarrow 0
$$

$p: X \times \mathbb{P}^{1} \rightarrow X$ and $q: X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ natural projections

- Extensions as above are parametrized by

$$
\begin{aligned}
H^{1}\left(X \times \mathbb{P}^{1}, p^{*} L \otimes q^{*} \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) & \cong H^{0}(X, L) \otimes H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) \\
& \cong H^{0}(X, L)
\end{aligned}
$$

by Künneth formula, and Serre duality $H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) \cong H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)^{*} \cong \mathbb{C}$

- SU(2)-action on $X \times \mathbb{P}^{1}$: Trivially on X and $\mathbb{P}^{1}=\mathrm{SU}(2) / \mathrm{U}(1)$
- $\operatorname{SU}(2)$-action can be lifted to E : trivially on $p^{*} L$ and standard on $q^{*} \mathcal{O}_{\mathbb{P}^{1}}(2) \Longrightarrow E$ is a $\operatorname{SU}(2)$-equivariant holomorphic vector bundle
- $\operatorname{SU}(2)$-invariant Kähler metric on $X \times \mathbb{P}^{1}$

$$
\omega_{\tau}=p^{*} \omega_{X} \oplus \frac{4}{\tau} q^{*} \omega_{\mathbb{P}^{1}}^{F S}
$$

$\tau>0 ; \omega_{\mathbb{P}^{1}}^{F S}$ Fubini-Study metric (volume normalised to 2π)

Theorem (existence of vortices on $L \longrightarrow X$)
 solution to τ-vortex on $X \lll<\gg \operatorname{deg} L$

 SU(2)-inv. ω_{τ}-HYM metric \Longleftarrow Donaldson-Uhlenbeck-Yau $\Longrightarrow E \omega_{\tau}$-polystable

- vortices on $X \longleftrightarrow$ SU(2)-dimensional reduction of instantons on $X \times \mathbb{P}^{1}$
- Generalises results of Witten (1977) for vortices on the hyperbolic real plane and Taubes for vortices on \mathbb{R}^{2} (1980)

2. Non-abelian vortices and Bradlow pairs

- Replace L by a higher rank vector bundle $V \rightarrow X$ $(V, \varphi), \varphi \in H^{0}(X, V)$
- Bradlow (1989): Notion of τ-stability for (V, φ) and correspondence existence theorem with solutions to non-abelian τ-vortex equations:

$$
i \Lambda F_{h}+\varphi \otimes \varphi^{* h}-\tau \operatorname{ld} v=0
$$

- $(V, \varphi) \longleftrightarrow E \rightarrow X \times \mathbb{P}^{1}$ with

$$
0 \rightarrow p^{*} V \rightarrow E \rightarrow q^{*} \mathcal{O}_{\mathbb{P}^{1}}(2) \rightarrow 0
$$

- GP 1991: Bradlow τ-stability of $(V, \varphi) \Longleftrightarrow$ Stability of E wrt $\omega_{\tau}=p^{*} \omega_{X} \oplus f(\tau) q^{*} \omega_{\mathbb{P}^{1}}^{F S}$ for a certain function $f(\tau)>0$.
- Moduli of rank n vortices on $X \subset$ Moduli of rank $n+1$ stable bundles on $X \times \mathbb{P}^{1}$

3. Non-abelian vortices and triples
(GP, 1991; Bradlow-GP, 1996; Bradlow-GP-Gothen, 2004)

- Consider triples $T=\left(E_{1}, E_{2}, \varphi\right)$ over X consisting of holomorphic vector bundles E_{1}, E_{2} over X of ranks n_{1} and n_{2}, and degrees d_{1} and d_{2} and a homomorphism $\varphi: E_{2} \rightarrow E_{1}$.
- These are in one-to-one correspondence with vector bundles over $X \times \mathbb{P}^{1}$ of the form

$$
0 \rightarrow p^{*} E_{1} \rightarrow E \rightarrow p^{*} E_{2} \otimes q^{*} \mathcal{O}_{\mathbb{P}^{1}}(2) \rightarrow 0
$$

- Vortex equations for hermitian metrics h_{1} and h_{2} on E_{1} and E_{2} respectively

$$
\begin{aligned}
& i \Lambda F_{h_{1}}+\varphi \varphi^{*}=\tau_{1} \operatorname{ld}_{E_{1}}, \\
& i \Lambda F_{h_{2}}-\varphi^{*} \varphi=\tau_{2} \operatorname{ld}_{E_{2}},
\end{aligned}
$$

where τ_{1} and τ_{2} are real parameters satisfying

$$
d_{1}+d_{2}=n_{1} \tau_{1}+n_{2} \tau_{2}
$$

Here φ^{*} is the adjoint of φ with respect to the Hermitian metrics h_{1} and h_{2}.

