Geometry of vortices on Riemann surfaces I

Oscar García-Prada ICMAT-CSIC, Madrid

ICTS, Bengaluru, 6-10 February 2023

向下 イヨト イヨト

- 1. The abelian Higgs model on \mathbb{R}^2
 - A: U(1)-connection on the trivial complex line bundle ℝ² × C
 the potential
 - $\varphi: \mathbb{R}^2 \to \mathbb{C}$ smooth function the Higgs field
 - Yang-Mills-Higgs functional:

$$\mathsf{YMH}(A,arphi) = \int_{\mathbb{R}^2} |\mathcal{F}_A|^2 + |d_A arphi|^2 + rac{\lambda}{4}(1-|arphi|^2)^2,$$

- F_A is the curvature of A and d_A is the covariant derivative - λ is a **real parameter**
- Finite action \implies (A, φ) must satisfy:

$$|arphi|
ightarrow 1, \ |d_A arphi|
ightarrow 0$$
 and $|F_A|
ightarrow 0,$ as $|x|
ightarrow \infty$

φ/|φ| defines a map from a large circle in ℝ² to the unit circle, whose degree d is the vortex charge or vortex number.

イロト 不得 トイヨト イヨト

- This functional first appeared in the **Ginzburg–Landau** model (1950) of **superconductivity**: macroscopic theory
- It is one of the first instances of gauge symmetry breaking. Analogous to the gauge symmetry breaking described by Higgs (1964) and others in the context of the electroweak interaction
- Bardeen–Cooper–Schrieffer (1957) gave a microscopic theory: $|\varphi|^2$ is the density of Cooper pairs
- $\lambda < 1$: superconductors of type I
- $\lambda > 1$: superconductors of type II
- Phase transition occurs for $\lambda = 1$

(日本)(日本)(日本)

- Let $\lambda = 1$
- Considering ℝ² ≅ ℂ, we may decompose with respect to the complex structure, to get d_A = ∂_A + ∂
 _A
- Assume d > 0. The case d < 0 is obtained considering the conjugate complex structure of C
- Integrating by parts (Bogomolny) (1976)

$$\mathsf{YMH}(A, arphi) = 2\pi d + \int_{\mathbb{R}^2} |F_A - \frac{1}{2} * (1 - |arphi|^2)|^2 + |2\bar{\partial}_A arphi|^2.$$

 Action is bounded below by 2πd. The minimum is attained if and only if (A, φ) satisfy the vortex equations:

$$\begin{array}{l} \bar{\partial}_A \varphi = 0 \\ F_A = \frac{1}{2} * \left(1 - |\varphi|^2 \right) \end{array} \right\}$$

(日本) (日本) (日本)

• Here \ast is the Hodge star-operator and hence $\ast(1-|\varphi|^2)$ is a 2-form

• In real coordinates (x₁, x₂):

$$A = A_1 dx_1 + A_2 dx_2$$
 and $\varphi = \varphi_1 + i \varphi_2$

 $F_A = F_{12}dx_1 \wedge dx_2$, where $F_{12} = \partial_1 A_2 - \partial_2 A_1$

• In terms of the **complex coordinate** $z = x_1 + ix_2$:

$$A = \alpha dz + \bar{\alpha} d\bar{z}$$
, where $\alpha = \frac{1}{2}(A_1 - iA_2)$

$$\bar{\partial} = rac{1}{2}(\partial_1 + i\partial_2)$$

The vortex equations are

$$\left. \begin{array}{l} \left(\bar{\partial} - i\bar{\alpha} \right) \varphi = 0 \\ F_{12} - \frac{1}{2} (\varphi_1^2 + \varphi_2^2 - 1) = 0 \end{array} \right\}$$

The vortex number can be also obtained as:

$$d = \frac{1}{2\pi} \int_{\mathbb{R}^2} F_A$$

- The equations are invariant under gauge transformations, and the **moduli space of solutions** (vortices) is defined as the quotient space of all solutions modulo gauge equivalence.
- The basic result is **Taubes's existence theorem** (1980): Given *d* points $z_i \in \mathbb{R}^2$ (possibly with multiplicities) there exists a solution to the vortex equations, unique up to gauge equivalence, with $\varphi(z_i) = 0$ and YMH $(A, \varphi) = 2\pi d$.
- This means that the moduli space of vortices is the space of unordered *d*-tuples S^dC, the *d*-th symmetric product of C.
 But this space can be thought of as the space of zeros of a monic polynomial

$$p(z) = z^d + a_d z^{d-1} + \dots + a_1.$$

Hence the moduli space is just the vector space \mathbb{C}^d of coefficients of all such polynomials.

