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Introduction

▶ Consider Rn with n ≥ 1.

▶ For 1 ≤ p < ∞, the homogeneous Sobolev space Ẇ 1,p

consists of all u ∈ L1
loc modulo constants, whose distributional

gradient ∇u ∈ Lp. It is normed by

∥∇u∥Lp =
(∫

Rn

|∇u|pdx
)1/p

.

▶ The homogeneous ḂV space (BV = bounded variation)
consists of all u ∈ L1

loc modulo constants, whose distributional
gradient ∇u is a finite Radon measure (written ∇u ∈ M).
It is normed by

∥u∥ḂV = ∥∇u∥M.

▶ In the first part of the talk, we describe new characterizations
of these spaces. In the second part, we discuss relevance of
these ideas to interpolation of Besov spaces, and applications
to nonlinear approximation. Finally we show some proofs.



Besov spaces
▶ Define Littlewood-Paley projections by setting

Pju = u ∗ ϕj , j ∈ Z

where ϕ is a fixed non-degenerate Schwartz function on Rn

whose Fourier transform is compactly supported on {|ξ| ≃ 1},
and ϕj(x) := 2jnϕ(2jx).

▶ For s ∈ R, 1 < p, q < ∞, the homogeneous Besov space Ḃs
p,q

is the space of tempered distributions u modulo polynomials,
for which

∥u∥Ḃs
p,q

:=
(∑

j∈Z
[2js∥Pju∥Lp ]q

)1/q
< ∞.

▶ Write ∆hu(x) := u(x+ h)− u(x) for x, h ∈ Rn.
▶ If 0 < s < 1, 1 < p < ∞, then Ḃs

p,p can be identified with the
space of u ∈ L1

loc modulo constants, for which(∫∫
Rn×Rn

|∆hu(x)|p

|h|sp+n
dxdh

) 1
p
=

∥∥∥∆hu(x)

|h|s
∥∥∥
Lp(R2n,|h|−ndxdh)

< ∞.



What happens when s = 1?
▶ Often one writes, for 0 < s < 1 and 1 ≤ p < ∞,

∥u∥Ẇ s,p :=
∥∥∥∆hu(x)

|h|s
∥∥∥
Lp(R2n,|h|−ndxdh)

=
(∫∫

Rn×Rn

|∆hu(x)|p

|h|sp+n
dxdh

) 1
p
.

▶ We might ask what happens if we compute instead∥∥∥∆hu(x)

|h|

∥∥∥
Lp(R2n,|h|−ndxdh)

.

Heuristically |∆hu(x)|
|h| ≃ |∇u(x)|, for |h| small.

Would we recover ∥∇u∥Lp from the last Lp(R2n) norm?
▶ Definitely not; even for u ∈ C∞

c (Rn), the last Lp(R2n) norm
is infinite unless u ≡ 0 (because |h|−n is not L1

loc(dh)).

▶ Notation: Qbu(x, h) :=
|∆hu(x)|

|h|b for b ∈ R.
Then ∥u∥Ẇ s,p = ∥Qs+n

p
u∥Lp(R2n,dxdh), and we saw

computing ∥Q1+n
p
u∥Lp(R2n,dxdh) is not a good idea.



The BBM formula
▶ A famous formula by Bourgain, Brezis and Mironescu (BBM)

explores what happens to ∥u∥Ẇ s,p as s → 1−.

▶ On Rn, it says for 1 ≤ p < ∞ and u ∈ C2
c , we have

lim
s→1−

(1− s)∥u∥p
Ẇ s,p

=
k(p, n)

p
∥∇u∥pLp (1)

where k(p, n) is some explicit constant depending on p and n,
given by k(p, n) :=

∫
Sn−1 |e · ω|pdω and e ∈ Sn−1.

▶ In particular, ∥Qs+n
p
u∥Lp(R2n,dxdh) blows up like (1− s)−1/p

as s → 1− unless u is a constant, another indication that
∥Q1+n

p
u∥Lp(R2n,dxdh) is not good for computing ∥∇u∥Lp .

▶ In fact, the BBM formula says something more: it says if
u ∈ L1

loc(Rn), and the left side of (1) is finite, then
u ∈ Ẇ 1,p(Rn) if 1 < p < ∞, and u ∈ ˙BV (Rn) if p = 1.

▶ Our first main result offers an alternative point of view, that
does not involve varying s, but involves a weak-Lp norm
instead of the Lp norm on R2n.