- A homomorphism from $T^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \varphi^{\prime}\right)$ to $T=\left(E_{1}, E_{2}, \varphi\right)$ is a commutative diagram

- A triple $T^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \varphi^{\prime}\right)$ is a subtriple of $T=\left(E_{1}, E_{2}, \varphi\right)$ if the sheaf homomorphims $E_{1}^{\prime} \rightarrow E_{1}$ and $E_{2}^{\prime} \rightarrow E_{2}$ are injective.
- For any $\alpha \in \mathbb{R}$ the α-slope of T is defined as

$$
\mu_{\alpha}(T)=\mu\left(E_{1} \oplus E_{2}\right)+\alpha \frac{\operatorname{rank}\left(E_{2}\right)}{\operatorname{rank}\left(E_{1}\right)+\operatorname{rank}\left(E_{2}\right)},
$$

where $\operatorname{deg}(E), \operatorname{rank}(E)$ and $\mu(E)=\operatorname{deg}(E) / \operatorname{rank}(E)$ are the degree, rank and slope of E, respectively.

- We say $T=\left(E_{1}, E_{2}, \varphi\right)$ is α-stable if

$$
\mu_{\alpha}\left(T^{\prime}\right)<\mu_{\alpha}(T)
$$

for any proper subtriple $T^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \varphi^{\prime}\right)$.

- We define α-semistability by replacing the above strict inequality with a weak inequality.
- A triple is called α-polystable if it is the direct sum of α-stable triples of the same α-slope.

Theorem (GP-Bradlow, 1996)

Let τ_{1} and τ_{2} so that $d_{1}+d_{2}=n_{1} \tau_{1}+n_{2} \tau_{2}$, let $\alpha=\tau_{1}-\tau_{2}$. Then a triple $T=\left(E_{1}, E_{2}, \varphi\right)$ of type $\left(n_{1}, n_{2}, d_{1}, d_{2}\right)$ has a solution to the vortex equations if and only if T is α-polystable.

- The proof is again an application of the Donaldson-Uhlenbeck-Yau theorem. By showing that the α-polystability of T is equivalent to the polystability of the vector bundle over $X \times \mathbb{P}^{1}$ associated to T with respect to a Kähler form depending on α.
- Let

$$
\mathcal{M}_{\alpha}=\mathcal{M}_{\alpha}\left(n_{1}, n_{2}, d_{1}, d_{2}\right)
$$

be the moduli space of isomorphism classes of α-polystable triples of type $\left(n_{1}, n_{2}, d_{1}, d_{2}\right) . \mathcal{M}_{\alpha}$ is a complex analytic variety, which is projective when α is rational (GIT construction by A. Schmitt).

- Let $\mu_{i}=d_{i} / n_{i}$ for $i=1,2$. We define

$$
\begin{aligned}
& \alpha_{m}=\mu_{1}-\mu_{2}, \\
& \alpha_{M}=\left(1+\frac{n_{1}+n_{2}}{\left|n_{1}-n_{2}\right|}\right)\left(\mu_{1}-\mu_{2}\right), \quad n_{1} \neq n_{2} .
\end{aligned}
$$

- A necessary condition for $\mathcal{M}_{\alpha}\left(n_{1}, n_{2}, d_{1}, d_{2}\right)$ to be non-empty is

$$
\begin{aligned}
& 0 \leq \alpha_{m} \leq \alpha \leq \alpha_{M} \quad \text { if } \quad n_{1} \neq n_{2}, \\
& 0 \leq \alpha_{m} \leq \alpha \text { if } n_{1}=n_{2} .
\end{aligned}
$$

$\operatorname{Fix}\left(n_{1}, n_{2}, d_{1}, d_{2}\right)$.

- We say that $\alpha \in\left[\alpha_{m}, \infty\right)$ is a critical value if there exist integers $n_{1}^{\prime}, n_{2}^{\prime}, d_{1}^{\prime}$ and d_{2}^{\prime} such that

$$
\frac{d_{1}^{\prime}+d_{2}^{\prime}}{n_{1}^{\prime}+n_{2}^{\prime}}+\alpha \frac{n_{2}^{\prime}}{n_{1}^{\prime}+n_{2}^{\prime}}=\frac{d_{1}+d_{2}}{n_{1}+n_{2}}+\alpha \frac{n_{2}}{n_{1}+n_{2}}
$$

that is,

$$
\alpha=\frac{\left(n_{1}+n_{2}\right)\left(d_{1}^{\prime}+d_{2}^{\prime}\right)-\left(n_{1}^{\prime}+n_{2}^{\prime}\right)\left(d_{1}+d_{2}\right)}{n_{1}^{\prime} n_{2}-n_{1} n_{2}^{\prime}}
$$

with $0 \leq n_{i}^{\prime} \leq n_{i},\left(n_{1}^{\prime}, n_{2}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}\right) \neq\left(n_{1}, n_{2}, d_{1}, d_{2}\right)$,
$\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \neq(0,0)$ and $n_{1}^{\prime} n_{2} \neq n_{1} n_{2}^{\prime}$. We say that α is generic if it is not critical.

