# Galois representations: Lecture 1

#### Shaunak Deo

Indian Institute of Science

Elliptic curves and Special values of *L* functions, ICTS Bangalore 2 August. 2021

#### Galois representations are basically representations of Galois groups.

To make this notion precise, we will first describe the Galois groups of interest.

Let K be a perfect field and  $\overline{K}$  be an algebraic closure of K. If K'' and K' are finite Galois extensions of K such that  $K' \subset K'' \subset \overline{K}$ , then we have a surjective map  $\phi_{K''/K'}: \operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$  given by restriction.

So the Galois groups of finite Galois extensions of K give us an inverse system of finite groups and we define the absolute Galois group of K to be

$$G_K := \operatorname{Gal}(\overline{K}/K) = \varprojlim_{K'/K} \operatorname{Gal}(K'/K).$$

Galois representations are basically representations of Galois groups. To make this notion precise, we will first describe the Galois groups of interest.

Let K be a perfect field and  $\overline{K}$  be an algebraic closure of K. If K'' and K' are finite Galois extensions of K such that  $K' \subset K'' \subset \overline{K}$ , then we have a surjective map  $\phi_{K''/K'}: \operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$  given by restriction.

So the Galois groups of finite Galois extensions of K give us an inverse system of finite groups and we define the absolute Galois group of K to be

$$G_K := \operatorname{Gal}(\overline{K}/K) = \varprojlim_{K'/K} \operatorname{Gal}(K'/K).$$

Galois representations are basically representations of Galois groups. To make this notion precise, we will first describe the Galois groups of interest.

### Let K be a perfect field and $\overline{K}$ be an algebraic closure of K.

If K'' and K' are finite Galois extensions of K such that  $K' \subset K'' \subset \overline{K}$ , then we have a surjective map  $\phi_{K''/K'} : \operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$  given by restriction.

So the Galois groups of finite Galois extensions of K give us an inverse system of finite groups and we define the absolute Galois group of K to be

$$G_K := \operatorname{Gal}(\overline{K}/K) = \varprojlim_{K'/K} \operatorname{Gal}(K'/K).$$

Galois representations are basically representations of Galois groups. To make this notion precise, we will first describe the Galois groups of interest.

Let K be a perfect field and  $\overline{K}$  be an algebraic closure of K. If K'' and K' are finite Galois extensions of K such that  $K' \subset K'' \subset \overline{K}$ , then we have a surjective map  $\phi_{K''/K'}: \operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$  given by restriction.

So the Galois groups of finite Galois extensions of K give us an inverse system of finite groups and we define the absolute Galois group of K to be

$$G_K := \operatorname{Gal}(\overline{K}/K) = \varprojlim_{K'/K} \operatorname{Gal}(K'/K).$$

Galois representations are basically representations of Galois groups. To make this notion precise, we will first describe the Galois groups of interest.

Let K be a perfect field and  $\overline{K}$  be an algebraic closure of K. If K'' and K' are finite Galois extensions of K such that  $K' \subset K'' \subset \overline{K}$ , then we have a surjective map  $\phi_{K''/K'}: \operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$  given by restriction.

So the Galois groups of finite Galois extensions of K give us an inverse system of finite groups and we define the absolute Galois group of K to be

$$G_K := \operatorname{Gal}(\overline{K}/K) = \varprojlim_{K'/K} \operatorname{Gal}(K'/K).$$

Galois representations are basically representations of Galois groups. To make this notion precise, we will first describe the Galois groups of interest.

Let K be a perfect field and  $\overline{K}$  be an algebraic closure of K. If K'' and K' are finite Galois extensions of K such that  $K' \subset K'' \subset \overline{K}$ , then we have a surjective map  $\phi_{K''/K'}: \operatorname{Gal}(K''/K) \to \operatorname{Gal}(K'/K)$  given by restriction.

So the Galois groups of finite Galois extensions of K give us an inverse system of finite groups and we define the absolute Galois group of K to be

$$G_K := \operatorname{Gal}(\overline{K}/K) = \varprojlim_{K'/K} \operatorname{Gal}(K'/K).$$



Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:

$$\overline{\mathbb{Q}} \xrightarrow{\iota_p} \overline{\mathbb{Q}_p} \\
\uparrow \qquad \qquad \uparrow \\
\mathbb{Q} \xrightarrow{\longleftarrow} \mathbb{Q}_p$$

Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:

$$\overline{\mathbb{Q}} \xrightarrow{\iota_p} \overline{\mathbb{Q}_p} \\
\uparrow \qquad \qquad \uparrow \\
\mathbb{Q} \xrightarrow{} \mathbb{Q}_p$$

Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:

$$\overline{\mathbb{Q}} \xrightarrow{\iota_p} \overline{\mathbb{Q}_p} 
\uparrow \qquad \uparrow 
\mathbb{Q} \longleftrightarrow \mathbb{Q}_p$$

Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:

$$\overline{\mathbb{Q}} \xrightarrow{\iota_p} \overline{\mathbb{Q}_p} 
\uparrow \qquad \uparrow 
\mathbb{Q} \xrightarrow{} \mathbb{Q}_p$$

Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:



Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:

$$\overline{\mathbb{Q}} \xrightarrow{\iota_p} \overline{\mathbb{Q}_p} \\
\uparrow \qquad \qquad \uparrow \\
\mathbb{Q} \xrightarrow{\longleftarrow} \mathbb{Q}_p$$

Since  $G_K \subset \prod_{K'/K} \operatorname{Gal}(K'/K)$ , we endow  $G_K$  with the subspace topology. We will always view  $G_K$  as a topological group with this topology. Under this topology  $G_K$  is Hausdorff, compact and totally disconnected.

Now we focus on the case  $K = \mathbb{Q}$ . For every prime p, choosing an embedding  $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_p}$ , we get the following commutative diagram:

$$\overline{\mathbb{Q}} \xrightarrow{\iota_p} \overline{\mathbb{Q}_p} \\
\uparrow \qquad \qquad \uparrow \\
\mathbb{Q} \xrightarrow{\longleftarrow} \mathbb{Q}_p$$



This gives us an injection  $i : \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_n} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each embedding of K.



This gives us an injection  $i : \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_n} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each embedding of K.



This gives us an injection  $i: \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_p} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each real embedding of K.



This gives us an injection  $i : \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_n} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each real embedding of K.



This gives us an injection  $i: \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_n} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each real embedding of *K*.



This gives us an injection  $i : \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_{\mathfrak{p}}} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each real embedding of K.



This gives us an injection  $i : \operatorname{Gal}(\mathbb{C}/\mathbb{R}) \hookrightarrow G_{\mathbb{Q}}$  which depends on the choice of  $\iota$ .

So we get a complex conjugation  $c \in G_{\mathbb{Q}}$  which is well defined upto conjugation.

- an inclusion  $G_{K_p} \hookrightarrow G_K$  which is well defined upto conjugation,
- a complex conjugation (well defined upto conjugation) for each real embedding of *K*.

For applications to arithmetic problems, we would like to study not only  $G_{\mathbb{Q}}$  but the structure of  $G_{\mathbb{Q}}$  along with the conjugacy classes of the homomorphisms  $i_p:G_{\mathbb{Q}_p}\to G_{\mathbb{Q}}$  for every prime p.

For this purpose, it is natural to study the representations of  $G_{\mathbb{Q}}$  as they do not distinguish between conjugacy classes.

#### Galois representation

A Galois representation of  $G_{\mathbb{Q}}$  is a continuous homomorphism  $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_n(R)$  for some positive integer n and a topological ring R.

For a prime p, let  $I_p \subset G_{\mathbb{Q}_p}$  be the inertia group at p. Using the inclusion  $i_p : G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$ , we can view  $I_p$  as a subgroup of  $G_{\mathbb{Q}}$ .

