Galois representations: Lecture 3

Shaunak Deo

Indian Institute of Science

Elliptic curves and Special values of *L* functions, ICTS Bangalore 5 August, 2021

If $\bar{\rho}: G \to \mathrm{GL}_n(\mathbb{F})$ is a representation such that $\mathrm{End}_G(\bar{\rho}) = \mathbb{F}$ and G satisfies the finiteness condition (Φ_p) , then there exists

- ullet a CNL $W(\mathbb{F})$ -algebra $R^{\mathrm{univ}}_{ar{
 ho}}$,
- a lift $\rho^{\mathrm{univ}}: G \to \mathrm{GL}_n(R^{\mathrm{univ}}_{\bar{\rho}})$ of $\bar{\rho}$

such that for any CNL $W(\mathbb{F})$ -algebra R, the map

$$\operatorname{Hom}(R_{\bar{\rho}}^{\operatorname{univ}}, R) \to D_{\bar{\rho}}(R)$$
$$\phi \mapsto [\phi \circ \rho^{\operatorname{univ}}]$$

is a bijection.

The theorem is proved by verifying conditions of Schlessinger's criteria.

There is also an explicit construction of $R_{\bar{\rho}}^{\text{univ}}$: see the article 'Explicit construction of universal deformation rings' by deSmit and Lenstra from 'Modular forms and Fermat's last theorem'.

If $\bar{\rho}: G \to \mathrm{GL}_n(\mathbb{F})$ is a representation such that $\mathrm{End}_G(\bar{\rho}) = \mathbb{F}$ and G satisfies the finiteness condition (Φ_p) , then there exists

- ullet a CNL $W(\mathbb{F})$ -algebra $R^{\mathrm{univ}}_{ar{
 ho}}$,
- a lift $\rho^{\mathrm{univ}}: G \to \mathrm{GL}_n(R^{\mathrm{univ}}_{\bar{\rho}})$ of $\bar{\rho}$

such that for any CNL $W(\mathbb{F})$ -algebra R, the map

$$\operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}}, R) \to D_{\bar{\rho}}(R)$$
$$\phi \mapsto [\phi \circ \rho^{\operatorname{univ}}]$$

is a bijection.

The theorem is proved by verifying conditions of Schlessinger's criteria.

There is also an explicit construction of $R_{\bar{\rho}}^{\text{univ}}$: see the article 'Explicit construction of universal deformation rings' by deSmit and Lenstra from 'Modular forms and Fermat's last theorem'

If $\bar{\rho}: G \to \mathrm{GL}_n(\mathbb{F})$ is a representation such that $\mathrm{End}_G(\bar{\rho}) = \mathbb{F}$ and G satisfies the finiteness condition (Φ_p) , then there exists

- ullet a CNL $W(\mathbb{F})$ -algebra $R^{\mathrm{univ}}_{ar{
 ho}}$,
- a lift $\rho^{\mathrm{univ}}: G \to \mathrm{GL}_n(R^{\mathrm{univ}}_{\bar{\rho}})$ of $\bar{\rho}$

such that for any CNL $W(\mathbb{F})$ -algebra R, the map

$$\operatorname{Hom}(R^{\operatorname{univ}}_{\bar{
ho}},R) o D_{\bar{
ho}}(R)$$

$$\phi \mapsto [\phi \circ \rho^{\operatorname{univ}}]$$

is a bijection.

The theorem is proved by verifying conditions of Schlessinger's criteria.

There is also an explicit construction of $R_{\bar{\rho}}^{\text{univ}}$: see the article 'Explicit construction of universal deformation rings' by deSmit and Lenstra from 'Modular forms and Fermat's last theorem'.

If $\bar{\rho}: G \to \mathrm{GL}_n(\mathbb{F})$ is a representation such that $\mathrm{End}_G(\bar{\rho}) = \mathbb{F}$ and G satisfies the finiteness condition (Φ_p) , then there exists

- ullet a CNL $W(\mathbb{F})$ -algebra $R^{\mathrm{univ}}_{ar{
 ho}}$,
- a lift $\rho^{\mathrm{univ}}: G \to \mathrm{GL}_n(R^{\mathrm{univ}}_{\bar{\rho}})$ of $\bar{\rho}$

such that for any CNL $W(\mathbb{F})$ -algebra R, the map

$$\operatorname{Hom}(R^{\operatorname{univ}}_{\bar{
ho}},R) o D_{\bar{
ho}}(R)$$

$$\phi \mapsto [\phi \circ \rho^{\mathrm{univ}}]$$

is a bijection.

The theorem is proved by verifying conditions of Schlessinger's criteria.

There is also an explicit construction of $R_{\bar{\rho}}^{\text{univ}}$: see the article 'Explicit construction of universal deformation rings' by deSmit and Lenstra from 'Modular forms and Fermat's last theorem'

If $\bar{\rho}: G \to \mathrm{GL}_n(\mathbb{F})$ is a representation such that $\mathrm{End}_G(\bar{\rho}) = \mathbb{F}$ and G satisfies the finiteness condition (Φ_p) , then there exists

- ullet a CNL $W(\mathbb{F})$ -algebra $R^{\mathrm{univ}}_{ar{
 ho}}$,
- a lift $\rho^{\mathrm{univ}}: G \to \mathrm{GL}_n(R^{\mathrm{univ}}_{\bar{\rho}})$ of $\bar{\rho}$

such that for any CNL $W(\mathbb{F})$ -algebra R, the map

$$\operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},R) \to D_{\bar{\rho}}(R)$$

$$\phi \mapsto [\phi \circ \rho^{\mathrm{univ}}]$$

is a bijection.

The theorem is proved by verifying conditions of Schlessinger's criteria.

There is also an explicit construction of $R_{\bar{\rho}}^{\text{univ}}$: see the article 'Explicit construction of universal deformation rings' by deSmit and Lenstra from 'Modular forms and Fermat's last theorem'.

If $\bar{\rho}: G \to \mathrm{GL}_n(\mathbb{F})$ is a representation such that $\mathrm{End}_G(\bar{\rho}) = \mathbb{F}$ and G satisfies the finiteness condition (Φ_p) , then there exists

- ullet a CNL $W(\mathbb{F})$ -algebra $R^{\mathrm{univ}}_{ar{
 ho}}$,
- a lift $\rho^{\mathrm{univ}}: G \to \mathrm{GL}_n(R^{\mathrm{univ}}_{\bar{\rho}})$ of $\bar{\rho}$

such that for any CNL $W(\mathbb{F})$ -algebra R, the map

$$\operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},R) \to D_{\bar{\rho}}(R)$$

$$\phi \mapsto [\phi \circ \rho^{\mathrm{univ}}]$$

is a bijection.

The theorem is proved by verifying conditions of Schlessinger's criteria.

There is also an explicit construction of $R_{\bar{\rho}}^{\text{univ}}$: see the article 'Explicit construction of universal deformation rings' by deSmit and Lenstra from 'Modular forms and Fermat's last theorem'.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\bar{\chi}: G \to \mathbb{F}^{\times}$ be a character.

Let $G^{(p)}$ be the pro-p completion of G i.e. $G^{(p)} = \varprojlim_N G/N$, where the inverse limit is taken over all closed normal subgroups N of G of finite index such that |G/N| is a power of p.