- The critical values of α form a discrete subset of $\alpha \in\left[\alpha_{m}, \infty\right)$,
- If $n_{1} \neq n_{2}$ the number of critical values is finite and lies in the interval $\left[\alpha_{m}, \alpha_{M}\right]$.
- The stability criteria for two values of α lying between two consecutive critical values are equivalent; thus the corresponding moduli spaces are isomorphic.
- If α is generic and $\operatorname{GCD}\left(n_{2}, n_{1}+n_{2}, d_{1}+d_{2}\right)=1$, then α-semistability is equivalent to α-stability, and the moduli space \mathcal{M}_{α} is a smooth projective variety.
- Using the vortex interpretation of the moduli space of triples one can easily identify the moduli space of triples for $\alpha=\alpha_{m}$. A triple $T=\left(E_{1}, E_{2}, \varphi\right)$ is α_{m}-polystable if and only if $\phi=0$ and E_{1} and E_{2} are polystable. We thus have

$$
\mathcal{M}_{\alpha_{m}}\left(n_{1}, n_{2}, d_{1}, d_{2}\right) \cong M\left(n_{1}, d_{1}\right) \times M\left(n_{2}, d_{2}\right)
$$

where $M\left(n_{i}, d_{i}\right)$ is the moduli space of semistable bundles of rank n_{i} and degree d_{i}.

Theorem (Bradlow-GP-Gothen, 2004)

Assume that $n_{1}>n_{2}$ and $d_{1} / n_{1}>d_{2} / n_{2}$. Let α_{c} the largest critical value before α_{M}. Let \mathcal{M}_{L} the moduli space of α-polystable triples for $\alpha_{c}<\alpha<\alpha_{M}$.
Then the moduli space $\mathcal{M}_{L}^{s}=\mathcal{M}_{L}^{s}\left(n_{1}, n_{2}, d_{1}, d_{2}\right)$ is smooth of dimension

$$
(g-1)\left(n_{1}^{2}+n_{2}^{2}-n_{1} n_{2}\right)-n_{1} d_{2}+n_{2} d_{1}+1
$$

and is birationally equivalent to a \mathbb{P}^{N}-fibration over $M^{s}\left(n_{1}-n_{2}, d_{1}-d_{2}\right) \times M^{s}\left(n_{2}, d_{2}\right)$, where $M^{s}(n, d)$ is the moduli space of stable bundles of rank n and degree d, and

$$
N=n_{2} d_{1}-n_{1} d_{2}+n_{1}\left(n_{1}-n_{2}\right)(g-1)-1 .
$$

In particular, $\mathcal{M}_{L}^{s}\left(n_{1}, n_{2}, d_{1}, d_{2}\right)$ is non-empty and irreducible. If $\operatorname{GCD}\left(n_{1}-n_{2}, d_{1}-d_{2}\right)=1$ and $\operatorname{GCD}\left(n_{2}, d_{2}\right)=1$, the birational equivalence is an isomorphism. Moreover, in all cases, \mathcal{M}_{L} is irreducible and hence birationally equivalent to \mathcal{M}_{L}^{s}.
3. Chains (Álvarez-Cónsul-GP 2001, AC-GP-Schmitt 2006, GP-Heinloth-Schmitt 2014, GP-Heinloth 2013)

- SU(2)-equivariant holomorphic vector bundles on $X \times \mathbb{P}^{1}$ are in bijective correspondence with chains over X

$$
E_{m} \xrightarrow{\varphi_{m-1}} E_{m-1} \xrightarrow{\varphi_{m-2}} \cdots \xrightarrow{\varphi_{1}} E_{1}
$$

- Vortex equations and stability involve $m-1$ real parameters. Moduli spaces of chains are compact, and are smooth for generic values of the stability parameters.
- Quiver bundles (Álvarez-Cónsul-GP 2003) Let G be a complex reductive group and $P \subset G$ be a parabolic subgroup. Consider the flag variety G / P. G-equivariant bundles over $X \times G / P$ are in bijective correspondence with certain quiver bundles with relations on X for a quiver and relations determined by the parabolic subgroup P.