For applications to arithmetic problems, we would like to study not only  $G_{\mathbb{Q}}$  but the structure of  $G_{\mathbb{Q}}$  along with the conjugacy classes of the homomorphisms  $i_p:G_{\mathbb{Q}_p}\to G_{\mathbb{Q}}$  for every prime p.

For this purpose, it is natural to study the representations of  $G_{\mathbb{Q}}$  as they do not distinguish between conjugacy classes.

#### Galois representation

A Galois representation of  $G_{\mathbb{Q}}$  is a continuous homomorphism  $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_n(R)$  for some positive integer n and a topological ring R.

For a prime p, let  $I_p \subset G_{\mathbb{Q}_p}$  be the inertia group at p. Using the inclusion  $i_p : G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$ , we can view  $I_p$  as a subgroup of  $G_{\mathbb{Q}}$ .

For applications to arithmetic problems, we would like to study not only  $G_{\mathbb{Q}}$  but the structure of  $G_{\mathbb{Q}}$  along with the conjugacy classes of the homomorphisms  $i_p:G_{\mathbb{Q}_p}\to G_{\mathbb{Q}}$  for every prime p.

For this purpose, it is natural to study the representations of  $G_{\mathbb{Q}}$  as they do not distinguish between conjugacy classes.

#### Galois representation

A Galois representation of  $G_{\mathbb{Q}}$  is a continuous homomorphism  $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_n(R)$  for some positive integer n and a topological ring R.

For a prime p, let  $I_p \subset G_{\mathbb{Q}_p}$  be the inertia group at p. Using the inclusion  $i_p : G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$ , we can view  $I_p$  as a subgroup of  $G_{\mathbb{Q}}$ .

For applications to arithmetic problems, we would like to study not only  $G_{\mathbb{Q}}$  but the structure of  $G_{\mathbb{Q}}$  along with the conjugacy classes of the homomorphisms  $i_p: G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$  for every prime p.

For this purpose, it is natural to study the representations of  $G_{\mathbb{Q}}$  as they do not distinguish between conjugacy classes.

#### Galois representation

A Galois representation of  $G_{\mathbb{Q}}$  is a continuous homomorphism  $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_n(R)$  for some positive integer n and a topological ring R.

For a prime p, let  $I_p \subset G_{\mathbb{Q}_p}$  be the inertia group at p. Using the inclusion  $i_p : G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$ , we can view  $I_p$  as a subgroup of  $G_{\mathbb{Q}}$ .

For applications to arithmetic problems, we would like to study not only  $G_{\mathbb{Q}}$  but the structure of  $G_{\mathbb{Q}}$  along with the conjugacy classes of the homomorphisms  $i_p: G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$  for every prime p.

For this purpose, it is natural to study the representations of  $G_{\mathbb{Q}}$  as they do not distinguish between conjugacy classes.

#### Galois representation

A Galois representation of  $G_{\mathbb{Q}}$  is a continuous homomorphism  $\rho: G_{\mathbb{Q}} \to \mathrm{GL}_n(R)$  for some positive integer n and a topological ring R.

For a prime p, let  $I_p \subset G_{\mathbb{Q}_p}$  be the inertia group at p. Using the inclusion  $i_p : G_{\mathbb{Q}_p} \to G_{\mathbb{Q}}$ , we can view  $I_p$  as a subgroup of  $G_{\mathbb{Q}}$ .

Let *S* be a finite set of primes of  $\mathbb{Q}$  along with  $\infty$ . Let  $\mathbb{Q}_S$  be the maximal algebraic extension of  $\mathbb{Q}$  unramified at primes outside *S* i.e. at all primes not belonging to *S*.

So  $\mathbb{Q}_S$  is the compositum of all finite extensions of  $\mathbb{Q}$  which are unramified at primes outside S.

It is easy to verify that  $\mathbb{Q}_S$  is Galois over  $\mathbb{Q}$ . Let  $G_{\mathbb{Q},S} := \operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q})$ .

So  $G_{\mathbb{Q},S}$  is the quotient of  $G_{\mathbb{Q}}$  by the closed normal subgroup of  $G_{\mathbb{Q}}$  generated by inertia groups  $I_{\ell}$  for all primes  $\ell \notin S$ .



Let S be a finite set of primes of  $\mathbb{Q}$  along with  $\infty$ . Let  $\mathbb{Q}_S$  be the maximal algebraic extension of  $\mathbb{Q}$  unramified at primes outside S i.e. at all primes not belonging to S.

So  $\mathbb{Q}_S$  is the compositum of all finite extensions of  $\mathbb{Q}$  which are unramified at primes outside S.

It is easy to verify that  $\mathbb{Q}_S$  is Galois over  $\mathbb{Q}$ . Let  $G_{\mathbb{Q},S} := \operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q})$ .

So  $G_{\mathbb{Q},S}$  is the quotient of  $G_{\mathbb{Q}}$  by the closed normal subgroup of  $G_{\mathbb{Q}}$  generated by inertia groups  $I_{\ell}$  for all primes  $\ell \notin S$ .



Let S be a finite set of primes of  $\mathbb{Q}$  along with  $\infty$ . Let  $\mathbb{Q}_S$  be the maximal algebraic extension of  $\mathbb{Q}$  unramified at primes outside S i.e. at all primes not belonging to S.

So  $\mathbb{Q}_S$  is the compositum of all finite extensions of  $\mathbb{Q}$  which are unramified at primes outside S.

It is easy to verify that  $\mathbb{Q}_S$  is Galois over  $\mathbb{Q}$ . Let  $G_{\mathbb{Q},S} := \text{Gal}(\mathbb{Q}_S/\mathbb{Q})$ .

So  $G_{\mathbb{Q},S}$  is the quotient of  $G_{\mathbb{Q}}$  by the closed normal subgroup of  $G_{\mathbb{Q}}$  generated by inertia groups  $I_{\ell}$  for all primes  $\ell \notin S$ .



Let S be a finite set of primes of  $\mathbb{Q}$  along with  $\infty$ . Let  $\mathbb{Q}_S$  be the maximal algebraic extension of  $\mathbb{Q}$  unramified at primes outside S i.e. at all primes not belonging to S.

So  $\mathbb{Q}_S$  is the compositum of all finite extensions of  $\mathbb{Q}$  which are unramified at primes outside S.

It is easy to verify that  $\mathbb{Q}_S$  is Galois over  $\mathbb{Q}$ . Let  $G_{\mathbb{Q},S} := \text{Gal}(\mathbb{Q}_S/\mathbb{Q})$ .

So  $G_{\mathbb{Q},S}$  is the quotient of  $G_{\mathbb{Q}}$  by the closed normal subgroup of  $G_{\mathbb{Q}}$  generated by inertia groups  $I_{\ell}$  for all primes  $\ell \notin S$ .



Let S be a finite set of primes of  $\mathbb{Q}$  along with  $\infty$ . Let  $\mathbb{Q}_S$  be the maximal algebraic extension of  $\mathbb{Q}$  unramified at primes outside S i.e. at all primes not belonging to S.

So  $\mathbb{Q}_S$  is the compositum of all finite extensions of  $\mathbb{Q}$  which are unramified at primes outside S.

It is easy to verify that  $\mathbb{Q}_S$  is Galois over  $\mathbb{Q}$ . Let  $G_{\mathbb{Q},S} := Gal(\mathbb{Q}_S/\mathbb{Q})$ .

So  $G_{\mathbb{Q},S}$  is the quotient of  $G_{\mathbb{Q}}$  by the closed normal subgroup of  $G_{\mathbb{Q}}$  generated by inertia groups  $I_{\ell}$  for all primes  $\ell \notin S$ .



Let S be a finite set of primes of  $\mathbb{Q}$  along with  $\infty$ . Let  $\mathbb{Q}_S$  be the maximal algebraic extension of  $\mathbb{Q}$  unramified at primes outside S i.e. at all primes not belonging to S.