Let $G^{(p),ab}$ be the quotient of $G^{(p)}$ by the closure of its commutator subgroup. Since G satisfies the finiteness condition (Φ_p) , it follows that $G^{(p),ab}$ is a finitely generated \mathbb{Z}_p -module.

Let $\gamma: G \to G^{(p),ab}$ be the natural projection and if $u \in G^{(p),ab}$, then denote by [u] the corresponding element in the group ring.

We have a character

$$\eta_0:G o W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^ imes$$

such that $\eta_0(g) = [\gamma(g)].$

Denote the Teichmuller lift of $\bar{\chi}$ to $W(\mathbb{F})[[G^{(p),ab}]]$ by χ_0 .

Theorem

$$\chi_0\eta_0:G\to W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^{\times}$$

Let $\gamma: G \to G^{(p),\mathrm{ab}}$ be the natural projection and if $u \in G^{(p),\mathrm{ab}}$, then denote by [u] the corresponding element in the group ring.

We have a character

$$\eta_0:G o W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^ imes$$

such that $\eta_0(g) = [\gamma(g)].$

Denote the Teichmuller lift of $\bar{\chi}$ to $W(\mathbb{F})[[G^{(p),ab}]]$ by χ_0 .

Theorem

$$\chi_0\eta_0:G\to W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^{\times}.$$

Let $\gamma: G \to G^{(p),ab}$ be the natural projection and if $u \in G^{(p),ab}$, then denote by [u] the corresponding element in the group ring.

We have a character

$$\eta_0:G o W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^ imes$$

such that $\eta_0(g) = [\gamma(g)].$

Denote the Teichmuller lift of $\bar{\chi}$ to $W(\mathbb{F})[[G^{(p),ab}]]$ by χ_0 .

Theorem

$$\chi_0\eta_0:G o W(\mathbb{F})[[G^{(p),\operatorname{ab}}]]^ imes.$$

Let $\gamma: G \to G^{(p),\mathrm{ab}}$ be the natural projection and if $u \in G^{(p),\mathrm{ab}}$, then denote by [u] the corresponding element in the group ring.

We have a character

$$\eta_0:G o W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^ imes$$

such that $\eta_0(g) = [\gamma(g)]$.

Denote the Teichmuller lift of $\bar{\chi}$ to $W(\mathbb{F})[[G^{(p),ab}]]$ by χ_0 .

Theorem

$$\chi_0\eta_0:G o W(\mathbb{F})[[G^{(p),\operatorname{ab}}]]^ imes.$$

Let $\gamma: G \to G^{(p),ab}$ be the natural projection and if $u \in G^{(p),ab}$, then denote by [u] the corresponding element in the group ring.

We have a character

$$\eta_0:G o W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^ imes$$

such that $\eta_0(g) = [\gamma(g)]$.

Denote the Teichmuller lift of $\bar{\chi}$ to $W(\mathbb{F})[[G^{(p),ab}]]$ by χ_0 .

Theorem

$$\chi_0\eta_0:G o W(\mathbb{F})[[G^{(p),\mathrm{ab}}]]^{ imes}.$$

If R is a CNL $W(\mathbb{F})$ -algebra, then denote the Teichmuller lift of $\bar{\chi}$ to R^{\times} by χ_R .

If $\chi: G \to R^{\times}$ is a lift of $\bar{\chi}$, then $\chi = \chi' \chi_R$ for some lift χ' of the trivial character.

So χ' takes values in $1 + m_R$ which is an abelian pro-p group. Hence, χ' factors through $G^{(p),ab}$ giving a character

$$\chi'': G^{(p), ab} \to 1 + m_R.$$

So χ'' extends to a morphism $f_{\chi}:W(\mathbb{F})[[G^{(p),ab}]]\to R$.

Thus we have

$$\chi = f_{\chi} \circ \chi_0 \eta_0$$

If R is a CNL $W(\mathbb{F})$ -algebra, then denote the Teichmuller lift of $\bar{\chi}$ to R^{\times} by χ_R .

If $\chi: G \to R^{\times}$ is a lift of $\bar{\chi}$, then $\chi = \chi' \chi_R$ for some lift χ' of the trivial character.

So χ' takes values in $1 + m_R$ which is an abelian pro-p group. Hence, χ' factors through $G^{(p),ab}$ giving a character

$$\chi'': G^{(p),ab} \to 1 + m_R.$$

So χ'' extends to a morphism $f_{\chi}:W(\mathbb{F})[[G^{(p),ab}]]\to R$.

Thus we have

$$\chi = f_{\chi} \circ \chi_0 \eta_0$$

If R is a CNL $W(\mathbb{F})$ -algebra, then denote the Teichmuller lift of $\bar{\chi}$ to R^{\times} by χ_R .

If $\chi: G \to R^{\times}$ is a lift of $\bar{\chi}$, then $\chi = \chi' \chi_R$ for some lift χ' of the trivial character.

So χ' takes values in $1 + m_R$ which is an abelian pro-p group.

Hence, χ' factors through $G^{(p),ab}$ giving a character

$$\chi'': G^{(p),ab} \to 1 + m_R.$$

So χ'' extends to a morphism $f_{\chi}:W(\mathbb{F})[[G^{(p),ab}]]\to R$.

Thus we have

$$\chi = f_{\chi} \circ \chi_0 \eta_0$$

If R is a CNL $W(\mathbb{F})$ -algebra, then denote the Teichmuller lift of $\bar{\chi}$ to R^{\times} by χ_R .

If $\chi: G \to R^{\times}$ is a lift of $\bar{\chi}$, then $\chi = \chi' \chi_R$ for some lift χ' of the trivial character.

So χ' takes values in $1+m_R$ which is an abelian pro-p group. Hence, χ' factors through $G^{(p),ab}$ giving a character

$$\chi'':G^{(p),\mathrm{ab}}\to 1+m_R.$$

So χ'' extends to a morphism $f_{\chi}:W(\mathbb{F})[[G^{(p),ab}]]\to R$.

Thus we have

$$\chi = f_{\chi} \circ \chi_0 \eta_0$$

If R is a CNL $W(\mathbb{F})$ -algebra, then denote the Teichmuller lift of $\bar{\chi}$ to R^{\times} by χ_R .

If $\chi: G \to R^{\times}$ is a lift of $\bar{\chi}$, then $\chi = \chi' \chi_R$ for some lift χ' of the trivial character.

So χ' takes values in $1+m_R$ which is an abelian pro-p group. Hence, χ' factors through $G^{(p),ab}$ giving a character

$$\chi'': G^{(p),\mathrm{ab}} \to 1 + m_R.$$

So χ'' extends to a morphism $f_{\chi}: W(\mathbb{F})[[G^{(p),ab}]] \to R$.

Thus we have

$$\chi = f_{\chi} \circ \chi_0 \eta_0$$

If R is a CNL $W(\mathbb{F})$ -algebra, then denote the Teichmuller lift of $\bar{\chi}$ to R^{\times} by χ_R .

If $\chi: G \to R^{\times}$ is a lift of $\bar{\chi}$, then $\chi = \chi' \chi_R$ for some lift χ' of the trivial character.