Lp versus weak-Lp

▶ For 1 ≤ p < ∞, if f ∈ Lp(ν) for some measure ν, then

∥f∥pLp(ν) =

∫
|f |pdν ≥ λpν{x : |f(x)| > λ} ∀λ > 0.

In particular, if f ∈ Lp(ν), then

sup
λ>0

(
λν{x : |f(x)| > λ}1/p

)
< ∞

but the converse is not necessarily true.

▶ If f is measurable and the supremum above is finite, then f is
said to be in weak-Lp(ν). Its weak-Lp (quasi)-norm is defined
as the above supremum, and denoted by [f ]Lp,∞(ν).

▶ Example: f(x) = |x|−n/p is in weak-Lp(dx) on Rn, because

Ln{x ∈ Rn : |x|−n/p > λ} = Ln(B(0, λ−p/n)) = λ−pLn(B(0, 1)).

(Henceforth we write Ln for Lebesgue measure on Rn.)
It is not in Lp(dx), because

∫
Rn |f |pdx =

∫
Rn |x|−ndx = +∞.



Lorentz spaces and real interpolation

▶ We will also need the Lorentz spaces Lp,r(ν), which for
1 ≤ p, r < ∞ is defined as the space of all measurable f with

[f ]Lp,r(ν) :=
(
r

∫ ∞

0
λrν{x : |f(x)| > λ}r/pdλ

λ

)1/r
< ∞.

▶ They arise as real interpolation spaces: if 1 ≤ p0 < p1 ≤ ∞
and 1

p = 1−θ
p0

+ θ
p1

for some 0 < θ < 1, then for 1 ≤ r ≤ ∞,

Lp,r(ν) = [Lp0(ν), Lp1(ν)]θ,r

where for any Banach spaces B0 and B1, and f ∈ B0 +B1,

∥f∥[B0,B1]θ,r :=
(∫ ∞

0
t−θ inf

f=f0+f1
(∥f0∥B0 + t∥f1∥B1)

r dt

t

)1/r

for 1 ≤ r < ∞, with the obvious modification when r = ∞.

▶ It is also well-known that [f ]Lp,r(ν) = ∥f∥Lp(ν) if r = p.



A formula for ∥∇u∥Lp(Rn)

Theorem (Brezis, Van Schaftingen, Yung)

Let n ≥ 1, 1 ≤ p < ∞ and u ∈ C∞
c (Rn). Then

∥∇u∥Lp(Rn) ≃ [Q1+n
p
u]Lp,∞(R2n,dxdh) =

[ ∆hu

|h|1+
n
p

]
Lp,∞(R2n,dxdh)

,

where ∆hu(x) := u(x+ h)− u(x). In other words, for λ > 0,

denote by Eλ :=
{
(x, h) ∈ R2n : Q1+n

p
u(x, h) > λ

}
the superlevel

set of Q1+n
p
u at height λ. Then

∥∇u∥pLp(Rn) ≃ sup
λ>0

(
λpL2n(Eλ)

)
.

In fact, we also have
k(p, n)

n
∥∇u∥pLp(Rn) = lim

λ→+∞

(
λpL2n(Eλ)

)
.

▶ The power 1 + n
p is dictated by dilation invariance: if

[Qbu]Lp,∞(R2n,dxdh) scales like ∥∇u∥Lp , then b = 1 + n
p .



A formula for ∥u∥Lp(Rn)

Theorem (Gu, Yung)

Let n ≥ 1, 1 ≤ p < ∞ and u ∈ Lp(Rn). Then

∥u∥Lp(Rn) ≃ [Qn
p
u]Lp,∞(R2n,dxdh) =

[∆hu

|h|
n
p

]
Lp,∞(R2n,dxdh)

.

Furthermore, if now Eλ :=
{
(x, h) ∈ R2n : Qn

p
u(x, h) > λ

}
, then

2Vn∥u∥pLp(Rn) = lim
λ→0+

(
λpL2n(Eλ)

)
where Vn is the volume of the unit ball in Rn.

▶ We used this to sharpen a constant in an embedding result of
Doḿınguez and Milman.

▶ Theorem holds for all u ∈ Lp(Rn), not just u ∈ C∞
c . Can the

theorem on the previous slide hold for all u ∈ Ẇ 1,p?



A family of formulae for ∥∇u∥Lp(Rn)

▶ It turns out there is a natural one-parameter family of such
formulae for ∥∇u∥Lp(Rn), for general u ∈ Ẇ 1,p or u ∈ ḂV.

▶ Let γ ∈ R. Define the measure dνγ = |h|γ−ndxdh on R2n.
(The case γ = n corresponds to the Lebesgue measure
dxdh = L2n we used earlier.)