So  $\mathbb{Q}_S$  is the compositum of all finite extensions of  $\mathbb{Q}$  which are unramified at primes outside S.

It is easy to verify that  $\mathbb{Q}_S$  is Galois over  $\mathbb{Q}$ . Let  $G_{\mathbb{Q},S} := Gal(\mathbb{Q}_S/\mathbb{Q})$ .

So  $G_{\mathbb{Q},S}$  is the quotient of  $G_{\mathbb{Q}}$  by the closed normal subgroup of  $G_{\mathbb{Q}}$  generated by inertia groups  $I_{\ell}$  for all primes  $\ell \notin S$ .



# Recall that, for a prime $\ell$ , we have an exact sequence $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to G_{\mathbb{F}_{\ell}} \to 1$ and $G_{\mathbb{F}_{\ell}} \simeq \hat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z}$ .

Note that the automorphism of  $\overline{\mathbb{F}_\ell}$  which sends an element x of  $\overline{\mathbb{F}_\ell}$  to  $x^\ell$  is a topological generator of  $G_{\mathbb{F}_\ell}$ . We call this generator the Frobenius element at  $\ell$  and denote it by  $\operatorname{Frob}_\ell$ .

So for every  $\ell \notin S$ , there is a Frobenius element  $\operatorname{Frob}_{\ell} \in G_{\mathbb{Q},S}$  which is unique upto conjugation.

So if  $\rho$  is a Galois representation of  $G_{\mathbb{Q},S}$  (or equivalently of  $G_{\mathbb{Q}}$  which is unramified outside S), then for all  $\ell \notin S$ ,  $\operatorname{tr}(\rho(\operatorname{Frob}_{\ell}))$  and  $\det(\rho(\operatorname{Frob}_{\ell}))$  do not depend on the choice of  $\operatorname{Frob}_{\ell}$  and hence, are well defined.

If S' is a finite set of primes of  $\mathbb{Q}$ , then by Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \not\in S \cup S'\}$  is dense in  $G_{\mathbb{Q},S}$ .



Recall that, for a prime  $\ell$ , we have an exact sequence  $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to G_{\mathbb{F}_{\ell}} \to 1$  and  $G_{\mathbb{F}_{\ell}} \simeq \hat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z}$ .

Note that the automorphism of  $\overline{\mathbb{F}_\ell}$  which sends an element x of  $\overline{\mathbb{F}_\ell}$  to  $x^\ell$  is a topological generator of  $G_{\mathbb{F}_\ell}$ . We call this generator the Frobenius element at  $\ell$  and denote it by  $\operatorname{Frob}_\ell$ .

So for every  $\ell \notin S$ , there is a Frobenius element  $\operatorname{Frob}_{\ell} \in G_{\mathbb{Q},S}$  which is unique upto conjugation.

So if  $\rho$  is a Galois representation of  $G_{\mathbb{Q},S}$  (or equivalently of  $G_{\mathbb{Q}}$  which is unramified outside S), then for all  $\ell \notin S$ ,  $\operatorname{tr}(\rho(\operatorname{Frob}_{\ell}))$  and  $\det(\rho(\operatorname{Frob}_{\ell}))$  do not depend on the choice of  $\operatorname{Frob}_{\ell}$  and hence, are well defined.

If S' is a finite set of primes of  $\mathbb{Q}$ , then by Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \notin S \cup S'\}$  is dense in  $G_{\mathbb{Q},S}$ .



Recall that, for a prime 
$$\ell$$
, we have an exact sequence  $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to G_{\mathbb{F}_{\ell}} \to 1$  and  $G_{\mathbb{F}_{\ell}} \simeq \hat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z}$ .

Note that the automorphism of  $\overline{\mathbb{F}_\ell}$  which sends an element x of  $\overline{\mathbb{F}_\ell}$  to  $x^\ell$  is a topological generator of  $G_{\mathbb{F}_\ell}$ . We call this generator the Frobenius element at  $\ell$  and denote it by  $\operatorname{Frob}_\ell$ .

So for every  $\ell \notin S$ , there is a Frobenius element  $\operatorname{Frob}_{\ell} \in G_{\mathbb{Q},S}$  which is unique upto conjugation.

So if  $\rho$  is a Galois representation of  $G_{\mathbb{Q},S}$  (or equivalently of  $G_{\mathbb{Q}}$  which is unramified outside S), then for all  $\ell \notin S$ ,  $\operatorname{tr}(\rho(\operatorname{Frob}_{\ell}))$  and  $\det(\rho(\operatorname{Frob}_{\ell}))$  do not depend on the choice of  $\operatorname{Frob}_{\ell}$  and hence, are well defined.

If S' is a finite set of primes of  $\mathbb{Q}$ , then by Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \notin S \cup S'\}$  is dense in  $G_{\mathbb{Q},S}$ .



Recall that, for a prime 
$$\ell$$
, we have an exact sequence  $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to G_{\mathbb{F}_{\ell}} \to 1$  and  $G_{\mathbb{F}_{\ell}} \simeq \hat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z}$ .

Note that the automorphism of  $\overline{\mathbb{F}_\ell}$  which sends an element x of  $\overline{\mathbb{F}_\ell}$  to  $x^\ell$  is a topological generator of  $G_{\mathbb{F}_\ell}$ . We call this generator the Frobenius element at  $\ell$  and denote it by  $\operatorname{Frob}_\ell$ .

So for every  $\ell \notin S$ , there is a Frobenius element  $\operatorname{Frob}_{\ell} \in G_{\mathbb{Q},S}$  which is unique upto conjugation.

So if  $\rho$  is a Galois representation of  $G_{\mathbb{Q},S}$  (or equivalently of  $G_{\mathbb{Q}}$  which is unramified outside S), then for all  $\ell \notin S$ ,  $\operatorname{tr}(\rho(\operatorname{Frob}_{\ell}))$  and  $\det(\rho(\operatorname{Frob}_{\ell}))$  do not depend on the choice of  $\operatorname{Frob}_{\ell}$  and hence, are well defined.

If S' is a finite set of primes of  $\mathbb{Q}$ , then by Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \notin S \cup S'\}$  is dense in  $G_{\mathbb{Q},S}$ .



Recall that, for a prime 
$$\ell$$
, we have an exact sequence  $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to G_{\mathbb{F}_{\ell}} \to 1$  and  $G_{\mathbb{F}_{\ell}} \simeq \hat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z}$ .

Note that the automorphism of  $\overline{\mathbb{F}_\ell}$  which sends an element x of  $\overline{\mathbb{F}_\ell}$  to  $x^\ell$  is a topological generator of  $G_{\mathbb{F}_\ell}$ . We call this generator the Frobenius element at  $\ell$  and denote it by  $\operatorname{Frob}_\ell$ .

So for every  $\ell \notin S$ , there is a Frobenius element  $\operatorname{Frob}_{\ell} \in G_{\mathbb{Q},S}$  which is unique upto conjugation.

So if  $\rho$  is a Galois representation of  $G_{\mathbb{Q},S}$  (or equivalently of  $G_{\mathbb{Q}}$  which is unramified outside S), then for all  $\ell \notin S$ ,  $\operatorname{tr}(\rho(\operatorname{Frob}_{\ell}))$  and  $\det(\rho(\operatorname{Frob}_{\ell}))$  do not depend on the choice of  $\operatorname{Frob}_{\ell}$  and hence, are well defined.

If S' is a finite set of primes of  $\mathbb{Q}$ , then by Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \not\in S \cup S'\}$  is dense in  $G_{\mathbb{Q},S}$ .



Recall that, for a prime 
$$\ell$$
, we have an exact sequence  $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to G_{\mathbb{F}_{\ell}} \to 1$  and  $G_{\mathbb{F}_{\ell}} \simeq \hat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z}$ .