So χ' takes values in $1+m_R$ which is an abelian pro-p group. Hence, χ' factors through $G^{(p),ab}$ giving a character

$$\chi'':G^{(p),\mathrm{ab}}\to 1+m_R.$$

So χ'' extends to a morphism $f_{\chi}:W(\mathbb{F})[[G^{(p),ab}]]\to R$.

Thus we have

$$\chi = f_{\chi} \circ \chi_0 \eta_0$$

which proves the theorem.

- If $G = G_{\mathbb{Q},\{p,\infty\}}$, then $G^{(p),\mathrm{ab}} = \mathbb{Z}_p$ and $R^{\mathrm{univ}}_{\bar{\chi}} \simeq \mathbb{Z}_p[[T]]$.
- Suppose ℓ is a prime such that $p \mid \ell 1$ and p^{ℓ} is the highest power of p dividing $\ell 1$.

If
$$G = G_{\mathbb{Q},\{p,\ell,\infty\}}$$
, then $G^{(p),\mathrm{ab}} = \mathbb{Z}_p \times (\mathbb{Z}/p^e\mathbb{Z})$ and

$$R^{
m univ}_{ar{\chi}} \simeq rac{\mathbb{Z}_p[[T,X]]}{((1+X)^{p^e}-1)}.$$

• In general, if S is a finite set of primes of \mathbb{Q} and $G = G_{\mathbb{Q},S}$, then $G^{(p),ab} = \mathbb{Z}_p \times \prod_{i=1}^n (\mathbb{Z}/p^{e_i}\mathbb{Z})$ for some $n \geq 0$ and

$$R_{ar{\chi}}^{
m univ} \simeq rac{\mathbb{Z}_p[[T,X_1,\cdots,X_n]]}{((1+X_1)^{p^{e_1}}-1,\cdots,(1+X_n)^{p^{e_n}}-1)}.$$

- If $G = G_{\mathbb{Q},\{p,\infty\}}$, then $G^{(p),\mathrm{ab}} = \mathbb{Z}_p$ and $R^{\mathrm{univ}}_{\bar{\chi}} \simeq \mathbb{Z}_p[[T]]$.
- Suppose ℓ is a prime such that $p \mid \ell 1$ and p^{ℓ} is the highest power of p dividing $\ell 1$.

If
$$G = G_{\mathbb{Q},\{p,\ell,\infty\}}$$
, then $G^{(p),\mathrm{ab}} = \mathbb{Z}_p \times (\mathbb{Z}/p^e\mathbb{Z})$ and

$$R_{\bar{\chi}}^{\mathrm{univ}} \simeq \frac{\mathbb{Z}_p[[T,X]]}{((1+X)^{p^e}-1)}.$$

• In general, if S is a finite set of primes of \mathbb{Q} and $G = G_{\mathbb{Q},S}$, then $G^{(p),ab} = \mathbb{Z}_p \times \prod_{i=1}^n (\mathbb{Z}/p^{e_i}\mathbb{Z})$ for some $n \geq 0$ and

$$R_{\overline{\chi}}^{\mathrm{univ}} \simeq \frac{\mathbb{Z}_p[[T, X_1, \cdots, X_n]]}{((1+X_1)^{p^{e_1}} - 1, \cdots, (1+X_n)^{p^{e_n}} - 1)}$$

- If $G = G_{\mathbb{Q},\{p,\infty\}}$, then $G^{(p),\mathrm{ab}} = \mathbb{Z}_p$ and $R^{\mathrm{univ}}_{\bar{\chi}} \simeq \mathbb{Z}_p[[T]]$.
- Suppose ℓ is a prime such that $p \mid \ell 1$ and p^e is the highest power of p dividing $\ell 1$. If $G = G_{\mathbb{Q},\{p,\ell,\infty\}}$, then $G^{(p),ab} = \mathbb{Z}_p \times (\mathbb{Z}/p^e\mathbb{Z})$ and

$$R_{ar{\chi}}^{
m univ} \simeq rac{\mathbb{Z}_p[[T,X]]}{((1+X)^{p^e}-1)}.$$

• In general, if S is a finite set of primes of $\mathbb Q$ and $G = G_{\mathbb Q,S}$, then $G^{(p),\mathrm{ab}} = \mathbb Z_p \times \prod_{i=1}^n (\mathbb Z/p^{e_i}\mathbb Z)$ for some $n \geq 0$ and

$$R_{\bar{\chi}}^{\mathrm{univ}} \simeq \frac{\mathbb{Z}_p[[T, X_1, \cdots, X_n]]}{((1+X_1)^{p^{e_1}} - 1, \cdots, (1+X_n)^{p^{e_n}} - 1)}.$$

- If $G = G_{\mathbb{Q},\{p,\infty\}}$, then $G^{(p),\mathrm{ab}} = \mathbb{Z}_p$ and $R^{\mathrm{univ}}_{\bar{\chi}} \simeq \mathbb{Z}_p[[T]]$.
- Suppose ℓ is a prime such that $p \mid \ell 1$ and p^e is the highest power of p dividing $\ell 1$. If $G = G_{\mathbb{Q},\{p,\ell,\infty\}}$, then $G^{(p),ab} = \mathbb{Z}_p \times (\mathbb{Z}/p^e\mathbb{Z})$ and

$$R_{ar{\chi}}^{
m univ} \simeq rac{\mathbb{Z}_p[[T,X]]}{((1+X)^{p^e}-1)}.$$

• In general, if S is a finite set of primes of $\mathbb Q$ and $G = G_{\mathbb Q,S}$, then $G^{(p),\mathrm{ab}} = \mathbb Z_p \times \prod_{i=1}^n (\mathbb Z/p^{e_i}\mathbb Z)$ for some $n \geq 0$ and

$$R_{\bar{\chi}}^{\mathrm{univ}} \simeq rac{\mathbb{Z}_p[[T, X_1, \cdots, X_n]]}{((1+X_1)^{p^{e_1}}-1, \cdots, (1+X_n)^{p^{e_n}}-1)}.$$

Denote the maximal ideal of $R_{\overline{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\text{univ}} \to 0$$

We would like to determine r and J in order to determine the structure of $R_{\overline{\rho}}^{\mathrm{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F}) = \operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},\mathbb{F}[\epsilon]) = D_{\bar{\rho}}(\mathbb{F}[\epsilon]).$$

Denote the maximal ideal of $R_{\overline{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

We would like to determine r and J in order to determine the structure of $R_{\overline{\rho}}^{\mathrm{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F}) = \operatorname{Hom}(R_{\bar{\rho}}^{\operatorname{univ}},\mathbb{F}[\epsilon]) = D_{\bar{\rho}}(\mathbb{F}[\epsilon]).$$

Denote the maximal ideal of $R_{\overline{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

We would like to determine r and J in order to determine the structure of $R_{\bar{D}}^{\text{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})=\operatorname{Hom}(R^{\operatorname{univ}}_{\bar{
ho}},\mathbb{F}[\epsilon])=D_{\bar{
ho}}(\mathbb{F}[\epsilon]).$$

Denote the maximal ideal of $R_{\overline{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

We would like to determine r and J in order to determine the structure of $R_{\bar{D}}^{\text{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F}) = \operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},\mathbb{F}[\epsilon]) = D_{\bar{\rho}}(\mathbb{F}[\epsilon]).$$

Denote the maximal ideal of $R_{\overline{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

We would like to determine r and J in order to determine the structure of $R_{\bar{D}}^{\text{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F}) = \operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},\mathbb{F}[\epsilon]) = D_{\bar{\rho}}(\mathbb{F}[\epsilon]).$$

Denote the maximal ideal of $R_{\bar{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

We would like to determine r and J in order to determine the structure of $R_{\bar{D}}^{\text{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F}) = \operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},\mathbb{F}[\epsilon]) = D_{\bar{\rho}}(\mathbb{F}[\epsilon]).$$

Denote the maximal ideal of $R_{\overline{\rho}}^{\text{univ}}$ by \mathfrak{m} and let $r = \dim_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2)) = \dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F})).$

So, we have an exact sequence:

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

We would like to determine r and J in order to determine the structure of $R_{\bar{D}}^{\text{univ}}$.