• Details in the beautiful book by **Jaffe and Taubes**: Vortices and Monopoles

- 2. Vortices on a compact Riemann surface
 - X compact Riemann surface
 - ω_X Kähler form on X (conveniently normalised)
 - $L \to X$ smooth complex line bundle over X
 - h Hermitian metric on L
 - τ is a real parameter
 - The vortex equations are equations for A a unitary connection on (L, h) and φ a smooth section of L:

$$\bar{\partial}_A \varphi = 0 i\Lambda F_A + |\varphi|_h^2 = \tau$$

 $\begin{array}{l} F_A \in \Omega^2(X, i\mathbb{R}) & \text{curvature of } A \\ \Lambda F_A \in C^\infty(X, i\mathbb{R}) & \text{contraction of } F_A \text{ with } \omega_X \\ |\cdot|_h \in C^\infty(X, \mathbb{R}) & \text{positive norm on } L \text{ associated to } h \end{array}$

 Like for ℝ², solutions to the vortex equations are minima of a Yang-Mills-Higgs functional (Kähler identities)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

The action of the gauge group 𝒢 = C[∞](X, U(1)) of (L, h) acts on the space of pairs (A, φ): for g ∈ 𝒢

$$g \cdot d_A = g d_A g^{-1}$$
 and $g \cdot \varphi = g \varphi$

preserving the solutions to the vortex equations

- Moduli space of vortices = {solutions}/*G*
- Integrating the second equation (i.e. applying $\int_X (-)\omega_X$ to the equation), and relating **Chern–Weil** theory the curvature of F_A to the first Chern class of L, we obtain

$$2\pi \deg L + \|arphi\|_{L^2}^2 = au \operatorname{vol}(X)$$

• Normalising $vol(X) = 2\pi$, this implies

$$\deg L \leq \tau$$

伺下 イヨト イヨト

• If deg $L = \tau$, then $\varphi = 0$ and a solution exists by Hodge theory

Theorem

Let $D = \sum_{i} z_i \in S^d X$. Then there exists a unique solution to the vortex equations modulo gauge equivalence, with $\varphi \neq 0$ and $\varphi(z_i) = 0$, if and only if deg $L < \tau$

- Several independent proofs:
- Noguchi (1987, $\tau = 1$): direct proof using tools of non-linear analysis
- **Bradlow** (1989): reduces to Kazdan–Warner equation in Riemannian geometry
- **GP** (1991): Two proofs: symplectic geometry and dimensional reduction of Hermitian–Yang–Mills equations

- 3. Vortices and symplectic geometry
 - \mathscr{A} space of unitary connections on (L, h)
 - $\Omega^0(L)$ space of smooth sections of L
 - \mathscr{A} and $\Omega^0(L)$ are infinite dimensional Kähler manifolds
 - The gauge group 𝒢 acts symplectically on 𝒢 × Ω⁰(L) with moment map μ : 𝒢 × Ω⁰(L) → Lie𝒢 = C[∞](X, ℝ) given by

$$\mu(A,\varphi) = i\Lambda F_A + |\varphi|_h^2$$

• One has the Kähler subvariety

$$\mathscr{N} = \{ (A, \varphi) \in \mathscr{A} \times \Omega^0(L) : \overline{\partial}_A \varphi = 0 \}$$

and the restriction $\mu_{\mathscr{N}}$ of the moment map

• Moduli space of vortices coincides with the Kähler quotient

$$\mu_{\mathscr{N}}^{-1}(\tau)/\mathscr{G}$$

Finite dimensional smooth Kähler manifold (non-empty if deg $L < \tau$)

• *A* can be identified with the space *C* of holomorphic structures on *L*: **Chern correspondence**

$$\mathscr{A} \rightarrow \mathscr{C}$$

 $d_A \mapsto \bar{\partial}_A$

- The complex gauge group $\mathscr{G}^c = C^{\infty}(X, \mathbb{C}^*)$ acts on \mathscr{C} by $g \cdot \bar{\partial}_A = g \bar{\partial}_A g^{-1}$ for $g \in \mathscr{G}^c$ preserving \mathscr{N}
- The existence theorem for the vortex equation simply says that

$$\mu_{\mathcal{N}}^{-1}(\tau)/\mathscr{G} \cong \mathscr{N}/\mathscr{G}^{\mathsf{c}} \cong S^{\mathsf{d}}(X)$$

if and only if $d = \deg(L) < \tau$.

- infinite dimensional version of the Theorem of Kempf-Ness
- The study of the Kähler metric on the moduli space of vortices S^d(X) is a very rich subject of research pursued over the years by Nick Manton and his school. Including the case of S^d(P¹) ≅ Pⁿ
 Excellent account in the book Topological solitons by Manton and Sutcliffe