Note that the automorphism of  $\overline{\mathbb{F}_\ell}$  which sends an element x of  $\overline{\mathbb{F}_\ell}$  to  $x^\ell$  is a topological generator of  $G_{\mathbb{F}_\ell}$ . We call this generator the Frobenius element at  $\ell$  and denote it by  $\operatorname{Frob}_\ell$ .

So for every  $\ell \not\in S$ , there is a Frobenius element  $\operatorname{Frob}_{\ell} \in G_{\mathbb{Q},S}$  which is unique upto conjugation.

So if  $\rho$  is a Galois representation of  $G_{\mathbb{Q},S}$  (or equivalently of  $G_{\mathbb{Q}}$  which is unramified outside S), then for all  $\ell \notin S$ ,  $\operatorname{tr}(\rho(\operatorname{Frob}_{\ell}))$  and  $\det(\rho(\operatorname{Frob}_{\ell}))$  do not depend on the choice of  $\operatorname{Frob}_{\ell}$  and hence, are well defined.

If S' is a finite set of primes of  $\mathbb{Q}$ , then by Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \notin S \cup S'\}$  is dense in  $G_{\mathbb{Q},S}$ .



Let p be a prime,  $n \ge 1$  be an integer and  $\zeta_{p^n} \in \overline{\mathbb{Q}}$  be a primitive  $p^n$ -th root of unity. If  $\sigma \in G_{\mathbb{Q}}$ , then  $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{k\sigma}$  for some  $k_{\sigma} \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ .

So this action of  $G_{\mathbb{Q}}$  on  $p^n$ -th roots of unity yields a character  $\omega_{p^n}: G_{\mathbb{Q}} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$  which sends  $\sigma$  to  $k_{\sigma}$ .

Taking the inverse limit of these characters, we get a character

$$\chi_p := \varprojlim_n \omega_{p^n} : G_{\mathbb{Q}} \to \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$$

which is called the *p*-adic cyclotomic character.

As the extension  $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$  is ramified only at p for all  $n \geq 1$ , it follows that  $\chi_p$  is ramified at p and unramified at all primes  $\ell \neq p$ .

Let p be a prime,  $n \geq 1$  be an integer and  $\zeta_{p^n} \in \overline{\mathbb{Q}}$  be a primitive  $p^n$ -th root of unity. If  $\sigma \in G_{\mathbb{Q}}$ , then  $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{k\sigma}$  for some  $k_{\sigma} \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ .

So this action of  $G_{\mathbb{Q}}$  on  $p^n$ -th roots of unity yields a character  $\omega_{p^n}: G_{\mathbb{Q}} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$  which sends  $\sigma$  to  $k_{\sigma}$ .

Taking the inverse limit of these characters, we get a character

$$\chi_p := \varprojlim_n \omega_{p^n} : G_{\mathbb{Q}} \to \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$$

which is called the *p*-adic cyclotomic character.

As the extension  $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$  is ramified only at p for all  $n \geq 1$ , it follows that  $\chi_p$  is ramified at p and unramified at all primes  $\ell \neq p$ .

Let p be a prime,  $n \ge 1$  be an integer and  $\zeta_{p^n} \in \overline{\mathbb{Q}}$  be a primitive  $p^n$ -th root of unity. If  $\sigma \in G_{\mathbb{Q}}$ , then  $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{k_{\sigma}}$  for some  $k_{\sigma} \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ .

So this action of  $G_{\mathbb{Q}}$  on  $p^n$ -th roots of unity yields a character  $\omega_{p^n}: G_{\mathbb{Q}} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$  which sends  $\sigma$  to  $k_{\sigma}$ .

Taking the inverse limit of these characters, we get a character

$$\chi_p := \varprojlim_n \omega_{p^n} : G_{\mathbb{Q}} \to \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$$

which is called the p-adic cyclotomic character.

As the extension  $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$  is ramified only at p for all  $n \geq 1$ , it follows that  $\chi_p$  is ramified at p and unramified at all primes  $\ell \neq p$ .

Let p be a prime,  $n \geq 1$  be an integer and  $\zeta_{p^n} \in \overline{\mathbb{Q}}$  be a primitive  $p^n$ -th root of unity. If  $\sigma \in G_{\mathbb{Q}}$ , then  $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{k\sigma}$  for some  $k_{\sigma} \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ .

So this action of  $G_{\mathbb{Q}}$  on  $p^n$ -th roots of unity yields a character  $\omega_{p^n}: G_{\mathbb{Q}} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$  which sends  $\sigma$  to  $k_{\sigma}$ .

Taking the inverse limit of these characters, we get a character

$$\chi_p := \varprojlim_n \omega_{p^n} : G_{\mathbb{Q}} \to \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$$

which is called the *p*-adic cyclotomic character.

As the extension  $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$  is ramified only at p for all  $n \geq 1$ , it follows that  $\chi_p$  is ramified at p and unramified at all primes  $\ell \neq p$ .

Let p be a prime,  $n \geq 1$  be an integer and  $\zeta_{p^n} \in \overline{\mathbb{Q}}$  be a primitive  $p^n$ -th root of unity. If  $\sigma \in G_{\mathbb{Q}}$ , then  $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{k\sigma}$  for some  $k_{\sigma} \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ .

So this action of  $G_{\mathbb{Q}}$  on  $p^n$ -th roots of unity yields a character  $\omega_{p^n}: G_{\mathbb{Q}} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$  which sends  $\sigma$  to  $k_{\sigma}$ .

Taking the inverse limit of these characters, we get a character

$$\chi_p := \varprojlim_n \omega_{p^n} : G_{\mathbb{Q}} \to \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$$

which is called the *p*-adic cyclotomic character.

As the extension  $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$  is ramified only at p for all  $n \geq 1$ , it follows that  $\chi_p$  is ramified at p and unramified at all primes  $\ell \neq p$ .

Let p be a prime,  $n \geq 1$  be an integer and  $\zeta_{p^n} \in \overline{\mathbb{Q}}$  be a primitive  $p^n$ -th root of unity. If  $\sigma \in G_{\mathbb{Q}}$ , then  $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{k\sigma}$  for some  $k_{\sigma} \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ .

So this action of  $G_{\mathbb{Q}}$  on  $p^n$ -th roots of unity yields a character  $\omega_{p^n}: G_{\mathbb{Q}} \to (\mathbb{Z}/p^n\mathbb{Z})^{\times}$  which sends  $\sigma$  to  $k_{\sigma}$ .

Taking the inverse limit of these characters, we get a character

$$\chi_p := \varprojlim_n \omega_{p^n} : G_{\mathbb{Q}} \to \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$$

which is called the *p*-adic cyclotomic character.

As the extension  $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$  is ramified only at p for all  $n \geq 1$ , it follows that  $\chi_p$  is ramified at p and unramified at all primes  $\ell \neq p$ .

Let E be an elliptic curve defined over  $\mathbb{Q}$  and p be a prime. Denote the set of  $\overline{\mathbb{Q}}$ -valued points of E by  $E(\overline{\mathbb{Q}})$ . For every integer  $n \geq 1$ , denote the multiplication by  $p^n$  isogeny of E by  $[p^n]$ .

Let  $E[p^n] = \{P \in E(\overline{\mathbb{Q}}) \mid [p^n]P = 0\}$ . It is well known that  $E[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^2$ . It is easy to see that the action of  $G_{\mathbb{Q}}$  on  $E(\overline{\mathbb{Q}})$  preserves  $E[p^n]$  for all  $n \geq 1$ .