Observe that
$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}/(p,\mathfrak{m}^2),\mathbb{F}) = \operatorname{Hom}(R^{\operatorname{univ}}_{\bar{\rho}},\mathbb{F}[\epsilon]) = D_{\bar{\rho}}(\mathbb{F}[\epsilon]).$$

Now ρ is a representation if and only if $\rho(gg') = \rho(g)\rho(g')$ for all $g, g' \in G$.

Now $\rho(gg')=\rho(g)\rho(g')$ for all $g,g'\in G$ if and only if

$$f_{\rho}(gg') = f_{\rho}(g) + \bar{\rho}(g)f_{\rho}(g')\bar{\rho}(g)^{-1} \text{ for all } g, g' \in G$$

So ρ is a representation if and only if f_{ρ} is a 1-cocyle taking values in $Ad(\bar{\rho})$.

$$(Id + \epsilon M)\rho(Id - \epsilon M) = \rho'$$

Now ρ is a representation if and only if $\rho(gg') = \rho(g)\rho(g')$ for all $g, g' \in G$.

Now $\rho(gg')=\rho(g)\rho(g')$ for all $g,g'\in G$ if and only if

$$f_{\rho}(gg') = f_{\rho}(g) + \bar{\rho}(g)f_{\rho}(g')\bar{\rho}(g)^{-1} \text{ for all } g, g' \in G.$$

So ρ is a representation if and only if f_{ρ} is a 1-cocyle taking values in $Ad(\bar{\rho})$.

$$(Id + \epsilon M)\rho(Id - \epsilon M) = \rho'.$$

Now ρ is a representation if and only if $\rho(gg') = \rho(g)\rho(g')$ for all $g, g' \in G$.

Now $\rho(gg')=\rho(g)\rho(g')$ for all $g,g'\in G$ if and only if

$$f_{\rho}(gg') = f_{\rho}(g) + \bar{\rho}(g)f_{\rho}(g')\bar{\rho}(g)^{-1}$$
 for all $g, g' \in G$

So ρ is a representation if and only if f_{ρ} is a 1-cocyle taking values in $Ad(\bar{\rho})$.

$$(Id + \epsilon M)\rho(Id - \epsilon M) = \rho'$$

Now ρ is a representation if and only if $\rho(gg') = \rho(g)\rho(g')$ for all $g, g' \in G$.

Now $\rho(gg')=\rho(g)\rho(g')$ for all $g,g'\in G$ if and only if

$$f_{\rho}(gg') = f_{\rho}(g) + \bar{\rho}(g)f_{\rho}(g')\bar{\rho}(g)^{-1} \text{ for all } g, g' \in G.$$

So ρ is a representation if and only if f_{ρ} is a 1-cocyle taking values in $Ad(\bar{\rho})$.

$$(Id + \epsilon M)\rho(Id - \epsilon M) = \rho'$$

Now ρ is a representation if and only if $\rho(gg') = \rho(g)\rho(g')$ for all $g, g' \in G$.

Now $\rho(gg')=\rho(g)\rho(g')$ for all $g,g'\in G$ if and only if

$$f_{\rho}(gg') = f_{\rho}(g) + \bar{\rho}(g)f_{\rho}(g')\bar{\rho}(g)^{-1} \text{ for all } g, g' \in G.$$

So ρ is a representation if and only if f_{ρ} is a 1-cocyle taking values in $Ad(\bar{\rho})$.

$$(Id + \epsilon M)\rho(Id - \epsilon M) = \rho'.$$

Now ρ is a representation if and only if $\rho(gg') = \rho(g)\rho(g')$ for all $g, g' \in G$.

Now $\rho(gg')=\rho(g)\rho(g')$ for all $g,g'\in G$ if and only if

$$f_{\rho}(gg') = f_{\rho}(g) + \bar{\rho}(g)f_{\rho}(g')\bar{\rho}(g)^{-1}$$
 for all $g, g' \in G$.

So ρ is a representation if and only if f_{ρ} is a 1-cocyle taking values in $Ad(\bar{\rho})$.

$$(Id + \epsilon M)\rho(Id - \epsilon M) = \rho'.$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \mathrm{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \mathrm{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho}))).$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \operatorname{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho}))).$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_ρ and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \mathrm{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho}))).$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \operatorname{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho}))).$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \operatorname{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho}))).$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id+\epsilon N)\rho(Id-\epsilon N)=\rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \mathrm{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$$

$$f_{\rho'}(g) = f_{\rho}(g) + M - \bar{\rho}(g)M\bar{\rho}(g)^{-1}$$

i.e. f_{ρ} and $f_{\rho'}$ differ by a coboundary.

On the other hand if f_{ρ} and $f_{\rho'}$ differ by a coboundary i.e. if there exists an $N \in M_n(\mathbb{F})$ such that

$$f_{\rho}(g) - f_{\rho'}(g) = \bar{\rho}(g)N\bar{\rho}(g)^{-1} - N,$$

then $(Id + \epsilon N)\rho(Id - \epsilon N) = \rho'$ which means that ρ and ρ' are equivalent.

This gives an isomorphism of \mathbb{F} -vector spaces between $D_{\bar{\rho}}(\mathbb{F}[\epsilon])$ and $H^1(G, \operatorname{Ad}(\bar{\rho}))$. Hence, it follows that

$$r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho}))).$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\rm univ} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\bar{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \mathrm{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\bar{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \operatorname{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\overline{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \operatorname{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\overline{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \operatorname{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\overline{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \operatorname{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\overline{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \operatorname{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

$$0 \to J/m_R J \to R/m_R J \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

If γ is a set theoretic lift of $\rho^{\text{univ}}: G \to \operatorname{GL}_n(R_{\overline{\rho}}^{\text{univ}})$ to $\operatorname{GL}_n(R/m_R J)$, then it is easy to verify that the function

$$d: G \times G \to M_n(J/m_R J) = \operatorname{Ad}(\bar{\rho}) \otimes J/m_R J$$

given by

$$d(g_1, g_2) = \gamma(g_1 g_2) \gamma(g_2)^{-1} \gamma(g_1)^{-1} - Id$$

is a 2-cocycle with values in $Ad(\bar{\rho}) \otimes J/m_R J$.

$$\mathcal{O}(\rho^{\mathrm{univ}}) \in H^2(G, \mathrm{Ad}(\bar{\rho})) \otimes J/m_R J.$$

Consider the F-linear map

$$\phi: \operatorname{Hom}_{\mathbb{F}}(J/m_R J, \mathbb{F}) \to H^2(G, \operatorname{Ad}(\bar{\rho}))$$

given by
$$\phi(f) = (1 \otimes f)(\mathcal{O}(\rho^{\text{univ}})).$$

Suppose ϕ is not injective and let $f \in \ker(\phi)$. Let R' be the quotient of R by $\ker(f)$ and I be the quotient of J/m_RJ by $\ker(f)$.