So the action of  $G_{\mathbb{Q}}$  on  $E[p^n]$  gives us a continuous homomorphism  $\rho_{E,p,n}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$ 

Taking the inverse limit of these Galois representations, we get a Galois representation

$$\rho_{E,p} := \varprojlim_{n} \rho_{E,p,n} : G_{\mathbb{Q}} \to \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/p^{n}\mathbb{Z}) = \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

Let E be an elliptic curve defined over  $\mathbb{Q}$  and p be a prime. Denote the set of  $\overline{\mathbb{Q}}$ -valued points of E by  $E(\overline{\mathbb{Q}})$ . For every integer  $n \geq 1$ , denote the multiplication by  $p^n$  isogeny of E by  $[p^n]$ .

Let  $E[p^n] = \{P \in E(\overline{\mathbb{Q}}) \mid [p^n]P = 0\}$ . It is well known that  $E[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^2$ . It is easy to see that the action of  $G_{\mathbb{Q}}$  on  $E(\overline{\mathbb{Q}})$  preserves  $E[p^n]$  for all  $n \geq 1$ .

So the action of  $G_{\mathbb{Q}}$  on  $E[p^n]$  gives us a continuous homomorphism  $\rho_{E,p,n}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$ 

Taking the inverse limit of these Galois representations, we get a Galois representation

$$\rho_{E,p} := \varprojlim_{n} \rho_{E,p,n} : G_{\mathbb{Q}} \to \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/p^{n}\mathbb{Z}) = \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

Let E be an elliptic curve defined over  $\mathbb{Q}$  and p be a prime. Denote the set of  $\overline{\mathbb{Q}}$ -valued points of E by  $E(\overline{\mathbb{Q}})$ . For every integer  $n \geq 1$ , denote the multiplication by  $p^n$  isogeny of E by  $[p^n]$ .

Let  $E[p^n] = \{P \in E(\overline{\mathbb{Q}}) \mid [p^n]P = 0\}$ . It is well known that  $E[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^2$ . It is easy to see that the action of  $G_{\mathbb{Q}}$  on  $E(\overline{\mathbb{Q}})$  preserves  $E[p^n]$  for all  $n \geq 1$ .

So the action of  $G_{\mathbb{Q}}$  on  $E[p^n]$  gives us a continuous homomorphism  $\rho_{E,p,n}:G_{\mathbb{Q}}\to \mathrm{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$ 

Taking the inverse limit of these Galois representations, we get a Galois representation

$$\rho_{E,p} := \varprojlim_{n} \rho_{E,p,n} : G_{\mathbb{Q}} \to \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/p^{n}\mathbb{Z}) = \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

Let E be an elliptic curve defined over  $\mathbb{Q}$  and p be a prime. Denote the set of  $\overline{\mathbb{Q}}$ -valued points of E by  $E(\overline{\mathbb{Q}})$ . For every integer  $n \geq 1$ , denote the multiplication by  $p^n$  isogeny of E by  $[p^n]$ .

Let  $E[p^n] = \{P \in E(\overline{\mathbb{Q}}) \mid [p^n]P = 0\}$ . It is well known that  $E[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^2$ . It is easy to see that the action of  $G_{\mathbb{Q}}$  on  $E(\overline{\mathbb{Q}})$  preserves  $E[p^n]$  for all  $n \geq 1$ .

So the action of  $G_{\mathbb{Q}}$  on  $E[p^n]$  gives us a continuous homomorphism  $\rho_{E,p,n}:G_{\mathbb{Q}}\to \mathrm{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$ 

Taking the inverse limit of these Galois representations, we get a Galois representation

$$\rho_{E,p} := \varprojlim_{n} \rho_{E,p,n} : G_{\mathbb{Q}} \to \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/p^{n}\mathbb{Z}) = \operatorname{GL}_{2}(\mathbb{Z}_{p})$$

The representation  $\rho_{E,p}$  is absolutely irreducible.

#### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .



The representation  $\rho_{E,p}$  is absolutely irreducible.

#### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .



The representation  $\rho_{E,p}$  is absolutely irreducible.

#### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .

The representation  $\rho_{E,p}$  is absolutely irreducible.

### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .

The representation  $\rho_{E,p}$  is absolutely irreducible.

### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .

The representation  $\rho_{E,p}$  is absolutely irreducible.

#### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .



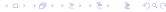
The representation  $\rho_{E,p}$  is absolutely irreducible.

### Theorem (Neron-Ogg-Shafarevich)

Let  $\ell \neq p$  be a prime. The Galois representation  $\rho_{E,p}$  is unramified at  $\ell$  if and only if E has a good reduction at  $\ell$ .

If  $\ell \neq p$  is a prime such that E has good reduction at  $\ell$ , denote by  $\bar{E}_{\ell}$  the reduction of E at  $\ell$ . Then  $\operatorname{tr}(\rho_{E,p}(\operatorname{Frob}_{\ell})) = \ell + 1 - |\bar{E}_{\ell}(\mathbb{F}_{\ell})|$ .

More generally, if A is an abelian variety of dimension g over a number field K, then  $A[p^n] \simeq (\mathbb{Z}/p^n\mathbb{Z})^{2g}$  and  $G_K$  acts on  $A[p^n]$  giving us a Galois representation  $\rho_{A,p,n}: G_K \to \mathrm{GL}_{2g}(\mathbb{Z}/p^n\mathbb{Z})$ .



## Let f be a modular eigenform of level $\Gamma_1(N)$ and weight $k \geq 2$ .

So f is an eigenform for the Hecke operators  $T_{\ell}$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_{\ell}(f)$  be the  $T_{\ell}$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_{\ell}(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . So f is an eigenform for the Hecke operators  $T_\ell$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_{\ell}(f)$  be the  $T_{\ell}$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_{\ell}(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . So f is an eigenform for the Hecke operators  $T_\ell$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_\ell(f)$  be the  $T_\ell$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_{\ell}(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . So f is an eigenform for the Hecke operators  $T_\ell$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_\ell(f)$  be the  $T_\ell$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_{\ell}(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . So f is an eigenform for the Hecke operators  $T_\ell$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_\ell(f)$  be the  $T_\ell$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_\ell(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . So f is an eigenform for the Hecke operators  $T_\ell$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_\ell(f)$  be the  $T_\ell$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_\ell(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . So f is an eigenform for the Hecke operators  $T_\ell$  and  $\langle \ell \rangle$  for all primes  $\ell \nmid N$ .

Let  $\epsilon_f$  be the nebentypus of f and for a prime  $\ell \nmid N$ , let  $a_\ell(f)$  be the  $T_\ell$ -eigenvalue of f.

Let  $K_f$  be the extension of  $\mathbb{Q}$  generated by the set  $\{a_\ell(f) \mid \ell \nmid N\}$  over  $\mathbb{Q}$ . So  $K_f$  is a finite extension of  $\mathbb{Q}$ . Denote the ring of integers of  $K_f$  by  $\mathcal{O}_{K_f}$ .

Let p be a prime,  $\mathfrak{p}$  be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $\mathcal{O}_{K_f,\mathfrak{p}}$  be the completion of  $\mathcal{O}_{K_f}$  at  $\mathfrak{p}$ .

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \ge 2$  with nebentypus  $\epsilon_f$ . Let p be a prime, p be a prime of  $\mathcal{O}_{K_f}$  lying above p and  $S = \{q \text{ prime } | q | N\} \cup \{p, \infty\}.$ 

Then there exists an *odd p*-adic Galois representation

$$\rho_f:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathcal{O}_{K_{f,\mathfrak{p}}})$$

such that

• 
$$\det(\rho_f) = \epsilon_f \chi_p^{k-1}$$
,  
•  $\operatorname{tr}(\rho_f(\operatorname{Frob}_\ell)) = a_\ell(f)$ , for all primes  $\ell \nmid Npp$ 

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } | q | N\} \cup \{p, \infty\}.$ 

Then there exists an *odd p*-adic Galois representation

$$\rho_f:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathcal{O}_{K_f,\mathfrak{p}})$$

such that

 $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$ 

•  $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } \mid q \mid N\} \cup \{p, \infty\}.$ 

Then there exists an odd p-adic Galois representation

$$\rho_f:G_{\mathbb{Q},S}\to\mathrm{GL}_2(\mathcal{O}_{K_{f,\mathfrak{p}}})$$

#### such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } \mid q \mid N\} \cup \{p, \infty\}.$ 

Then there exists an odd p-adic Galois representation

$$\rho_f:G_{\mathbb{Q},S}\to\mathrm{GL}_2(\mathcal{O}_{K_{f,\mathfrak{p}}})$$

such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } | q | N\} \cup \{p, \infty\}.$ 

Then there exists an odd p-adic Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathcal{O}_{K_{f,\mathfrak{p}}})$$

such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } \mid q \mid N\} \cup \{p, \infty\}.$ 

Then there exists an odd p-adic Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathcal{O}_{K_{f,\mathfrak{p}}})$$

such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } | q | N\} \cup \{p, \infty\}.$ 

Then there exists an odd p-adic Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathcal{O}_{K_f,\mathfrak{p}})$$

such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } \mid q \mid N\} \cup \{p, \infty\}.$ 

Then there exists an odd p-adic Galois representation

$$\rho_f:G_{\mathbb{Q},S}\to \mathrm{GL}_2(\mathcal{O}_{K_f,\mathfrak{p}})$$

such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight  $k \geq 2$  with nebentypus  $\epsilon_f$ . Let p be a prime,  $\mathfrak p$  be a prime of  $\mathcal O_{K_f}$  lying above p and  $S = \{q \text{ prime } | q | N\} \cup \{p, \infty\}.$ 

Then there exists an *odd p*-adic Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathcal{O}_{K_f,\mathfrak{p}})$$

such that

- $\bullet \det(\rho_f) = \epsilon_f \chi_p^{k-1},$
- $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid Np$ .

Moreover,  $\rho_f$  is absolutely irreducible if and only if f is a cuspform.

Suppose f is a cuspform. Let g be the newform giving rise to f and let  $\rho_g$  be the p-adic Galois representation attached to g in the theorem above.

## Now for every prime $\ell \nmid N$ , $T_{\ell}$ -eigenvalues of f and g are the same.

This means that  $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = \operatorname{tr}(\rho_g(\operatorname{Frob}_{\ell}))$  for all primes  $\ell \nmid Np$ .

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

#### Theorem (Deligne–Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

such that  $\det(\rho_f) = \epsilon_f$  and  $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_{\ell}(f)$ , for all primes  $\ell \nmid N$ .

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

## Theorem (Deligne–Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an odd Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

## Theorem (Deligne–Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S=\{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

### Theorem (Deligne–Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

### Theorem (Deligne-Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

## Theorem (Deligne-Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } | q | N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$ho_f:G_{\mathbb{Q},S} o\operatorname{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

## Theorem (Deligne-Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

## Theorem (Deligne-Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

By Chebotarev density theorem, the set  $\{\operatorname{Frob}_{\ell} \mid \ell \nmid Np\}$  is dense in  $G_{\mathbb{Q},S}$ . Therefore, we have  $\operatorname{tr}(\rho_f) = \operatorname{tr}(\rho_g)$ .

Since  $\rho_f$  is absolutely irreducible, we get, by Brauer–Nesbitt theorem, that  $\rho_f \simeq \rho_g$  over  $\overline{\mathbb{Q}_p}$ .

Let M be the level of g. So by the theorem above, we get that  $\rho_f$  is unramified at  $\ell$  if  $\ell \nmid Mp$ .

## Theorem (Deligne–Serre)

Let f be a modular eigenform of level  $\Gamma_1(N)$  and weight 1 with nebentypus  $\epsilon_f$ . Let  $S = \{q \text{ prime } \mid q \mid N\} \cup \{\infty\}$ . Then there exists an *odd* Galois representation

$$\rho_f: G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{C})$$

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

# Suppose f is a cuspform and let g be the newform giving rise to f.

From the arguments used in the case of modular eigenforms of weight  $k \ge 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $S_4$ ,  $S_4$ ,  $S_4$  or  $S_2$  with  $S_3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $S_4$ ,  $S_5$  or  $S_{2n}$  with  $S_2$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Suppose f is a cuspform and let g be the newform giving rise to f. From the arguments used in the case of modular eigenforms of weight  $k \geq 2$ , we get that  $\rho_g \simeq \rho_f$ .

Hence, if M is the level of g, then it follows that  $\rho_f$  is unramified at all primes  $\ell \nmid M$ .

Now  $GL_2(\mathbb{C})$  has a neighbourhood of 1 which does not contain any non-trivial subgroup. Therefore,  $\ker(\rho_f)$  is an open subgroup of  $G_{\mathbb{Q},S}$ . Since  $G_{\mathbb{Q},S}$  is compact, it follows that image of  $\rho_f$  is finite. The projective image of  $\rho_f$  is either  $A_4$ ,  $S_4$ ,  $A_5$  or  $D_{2n}$  with  $n \geq 3$ .

Recall that we have the exact sequence  $1 \to I_{\ell} \to G_{\mathbb{Q}_{\ell}} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_{\ell}} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_{\ell}} := \{g \in G_{\mathbb{Q}_{\ell}} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_{\ell}}$  with topology in which  $I_{\ell}$  is open and the subspace topology on  $I_{\ell}$  coming from  $W_{\mathbb{Q}_{\ell}}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_{\ell}}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_{\ell}}$  coming from  $G_{\mathbb{Q}_{\ell}}$ .

# Weil-Deligne representation

- $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}(V)$  is a continuous representation under the discrete topology on  $\mathrm{GL}(V)$ ,
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$



Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_{\ell}} := \{g \in G_{\mathbb{Q}_{\ell}} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_{\ell}}$  with topology in which  $I_{\ell}$  is open and the subspace topology on  $I_{\ell}$  coming from  $W_{\mathbb{Q}_{\ell}}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_{\ell}}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_{\ell}}$  coming from  $G_{\mathbb{Q}_{\ell}}$ .

# Weil-Deligne representation

- $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}(V)$  is a continuous representation under the discrete topology on  $\mathrm{GL}(V)$ ,
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$



Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_{\ell}} := \{g \in G_{\mathbb{Q}_{\ell}} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_{\ell}}$  with topology in which  $I_{\ell}$  is open and the subspace topology on  $I_{\ell}$  coming from  $W_{\mathbb{Q}_{\ell}}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_{\ell}}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_{\ell}}$  coming from  $G_{\mathbb{Q}_{\ell}}$ .

# Weil-Deligne representation

- $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}(V)$  is a continuous representation under the discrete topology on  $\mathrm{GL}(V)$ ,
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$



Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_\ell} := \{g \in G_{\mathbb{Q}_\ell} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_\ell}$  with topology in which  $I_\ell$  is open and the subspace topology on  $I_\ell$  coming from  $W_{\mathbb{Q}_\ell}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_\ell}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_\ell}$  coming from  $G_{\mathbb{Q}_\ell}$ .

## Weil-Deligne representation

- $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}(V)$  is a continuous representation under the discrete topology on  $\mathrm{GL}(V)$ ,
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$



Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_\ell} := \{g \in G_{\mathbb{Q}_\ell} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_\ell}$  with topology in which  $I_\ell$  is open and the subspace topology on  $I_\ell$  coming from  $W_{\mathbb{Q}_\ell}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_\ell}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_\ell}$  coming from  $G_{\mathbb{Q}_\ell}$ .