So $I \simeq \mathbb{F}$ and this gives us an exact sequence:

$$0 \to I \to R' \to R_{\bar{\rho}}^{\text{univ}} \to 0.$$

Denote the map $R' \to R_{\overline{\rho}}^{\text{univ}}$ by ψ_2 . As $f \in \text{ker}(\phi)$, the obstruction to lifting ρ^{univ} to R' vanishes.

Hence, there is a deformation $\rho': G \to \operatorname{GL}_n(R')$ of $\bar{\rho}$ to R' such that ρ' also lifts ρ^{univ} .

Consider the F-linear map

$$\phi: \operatorname{Hom}_{\mathbb{F}}(J/m_R J, \mathbb{F}) \to H^2(G, \operatorname{Ad}(\bar{\rho}))$$

given by
$$\phi(f) = (1 \otimes f)(\mathcal{O}(\rho^{\text{univ}})).$$

Suppose ϕ is not injective and let $f \in \ker(\phi)$. Let R' be the quotient of R by $\ker(f)$ and I be the quotient of J/m_RJ by $\ker(f)$.

So $I \simeq \mathbb{F}$ and this gives us an exact sequence:

$$0 \to I \to R' \to R_{\bar{\rho}}^{\text{univ}} \to 0.$$

Denote the map $R' \to R_{\overline{\rho}}^{\text{univ}}$ by ψ_2 . As $f \in \text{ker}(\phi)$, the obstruction to lifting ρ^{univ} to R' vanishes.

Hence, there is a deformation $\rho': G \to \operatorname{GL}_n(R')$ of $\bar{\rho}$ to R' such that ρ' also lifts ρ^{univ} .

Consider the F-linear map

$$\phi: \operatorname{Hom}_{\mathbb{F}}(J/m_R J, \mathbb{F}) \to H^2(G, \operatorname{Ad}(\bar{\rho}))$$

given by
$$\phi(f) = (1 \otimes f)(\mathcal{O}(\rho^{\text{univ}})).$$

Suppose ϕ is not injective and let $f \in \ker(\phi)$. Let R' be the quotient of R by $\ker(f)$ and I be the quotient of J/m_RJ by $\ker(f)$.

So $I \simeq \mathbb{F}$ and this gives us an exact sequence:

$$0 \to I \to R' \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

Denote the map $R' \to R_{\bar{\rho}}^{\text{univ}}$ by ψ_2 . As $f \in \text{ker}(\phi)$, the obstruction to lifting ρ^{univ} to R' vanishes.

Hence, there is a deformation $\rho': G \to GL_n(R')$ of $\bar{\rho}$ to R' such that ρ' also lifts ρ^{univ} .

Consider the \mathbb{F} -linear map

$$\phi: \operatorname{Hom}_{\mathbb{F}}(J/m_R J, \mathbb{F}) \to H^2(G, \operatorname{Ad}(\bar{\rho}))$$

given by
$$\phi(f) = (1 \otimes f)(\mathcal{O}(\rho^{\text{univ}})).$$

Suppose ϕ is not injective and let $f \in \ker(\phi)$. Let R' be the quotient of R by $\ker(f)$ and I be the quotient of J/m_RJ by $\ker(f)$.

So $I \simeq \mathbb{F}$ and this gives us an exact sequence:

$$0 \to I \to R' \to R_{\bar{\rho}}^{\text{univ}} \to 0.$$

Denote the map $R' \to R_{\bar{\rho}}^{\text{univ}}$ by ψ_2 . As $f \in \text{ker}(\phi)$, the obstruction to lifting ρ^{univ} to R' vanishes.

Hence, there is a deformation $\rho': G \to \operatorname{GL}_n(R')$ of $\bar{\rho}$ to R' such that ρ' also lifts ρ^{univ} .

Consider the \mathbb{F} -linear map

$$\phi: \operatorname{Hom}_{\mathbb{F}}(J/m_R J, \mathbb{F}) \to H^2(G, \operatorname{Ad}(\bar{\rho}))$$

given by
$$\phi(f) = (1 \otimes f)(\mathcal{O}(\rho^{\text{univ}})).$$

Suppose ϕ is not injective and let $f \in \ker(\phi)$. Let R' be the quotient of R by $\ker(f)$ and I be the quotient of J/m_RJ by $\ker(f)$.

So $I \simeq \mathbb{F}$ and this gives us an exact sequence:

$$0 \to I \to R' \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

Denote the map $R' \to R_{\bar{\rho}}^{\text{univ}}$ by ψ_2 . As $f \in \text{ker}(\phi)$, the obstruction to lifting ρ^{univ} to R' vanishes.

Hence, there is a deformation $\rho': G \to \operatorname{GL}_n(R')$ of $\bar{\rho}$ to R' such that ρ' also lifts ρ^{univ} .

Consider the \mathbb{F} -linear map

$$\phi: \operatorname{Hom}_{\mathbb{F}}(J/m_R J, \mathbb{F}) \to H^2(G, \operatorname{Ad}(\bar{\rho}))$$

given by $\phi(f) = (1 \otimes f)(\mathcal{O}(\rho^{\text{univ}})).$

Suppose ϕ is not injective and let $f \in \ker(\phi)$. Let R' be the quotient of R by $\ker(f)$ and I be the quotient of J/m_RJ by $\ker(f)$.

So $I \simeq \mathbb{F}$ and this gives us an exact sequence:

$$0 \to I \to R' \to R_{\bar{\rho}}^{\mathrm{univ}} \to 0.$$

Denote the map $R' \to R_{\bar{\rho}}^{\text{univ}}$ by ψ_2 . As $f \in \text{ker}(\phi)$, the obstruction to lifting ρ^{univ} to R' vanishes.

Hence, there is a deformation $\rho': G \to GL_n(R')$ of $\bar{\rho}$ to R' such that ρ' also lifts ρ^{univ} .

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_R J,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_RJ,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_R J,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_RJ,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_R J,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\overline{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_R J,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\overline{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_R J,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_R J,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_RJ,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

So the universal property implies that ρ' is induced by a homomorphism $\psi_1: R^{\mathrm{univ}}_{\bar{\rho}} \to R'$.

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\bar{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_RJ,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

So, by Nakayama's lemma, the minimal number of generators of J is at most $\dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$.

So the universal property implies that ρ' is induced by a homomorphism $\psi_1: R^{\mathrm{univ}}_{\bar{\rho}} \to R'$.

As $\psi_2 \circ \psi_1 \circ \rho^{\text{univ}} = \rho^{\text{univ}}$, the universal property implies that $\psi_2 \circ \psi_1$ is identity and hence, the exact sequence above splits.

Since $\ker(\psi_2) \subset (p, m_{R'}^2)$ and $\psi_2 \circ \psi_1$ is identity, it follows that ψ_1 induces an isomorphism on mod p tangent spaces of $R_{\overline{\rho}}^{\text{univ}}$ and R'. Hence, ψ_1 is surjective.

As $\psi_2 \circ \psi_1$ is identity, it follows that ψ_2 is injective. This contradicts the fact that $\ker(\psi_2) = I \simeq \mathbb{F} \neq 0$.

Therefore, the map ϕ is injective. Injectivity of ϕ implies that

$$\dim_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(J/m_RJ,\mathbb{F})) \leq \dim_{\mathbb{F}}(H^2(G,\operatorname{Ad}(\bar{\rho}))).$$

So, by Nakayama's lemma, the minimal number of generators of J is at most $\dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$.

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\overline{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\overline{\rho}}^{\text{univ}}$ is at least 4 if $\overline{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \mathrm{Ad}(\bar{\rho})) = 0$. If $\bar{\rho}$ is unobstructed, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq W(\mathbb{F})[[X_1, \cdots, X_r]]$.

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\overline{\rho}}^{\text{univ}}$ is at least 4 if $\overline{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \mathrm{Ad}(\bar{\rho})) = 0$. If $\bar{\rho}$ is unobstructed, then $R_{\bar{\rho}}^{\mathrm{univ}} \simeq W(\mathbb{F})[[X_1, \cdots, X_r]]$.

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}: G_{\mathbb{Q},S} \to GL_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\overline{\rho}}^{\text{univ}}$ is at least 4 if $\overline{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \mathrm{Ad}(\bar{\rho})) = 0$. If $\bar{\rho}$ is unobstructed, then $R_{\bar{\rho}}^{\mathrm{univ}} \simeq W(\mathbb{F})[[X_1, \cdots, X_r]]$.

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}: G_{\mathbb{Q},S} \to GL_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\overline{\rho}}^{\text{univ}}$ is at least 4 if $\overline{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \mathrm{Ad}(\bar{\rho})) = 0$ If $\bar{\rho}$ is unobstructed, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq W(\mathbb{F})[[X_1, \cdots, X_r]].$

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\overline{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}:G_{\mathbb{Q},S}\to GL_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\bar{\rho}}^{\text{univ}}$ is at least 4 if $\bar{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \mathrm{Ad}(\bar{\rho})) = 0$ If $\bar{\rho}$ is unobstructed, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq W(\mathbb{F})[[X_1, \cdots, X_r]].$

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\overline{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}: G_{\mathbb{Q},S} \to GL_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\bar{\rho}}^{\text{univ}}$ is at least 4 if $\bar{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \text{Ad}(\bar{\rho})) = 0$. If $\bar{\rho}$ is unobstructed, then $R^{\text{univ}}_{\bar{\rho}} \simeq W(\mathbb{F})[[X_1, \dots, X_r]]$.

Theorem

Let $r = \dim_{\mathbb{F}}(H^1(G, \operatorname{Ad}(\bar{\rho})))$ and $s = \dim_{\mathbb{F}}(H^2(G, \operatorname{Ad}(\bar{\rho})))$. Then we have a presentation

$$0 \to J \to W(\mathbb{F})[[X_1, \cdots, X_r]] \to R_{\bar{\rho}}^{\mathrm{univ}},$$

such that the minimal number of generators of J is at most s.

If $\bar{\rho}: G_{\mathbb{Q},S} \to GL_2(\mathbb{F})$ is an odd representation, then global Euler characteristic formula implies that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))-\dim_{\mathbb{F}}(H^2(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=3.$$

So we get that the Krull dimension of $R_{\bar{\rho}}^{\text{univ}}$ is at least 4 if $\bar{\rho}$ is odd.

The representation $\bar{\rho}$ is called *unobstructed* if $H^2(G, \mathrm{Ad}(\bar{\rho})) = 0$. If $\bar{\rho}$ is unobstructed, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq W(\mathbb{F})[[X_1, \cdots, X_r]]$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \operatorname{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{
ho}:G_{\mathbb{Q},\{p,\infty\}}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \operatorname{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$.

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{
ho}:G_{\mathbb{Q},\{p,\infty\}}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \operatorname{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So *L* is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{\rho}:G_{\mathbb{Q},\{p,\infty\}}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \operatorname{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{
ho}:G_{\mathbb{Q},\{p,\infty\}}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \operatorname{Gal}(L/\mathbb{Q})$.

Let $f(X) = X^3 + aX + 1 \in \mathbb{Q}[X]$ be a polynomial such that $27 + 4a^3$ is a prime p. Some examples of such primes are 23, 31, 59 and 283.

Let *L* be the splitting field of f(X) over \mathbb{Q} . Since the discriminant of f(X) is -p, $\mathbb{Q}(\sqrt{-p}) \subset L$.

So L is a totally complex extension of \mathbb{Q} and $G_0 := \operatorname{Gal}(L/\mathbb{Q}) = S_3$. Note that the extension L/\mathbb{Q} is unramified outside p and ∞ .

Fix an embedding $i: \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ and let

$$\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation obtained by composing i with the natural surjective map $G_{\mathbb{Q},\{p,\infty\}} \to \operatorname{Gal}(L/\mathbb{Q})$.

If $\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$ is a neat S_3 representation, then $R_{\bar{\rho}}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

By global Euler characteristic formula, it suffices to prove that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},\{p,\infty\}},\operatorname{Ad}(\bar{\rho})))=3.$$

Now as a G_0 -representation, $Ad(\bar{\rho}) = 1 \oplus \epsilon \oplus \bar{\rho}'$, where ϵ is the non-trivial 1-dimensional sign representation and $\bar{\rho}'$ is the irreducible representation given by the embedding i above. So the dual of $Ad(\bar{\rho})$ is itself.

By inflation-restriction sequence, this amounts to proving that $\dim_{\mathbb{F}}(H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0})=3$, where S' is the set of places of L lying above $\{p,\infty\}$ and $G_0=\operatorname{Gal}(L/\mathbb{Q})$.

$$H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0}=\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})).$$

If $\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$ is a neat S_3 representation, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

By global Euler characteristic formula, it suffices to prove that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},\{p,\infty\}},\operatorname{Ad}(\bar{\rho})))=3.$$

Now as a G_0 -representation, $Ad(\bar{\rho}) = 1 \oplus \epsilon \oplus \bar{\rho}'$, where ϵ is the non-trivial 1-dimensional sign representation and $\bar{\rho}'$ is the irreducible representation given by the embedding i above. So the dual of $Ad(\bar{\rho})$ is itself.

By inflation-restriction sequence, this amounts to proving that $\dim_{\mathbb{F}}(H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0})=3$, where S' is the set of places of L lying above $\{p,\infty\}$ and $G_0=\operatorname{Gal}(L/\mathbb{Q})$.

$$H^1(G_{L,S'},\operatorname{Ad}(\bar{
ho}))^{G_0}=\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{
ho})).$$

If $\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$ is a neat S_3 representation, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

By global Euler characteristic formula, it suffices to prove that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},\{p,\infty\}},\operatorname{Ad}(\bar{\rho})))=3.$$

Now as a G_0 -representation, $\mathrm{Ad}(\bar{\rho}) = 1 \oplus \epsilon \oplus \bar{\rho}'$, where ϵ is the non-trivial 1-dimensional sign representation and $\bar{\rho}'$ is the irreducible representation given by the embedding i above. So the dual of $\mathrm{Ad}(\bar{\rho})$ is itself.