# Weil-Deligne representation

Let L be a finite extension of  $\mathbb{Q}_p$  with  $p \neq \ell$ . A Weil-Deligne representation of  $W_{\mathbb{Q}_\ell}$  over a finite dimensional L-vector space V is a pair (r, N) such that

•  $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}(V)$  is a continuous representation under the discrete topology on  $\mathrm{GL}(V)$ ,

•  $N \in \text{End}(V)$  is an endomorphism such that



Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_\ell} := \{g \in G_{\mathbb{Q}_\ell} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_\ell}$  with topology in which  $I_\ell$  is open and the subspace topology on  $I_\ell$  coming from  $W_{\mathbb{Q}_\ell}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_\ell}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_\ell}$  coming from  $G_{\mathbb{Q}_\ell}$ .

# Weil-Deligne representation

- $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}(V)$  is a continuous representation under the discrete topology on  $\mathrm{GL}(V)$ ,
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$

Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_\ell} := \{g \in G_{\mathbb{Q}_\ell} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_\ell}$  with topology in which  $I_\ell$  is open and the subspace topology on  $I_\ell$  coming from  $W_{\mathbb{Q}_\ell}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_\ell}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_\ell}$  coming from  $G_{\mathbb{Q}_\ell}$ .

# Weil-Deligne representation

- r: W<sub>Qℓ</sub> → GL(V) is a continuous representation under the discrete topology on GL(V),
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$



Recall that we have the exact sequence  $1 \to I_\ell \to G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}} \to 1$ . Denote the quotient map  $G_{\mathbb{Q}_\ell} \to \hat{\mathbb{Z}}$  by f.

We define the Weil group  $W_{\mathbb{Q}_{\ell}} := \{g \in G_{\mathbb{Q}_{\ell}} \mid f(g) \in \mathbb{Z}\}$ . We consider  $W_{\mathbb{Q}_{\ell}}$  with topology in which  $I_{\ell}$  is open and the subspace topology on  $I_{\ell}$  coming from  $W_{\mathbb{Q}_{\ell}}$  is same as the subspace topology coming from  $G_{\mathbb{Q}_{\ell}}$ . This is *not* the subspace topology on  $W_{\mathbb{Q}_{\ell}}$  coming from  $G_{\mathbb{Q}_{\ell}}$ .

# Weil-Deligne representation

- r: W<sub>Qℓ</sub> → GL(V) is a continuous representation under the discrete topology on GL(V),
- $N \in \text{End}(V)$  is an endomorphism such that  $r(g)Nr(g)^{-1} = \ell^{f(g)}N$



Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of Frob $_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

### Grothendieck's monodromy theorem

Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of Frob $_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

#### Grothendieck's monodromy theorem

Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of Frob $_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

#### Grothendieck's monodromy theorem

Therefore if  $W_{\ell}$  is the wild inertia group at  $\ell$ , then  $\rho(W_{\ell})$  is finite. So there exists a finite extension K of  $Q_{\ell}$  such that  $\rho(I_K)$  is unipotent.

Denote the composition of the map  $I_{\ell} \to I_{\ell}/W_{\ell} \to \mathbb{Z}_p$  by  $\phi_{\ell}$  and fix a lift  $\sigma$  of Frob $_{\ell}$  in  $G_{\mathbb{Q}_{\ell}}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_{\ell}(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

### Grothendieck's monodromy theorem

Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of  $\operatorname{Frob}_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \mathrm{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

### Grothendieck's monodromy theorem

Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of Frob $_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

### Grothendieck's monodromy theorem

Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of Frob $_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

#### Grothendieck's monodromy theorem

Therefore if  $W_\ell$  is the wild inertia group at  $\ell$ , then  $\rho(W_\ell)$  is finite. So there exists a finite extension K of  $Q_\ell$  such that  $\rho(I_K)$  is unipotent. Denote the composition of the map  $I_\ell \to I_\ell/W_\ell \to \mathbb{Z}_p$  by  $\phi_\ell$  and fix a lift  $\sigma$  of Frob $_\ell$  in  $G_{\mathbb{Q}_\ell}$ . So there exists an  $N \in M_n(L)$  such that  $\rho(g) = \exp(\phi_\ell(g)N)$  for all  $g \in I_K$ .

Thus if  $r: W_{\mathbb{Q}_{\ell}} \to \operatorname{GL}_n(L)$  is a representation such that  $r(g) = \exp(-\phi_{\ell}(\sigma^{-n}g)N)\rho(g)$ , then (r,N) is a Weil-Deligne representation of  $W_{\mathbb{Q}_{\ell}}$  which is bounded i.e.  $\det(r(g)) \in \mathcal{O}_L^{\times}$  and  $\operatorname{charpoly}(r(g)) \in \mathcal{O}_L[X]$  for all  $g \in W_{\mathbb{Q}_{\ell}}$ .

### Grothendieck's monodromy theorem

# $\rho_f|_{G_{\mathbb{Q}_\ell}}$ for $\ell \mid N$ and $\ell \neq p$

Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

### Theorem (Carayol et al)

Let f be a newform of level  $\Gamma_1(N)$  and weight  $k \geq 1$  with nebentypus  $\epsilon_f$ . Let  $\rho_f$  be the p-adic Galois representation attached to f as above. If  $\ell \mid N$ , then  $\rho_f$  is ramified at  $\ell$ . Moreover, one of the following holds:

- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \chi_1 \oplus \chi_2$ , for some characters  $\chi_1$ ,  $\chi_2$  with at least one of the characters ramified at  $\ell$ ,
- $\bullet$   $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \begin{pmatrix} \chi \chi_p & * \\ 0 & \chi \end{pmatrix}$ , where  $\chi$  is a character and \* is non-zero,
- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}_\ell}} \chi$ , for some quadratic extension F of  $\mathbb{Q}_\ell$  and a character  $\chi$  of  $G_F$ ,
- $\ell = 2$  and the projective image of  $\rho_f(I_2)$  is either  $A_4$  or  $S_4$ .



# $\rho_f|_{G_{\mathbb{Q}_\ell}}$ for $\ell \mid N$ and $\ell \neq p$

Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

# Theorem (Carayol et al)

Let f be a newform of level  $\Gamma_1(N)$  and weight  $k \ge 1$  with nebentypus  $\epsilon_f$ . Let  $\rho_f$  be the p-adic Galois representation attached to f as above. If

Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

## Theorem (Carayol et al)

Let f be a newform of level  $\Gamma_1(N)$  and weight  $k \ge 1$  with nebentypus  $\epsilon_f$ . Let  $\rho_f$  be the p-adic Galois representation attached to f as above. If

Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

## Theorem (Carayol et al)

- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \chi_1 \oplus \chi_2$ , for some characters  $\chi_1$ ,  $\chi_2$  with at least one of the characters ramified at  $\ell$ ,
- ullet  $ho_f|_{G_{\mathbb{Q}_\ell}} \simeq \begin{pmatrix} \chi \chi_p & * \\ 0 & \chi \end{pmatrix}$ , where  $\chi$  is a character and \* is non-zero,
- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}_\ell}} \chi$ , for some quadratic extension F of  $\mathbb{Q}_\ell$  and a character  $\chi$  of  $G_F$ ,
- $\ell = 2$  and the projective image of  $\rho_f(I_2)$  is either  $A_4$  or  $S_4$ .



Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

## Theorem (Carayol et al)

- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \chi_1 \oplus \chi_2$ , for some characters  $\chi_1$ ,  $\chi_2$  with at least one of the characters ramified at  $\ell$ ,
- ullet  $ho_f|_{G_{\mathbb{Q}_\ell}} \simeq \begin{pmatrix} \chi \chi_p & * \\ 0 & \chi \end{pmatrix}$ , where  $\chi$  is a character and \* is non-zero,
- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}_\ell}} \chi$ , for some quadratic extension F of  $\mathbb{Q}_\ell$  and a character  $\chi$  of  $G_F$ ,
- $\ell = 2$  and the projective image of  $\rho_f(I_2)$  is either  $A_4$  or  $S_4$ .

Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

## Theorem (Carayol et al)

- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \chi_1 \oplus \chi_2$ , for some characters  $\chi_1$ ,  $\chi_2$  with at least one of the characters ramified at  $\ell$ ,
- ullet  $ho_f|_{G_{\mathbb{Q}_\ell}}\simeq egin{pmatrix} \chi\chi_p & * \ 0 & \chi \end{pmatrix}$ , where  $\chi$  is a character and \* is non-zero,
- $\rho_f|_{G\mathbb{Q}_\ell} \simeq \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}_\ell}} \chi$ , for some quadratic extension F of  $\mathbb{Q}_\ell$  and a character  $\chi$  of  $G_F$ ,
- $\ell = 2$  and the projective image of  $\rho_f(I_2)$  is either  $A_4$  or  $S_4$ .



Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

## Theorem (Carayol et al)

- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \chi_1 \oplus \chi_2$ , for some characters  $\chi_1, \chi_2$  with at least one of the characters ramified at  $\ell$ ,
- ullet  $ho_f|_{G_{\mathbb{Q}_\ell}}\simeq egin{pmatrix} \chi\chi_p & * \ 0 & \chi \end{pmatrix}$  , where  $\chi$  is a character and \* is non-zero,
- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}_\ell}} \chi$ , for some quadratic extension F of  $\mathbb{Q}_\ell$  and a character  $\chi$  of  $G_F$ ,
- $\ell = 2$  and the projective image of  $\rho_f(I_2)$  is either  $A_4$  or  $S_4$ .

Using the local langlands correspondence, we get a Weil-Deligne representation at every prime  $\ell \mid N$  which in turn gives a p-adic Galois representation of  $G_{\mathbb{Q}_{\ell}}$  and it turns out to be the same as  $\rho_f|_{G_{\mathbb{Q}_{\ell}}}$ .

## Theorem (Carayol et al)

- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \chi_1 \oplus \chi_2$ , for some characters  $\chi_1, \chi_2$  with at least one of the characters ramified at  $\ell$ ,
- ullet  $ho_f|_{G_{\mathbb{Q}_\ell}}\simeq egin{pmatrix} \chi\chi_p & * \ 0 & \chi \end{pmatrix}$ , where  $\chi$  is a character and \* is non-zero,
- $\rho_f|_{G_{\mathbb{Q}_\ell}} \simeq \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}_\ell}} \chi$ , for some quadratic extension F of  $\mathbb{Q}_\ell$  and a character  $\chi$  of  $G_F$ ,
- $\ell = 2$  and the projective image of  $\rho_f(I_2)$  is either  $A_4$  or  $S_4$ .



Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

#### Theorem (Hida, Wiles)

- $\eta_2(\operatorname{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,
- $\eta_2(\text{Frob}_p)$  is the  $U_p$ -eigenvalue of f, if  $p \mid N$ .



Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

#### Theorem (Hida, Wiles)

- $\eta_2(\operatorname{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,
- $\eta_2(\text{Frob}_p)$  is the  $U_p$ -eigenvalue of f, if  $p \mid N$ .



Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

#### Theorem (Hida, Wiles)

- $\eta_2(\operatorname{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,
- $\eta_2(\text{Frob}_p)$  is the  $U_p$ -eigenvalue of f, if  $p \mid N$ .



Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

### Theorem (Hida, Wiles)

Let f be a p-ordinary newform of level  $\Gamma_1(N)$  and weight  $k \geq 2$ . Let  $\epsilon_f$  be the nebentypus of f and  $\rho_f$  be the p-adic Galois representation attached to f as above. Then  $\rho_f|_{G\mathbb{Q}_p} \simeq \begin{pmatrix} \eta_1 & * \\ 0 & \eta_2 \end{pmatrix}$ , where  $\eta_2$  is an unramified character of  $G\mathbb{Q}_p$  such that

•  $\eta_2(\text{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 - a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,

Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

### Theorem (Hida, Wiles)

Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

### Theorem (Hida, Wiles)

- $\eta_2(\operatorname{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,
- $\eta_2(\text{Frob}_p)$  is the  $U_p$ -eigenvalue of f, if  $p \mid N$ .



Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

### Theorem (Hida, Wiles)

- $\eta_2(\operatorname{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,
- $\eta_2(\text{Frob}_p)$  is the  $U_p$ -eigenvalue of f, if  $p \mid N$ .



Let f be a newform of level  $\Gamma_1(N)$ . We say that f is p-ordinary if one of the following holds:

- $p \nmid N$  and  $T_p$ -eigenvalue of f is a p-adic unit,
- $p \mid N$  and  $U_p$ -eigenvalue of f is a p-adic unit.

### Theorem (Hida, Wiles)

- $\eta_2(\operatorname{Frob}_p)$  is the *p*-adic unit root of the polynomial  $X^2 a_p(f)X + \epsilon_f(p)p^{k-1}$  if  $p \nmid N$ ,
- $\eta_2(\operatorname{Frob}_p)$  is the  $U_p$ -eigenvalue of f, if  $p \mid N$ .



However, in more general settings, we get *n*-dimensional representations of the absolute Galois group of some number field *K*.

For instance, if F is a totally real number field, then we can attach a 2-dimensional p-adic Galois representation  $\rho_f$  of  $G_F$  to a Hilbert modular eigenform f over F.

The properties of  $\rho_f$  are similar to those of p-adic Galois representations attached to modular eigenforms. For instance,  $\rho_f$  is unramified at primes not dividing the level of f.

One can also define Hida families of Hilbert modular forms and analogues of the theorems of Hida and Wiles also hold in the setting of Hilbert modular forms.

However, in more general settings, we get n-dimensional representations of the absolute Galois group of some number field K.

For instance, if F is a totally real number field, then we can attach a 2-dimensional p-adic Galois representation  $\rho_f$  of  $G_F$  to a Hilbert modular eigenform f over F.

The properties of  $\rho_f$  are similar to those of p-adic Galois representations attached to modular eigenforms. For instance,  $\rho_f$  is unramified at primes not dividing the level of f.

One can also define Hida families of Hilbert modular forms and analogues of the theorems of Hida and Wiles also hold in the setting of Hilbert modular forms.

However, in more general settings, we get *n*-dimensional representations of the absolute Galois group of some number field *K*.

For instance, if F is a totally real number field, then we can attach a 2-dimensional p-adic Galois representation  $\rho_f$  of  $G_F$  to a Hilbert modular eigenform f over F.

The properties of  $\rho_f$  are similar to those of *p*-adic Galois representations attached to modular eigenforms. For instance,  $\rho_f$  is unramified at primes not dividing the level of f.

One can also define Hida families of Hilbert modular forms and analogues of the theorems of Hida and Wiles also hold in the setting of Hilbert modular forms.

However, in more general settings, we get *n*-dimensional representations of the absolute Galois group of some number field *K*.

For instance, if F is a totally real number field, then we can attach a 2-dimensional p-adic Galois representation  $\rho_f$  of  $G_F$  to a Hilbert modular eigenform f over F.

The properties of  $\rho_f$  are similar to those of p-adic Galois representations attached to modular eigenforms. For instance,  $\rho_f$  is unramified at primes not dividing the level of f.

One can also define Hida families of Hilbert modular forms and analogues of the theorems of Hida and Wiles also hold in the setting of Hilbert modular forms.

However, in more general settings, we get n-dimensional representations of the absolute Galois group of some number field K.

For instance, if F is a totally real number field, then we can attach a 2-dimensional p-adic Galois representation  $\rho_f$  of  $G_F$  to a Hilbert modular eigenform f over F.

The properties of  $\rho_f$  are similar to those of p-adic Galois representations attached to modular eigenforms. For instance,  $\rho_f$  is unramified at primes not dividing the level of f.

One can also define Hida families of Hilbert modular forms and analogues of the theorems of Hida and Wiles also hold in the setting of Hilbert modular forms.