By inflation-restriction sequence, this amounts to proving that $\dim_{\mathbb{F}}(H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0})=3$, where S' is the set of places of L lying above $\{p,\infty\}$ and $G_0=\operatorname{Gal}(L/\mathbb{Q})$.

$$H^1(G_{L,S'},\operatorname{Ad}(ar
ho))^{G_0}=\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(ar
ho)).$$

If $\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$ is a neat S_3 representation, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

By global Euler characteristic formula, it suffices to prove that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},\{p,\infty\}},\operatorname{Ad}(\bar{\rho})))=3.$$

Now as a G_0 -representation, $\operatorname{Ad}(\bar{\rho}) = 1 \oplus \epsilon \oplus \bar{\rho}'$, where ϵ is the non-trivial 1-dimensional sign representation and $\bar{\rho}'$ is the irreducible representation given by the embedding i above. So the dual of $\operatorname{Ad}(\bar{\rho})$ is itself.

By inflation-restriction sequence, this amounts to proving that $\dim_{\mathbb{F}}(H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0})=3$, where S' is the set of places of L lying above $\{p,\infty\}$ and $G_0=\operatorname{Gal}(L/\mathbb{Q})$.

$$H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0}=\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})).$$

If $\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$ is a neat S_3 representation, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

By global Euler characteristic formula, it suffices to prove that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},\{p,\infty\}},\operatorname{Ad}(\bar{\rho})))=3.$$

Now as a G_0 -representation, $\operatorname{Ad}(\bar{\rho})=1\oplus\epsilon\oplus\bar{\rho}'$, where ϵ is the non-trivial 1-dimensional sign representation and $\bar{\rho}'$ is the irreducible representation given by the embedding i above. So the dual of $\operatorname{Ad}(\bar{\rho})$ is itself.

By inflation-restriction sequence, this amounts to proving that $\dim_{\mathbb{F}}(H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0})=3$, where S' is the set of places of L lying above $\{p,\infty\}$ and $G_0=\operatorname{Gal}(L/\mathbb{Q})$.

If $\bar{\rho}: G_{\mathbb{Q},\{p,\infty\}} \to \mathrm{GL}_2(\mathbb{F}_p)$ is a neat S_3 representation, then $R^{\mathrm{univ}}_{\bar{\rho}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

By global Euler characteristic formula, it suffices to prove that

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},\{p,\infty\}},\operatorname{Ad}(\bar{\rho})))=3.$$

Now as a G_0 -representation, $\operatorname{Ad}(\bar{\rho}) = 1 \oplus \epsilon \oplus \bar{\rho}'$, where ϵ is the non-trivial 1-dimensional sign representation and $\bar{\rho}'$ is the irreducible representation given by the embedding i above. So the dual of $\operatorname{Ad}(\bar{\rho})$ is itself.

By inflation-restriction sequence, this amounts to proving that $\dim_{\mathbb{F}}(H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0})=3$, where S' is the set of places of L lying above $\{p,\infty\}$ and $G_0=\operatorname{Gal}(L/\mathbb{Q})$.

$$H^1(G_{L,S'},\operatorname{Ad}(\bar{\rho}))^{G_0}=\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})).$$

$$\mathcal{O}_{L}^{\times}/(\mathcal{O}_{L}^{\times})^{p} \to \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^{\times}/(\mathcal{O}_{L_{\mathfrak{p}}}^{\times})^{p} \to G_{L,S'}^{\mathrm{ab},(p)}/(G_{L,S'}^{\mathrm{ab},(p)})^{p} \to 0.$$

Mazur proves that the first map in the exact sequence above is injective.

Now for every $\mathfrak{p} \mid p, L_{\mathfrak{p}}^{\times}$ does not contain a non-trivial p-th root of unity.

So as G_0 -representations,

$$\mathcal{O}_L^{ imes}/(\mathcal{O}_L^{ imes})^p\simeq ar{
ho}' \quad ext{and} \quad \prod_{\mathfrak{p}\mid p}\mathcal{O}_{L_{\mathfrak{p}}}^{ imes}/(\mathcal{O}_{L_{\mathfrak{p}}}^{ imes})^p\simeq 1\oplus \epsilon\oplus ar{
ho}'^{\oplus 2}.$$

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=\dim_{\mathbb{F}}(\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})))=3.$$

$$\mathcal{O}_L^\times/(\mathcal{O}_L^\times)^p \to \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^\times/(\mathcal{O}_{L_{\mathfrak{p}}}^\times)^p \to G_{L,S'}^{\mathrm{ab},(p)}/(G_{L,S'}^{\mathrm{ab},(p)})^p \to 0.$$

Mazur proves that the first map in the exact sequence above is injective.

Now for every $\mathfrak{p} \mid p, L_{\mathfrak{p}}^{\times}$ does not contain a non-trivial p-th root of unity.

So as G_0 -representations,

$$\mathcal{O}_L^{\times}/(\mathcal{O}_L^{\times})^p \simeq \bar{\rho}'$$
 and $\prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^{\times}/(\mathcal{O}_{L_{\mathfrak{p}}}^{\times})^p \simeq 1 \oplus \epsilon \oplus \bar{\rho}'^{\oplus 2}.$

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=\dim_{\mathbb{F}}(\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})))=3.$$

$$\mathcal{O}_L^\times/(\mathcal{O}_L^\times)^p \to \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^\times/(\mathcal{O}_{L_{\mathfrak{p}}}^\times)^p \to G_{L,S'}^{\mathrm{ab},(p)}/(G_{L,S'}^{\mathrm{ab},(p)})^p \to 0.$$

Mazur proves that the first map in the exact sequence above is injective.

Now for every $\mathfrak{p} \mid p, L_{\mathfrak{p}}^{\times}$ does not contain a non-trivial p-th root of unity.

So as G_0 -representations,

$$\mathcal{O}_L^{\times}/(\mathcal{O}_L^{\times})^p \simeq \bar{\rho}'$$
 and $\prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^{\times}/(\mathcal{O}_{L_{\mathfrak{p}}}^{\times})^p \simeq 1 \oplus \epsilon \oplus \bar{\rho}'^{\oplus 2}.$

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=\dim_{\mathbb{F}}(\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})))=3.$$

$$\mathcal{O}_L^\times/(\mathcal{O}_L^\times)^p \to \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^\times/(\mathcal{O}_{L_{\mathfrak{p}}}^\times)^p \to G_{L,S'}^{\mathrm{ab},(p)}/(G_{L,S'}^{\mathrm{ab},(p)})^p \to 0.$$

Mazur proves that the first map in the exact sequence above is injective.

Now for every $\mathfrak{p} \mid p, L_{\mathfrak{p}}^{\times}$ does not contain a non-trivial *p*-th root of unity.

So as G_0 -representations,

$$\mathcal{O}_L^{\times}/(\mathcal{O}_L^{\times})^p \simeq \bar{\rho}'$$
 and $\prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^{\times}/(\mathcal{O}_{L_{\mathfrak{p}}}^{\times})^p \simeq 1 \oplus \epsilon \oplus \bar{\rho}'^{\oplus 2}.$

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=\dim_{\mathbb{F}}(\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})))=3.$$

$$\mathcal{O}_L^\times/(\mathcal{O}_L^\times)^p \to \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^\times/(\mathcal{O}_{L_{\mathfrak{p}}}^\times)^p \to G_{L,S'}^{\mathrm{ab},(p)}/(G_{L,S'}^{\mathrm{ab},(p)})^p \to 0.$$

Mazur proves that the first map in the exact sequence above is injective.

Now for every $\mathfrak{p} \mid p, L_{\mathfrak{p}}^{\times}$ does not contain a non-trivial p-th root of unity.

So as G_0 -representations,

$$\mathcal{O}_L^{\times}/(\mathcal{O}_L^{\times})^p \simeq \bar{
ho}' \quad \text{and} \quad \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^{\times}/(\mathcal{O}_{L_{\mathfrak{p}}}^{\times})^p \simeq 1 \oplus \epsilon \oplus \bar{
ho}'^{\oplus 2}.$$

Combining all this, we get that

 $\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=\dim_{\mathbb{F}}(\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})))=3.$

$$\mathcal{O}_L^\times/(\mathcal{O}_L^\times)^p \to \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^\times/(\mathcal{O}_{L_{\mathfrak{p}}}^\times)^p \to G_{L,S'}^{\mathrm{ab},(p)}/(G_{L,S'}^{\mathrm{ab},(p)})^p \to 0.$$

Mazur proves that the first map in the exact sequence above is injective.

Now for every $\mathfrak{p} \mid p, L_{\mathfrak{p}}^{\times}$ does not contain a non-trivial p-th root of unity.

So as G_0 -representations,

$$\mathcal{O}_L^{\times}/(\mathcal{O}_L^{\times})^p \simeq \bar{
ho}' \quad \text{and} \quad \prod_{\mathfrak{p}\mid p} \mathcal{O}_{L_{\mathfrak{p}}}^{\times}/(\mathcal{O}_{L_{\mathfrak{p}}}^{\times})^p \simeq 1 \oplus \epsilon \oplus \bar{
ho}'^{\oplus 2}.$$

$$\dim_{\mathbb{F}}(H^1(G_{\mathbb{Q},S},\operatorname{Ad}(\bar{\rho})))=\dim_{\mathbb{F}}(\operatorname{Hom}_{G_0}(\operatorname{Hom}(G_{L,S'},\mathbb{F}_p),\operatorname{Ad}(\bar{\rho})))=3.$$

 $\bar{\rho}$ is the reduction of the 23-adic Galois representation $\rho_{23}: G_{\mathbb{Q},\{23,\infty\}} \to \mathrm{GL}_2(\mathbb{Z}_{23})$ attached to Δ modulo 23.

Example from Chenevier's notes: Let E be the elliptic curve given by

$$y^2 + xy + y = x^3 - x^2 - x.$$

E has good reduction outside 17.

Let $S = \{5, 17, \infty\}$ and $\bar{\rho} : G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_5)$ be the representation arising from the action of $G_{\mathbb{Q},S}$ on E[5].

 $\bar{
ho}$ is the reduction of the 23-adic Galois representation $\rho_{23}:G_{\mathbb{Q},\{23,\infty\}} \to \mathrm{GL}_2(\mathbb{Z}_{23})$ attached to Δ modulo 23.

Example from Chenevier's notes: Let *E* be the elliptic curve given by

$$y^2 + xy + y = x^3 - x^2 - x.$$

E has good reduction outside 17.

Let $S = \{5, 17, \infty\}$ and $\bar{\rho} : G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_5)$ be the representation arising from the action of $G_{\mathbb{Q},S}$ on E[5].

 $\bar{
ho}$ is the reduction of the 23-adic Galois representation $ho_{23}:G_{\mathbb{Q},\{23,\infty\}} o \mathrm{GL}_2(\mathbb{Z}_{23})$ attached to Δ modulo 23.

Example from Chenevier's notes: Let *E* be the elliptic curve given by

$$y^2 + xy + y = x^3 - x^2 - x.$$

E has good reduction outside 17.

Let $S = \{5, 17, \infty\}$ and $\bar{\rho} : G_{\mathbb{Q},S} \to GL_2(\mathbb{F}_5)$ be the representation arising from the action of $G_{\mathbb{Q},S}$ on E[5].

 $\bar{
ho}$ is the reduction of the 23-adic Galois representation $ho_{23}:G_{\mathbb{Q},\{23,\infty\}} o \mathrm{GL}_2(\mathbb{Z}_{23})$ attached to Δ modulo 23.

Example from Chenevier's notes: Let *E* be the elliptic curve given by

$$y^2 + xy + y = x^3 - x^2 - x.$$

E has good reduction outside 17.

Let $S = \{5, 17, \infty\}$ and $\bar{\rho} : G_{\mathbb{Q},S} \to GL_2(\mathbb{F}_5)$ be the representation arising from the action of $G_{\mathbb{Q},S}$ on E[5].

 $\bar{
ho}$ is the reduction of the 23-adic Galois representation $ho_{23}:G_{\mathbb{Q},\{23,\infty\}} o \mathrm{GL}_2(\mathbb{Z}_{23})$ attached to Δ modulo 23.

Example from Chenevier's notes: Let *E* be the elliptic curve given by

$$y^2 + xy + y = x^3 - x^2 - x.$$

E has good reduction outside 17.

Let $S = \{5, 17, \infty\}$ and $\bar{\rho} : G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_5)$ be the representation arising from the action of $G_{\mathbb{Q},S}$ on E[5].

 $\bar{
ho}$ is the reduction of the 23-adic Galois representation $\rho_{23}:G_{\mathbb{Q},\{23,\infty\}}\to \mathrm{GL}_2(\mathbb{Z}_{23})$ attached to Δ modulo 23.

Example from Chenevier's notes: Let *E* be the elliptic curve given by

$$y^2 + xy + y = x^3 - x^2 - x.$$

E has good reduction outside 17.

Let $S = \{5, 17, \infty\}$ and $\bar{\rho} : G_{\mathbb{Q},S} \to GL_2(\mathbb{F}_5)$ be the representation arising from the action of $G_{\mathbb{Q},S}$ on E[5].

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$ar
ho_p:G_{\mathbb{Q},S} o\operatorname{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\overline{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- \bullet $\bar{\rho}_p:G_{\mathbb{O},S}\to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^{o}(\mathbb{Q}_{q}, E[p] \otimes E[p]) = 0$.
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then
$$R_{\bar{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]].$$

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\bar{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\bar{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]]$.

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\bar{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\overline{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]]$.

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\overline{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X,Y,Z]].$

Let $S = \{\ell \mid E \text{ has bad reduction at } \ell\} \cup \{p, \infty\}$ and

$$\bar{\rho}_p:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathbb{F}_p)$$

be the representation given by the action of $G_{\mathbb{Q},S}$ on E[p].

Theorem (Flach)

Suppose we are in the setup as above and suppose the following hypotheses hold:

- $\bar{\rho}_p: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F}_p)$ is surjective,
- For every $q \in S$, $H^0(\mathbb{Q}_q, E[p] \otimes E[p]) = 0$,
- $p \nmid \Omega^{-1}L(\operatorname{Sym}^2(E), 2)$, where Ω is a transcendental period.

Then $R_{\bar{\rho}_p}^{\mathrm{univ}} \simeq \mathbb{Z}_p[[X, Y, Z]].$