Theorem (Brezis, Seeger, Van Schaftingen, Yung)

Let n ≥ 1, 1 < p < ∞ and u ∈ Ẇ 1,p(Rn). Then for γ ̸= 0,

∥∇u∥Lp(Rn) ≃ [Q1+ γ
p
u]Lp,∞(R2n,νγ) =

[ ∆hu

|h|1+
γ
p

]
Lp,∞(R2n,νγ)

.

Furthermore, if Eλ :=
{
(x, h) ∈ R2n : Q1+ γ

p
u(x, h) > λ

}
, then

k(p, n)

|γ|
∥∇u∥pLp(Rn) =

limλ→+∞

(
λpνγ(Eλ)

)
if γ > 0

limλ→0+

(
λpνγ(Eλ)

)
if γ < 0.

(The case γ = −p of the limit equality is due to Nguyen.)



Theorem (Brezis, Seeger, Van Schaftingen, Yung)

Let n ≥ 1, u ∈ ḂV(Rn). Then for γ ∈ R \ [−1, 0],

∥u∥ḂV(Rn) = ∥∇u∥M ≃ [Q1+γu]L1,∞(R2n,νγ) =
[ ∆hu

|h|1+γ

]
L1,∞(R2n,νγ)

.

Furthermore, if Eλ :=
{
(x, h) ∈ R2n : Q1+γu(x, h) > λ

}
, then the

formula

k(1, n)

|γ|
∥∇u∥M =

limλ→+∞

(
λνγ(Eλ)

)
if γ > 0

limλ→0+

(
λνγ(Eλ)

)
if γ < −1

holds for u ∈ Ẇ 1,1 but can fail for u ∈ ḂV.



Theorem (Brezis, Seeger, Van Schaftingen, Yung)

For γ ∈ [−1, 0),

sup
u∈C∞

c (Rn),∥∇u∥L1(Rn)=1
[Q1+γu]L1,∞(R2n,νγ) = +∞;

furthermore, the formula

k(1, n)

|γ|
∥u∥ḂV = lim

λ→0+

(
λνγ(Eλ)

)
remains true for all u ∈ C1

c (Rn), but fails for u ∈ Ẇ 1,1(Rn), even
though for u ∈ Ẇ 1,1(Rn) we do have the one-sided inequality

k(1, n)

|γ|
∥u∥ḂV ≤ lim inf

λ→0+

(
λνγ(Eλ)

)
.

▶ The case γ = −1 of the limiting formula has already been
established by Brezis and Nguyen.



Theorem (Brezis, Seeger, Van Schaftingen, Yung)

Let n ≥ 1, u ∈ L1
loc(Rn), γ ∈ R. If [Q1+ γ

p
u]Lp,∞(R2n,νγ) < ∞, then

u ∈

{
Ẇ 1,p(Rn) if 1 < p < ∞
ḂV(Rn) if p = 1.

▶ In particular, for u ∈ L1
loc(Rn), 1 < p < ∞ and γ ̸= 0,

u ∈ Ẇ 1,p ⇐⇒
[ ∆hu

|h|1+
γ
p

]
Lp,∞(R2n,νγ)

< ∞.

▶ Similarly, for u ∈ L1
loc(Rn) and γ ∈ R \ [−1, 0],

u ∈ ḂV ⇐⇒
[ ∆hu

|h|1+γ

]
L1,∞(R2n,νγ)

< ∞.

▶ The existence of a one-parameter family of characterizations
is not just natural, but useful in applications.



Application towards Gagliardo-Nirenberg interpolation
▶ Cohen, Dahmen, Daubechies and DeVore proved that for any

0 < s1 < 1 and any 1 < p1 < ∞, if

s1 <
1
p1
,

and if (1p , s) = (1− θ)(1, 1) + θ( 1
p1
, s1) for some 0 < θ < 1,

then for any u ∈ ḂV ∩ Ẇ s1,p1 ,

∥u∥Ẇ s,p ≲ ∥u∥1−θ

ḂV
∥u∥θ

Ẇ s1,p1
.

s

1/p

ḂV

Ẇs1,p1

Ẇs,p

slope > 1

▶ Their proof uses bounds for coefficients of wavelet expansions
of a general function in ḂV(Rn).

▶ We can give an alternative proof based on our theorem for ḂV.



▶ Indeed, let γ be minus the slope, given by γ := − 1−s1
1− 1

p1

< −1.

▶ Let u ∈ ḂV ∩ Ẇ s1,p1 . Our characterization for ḂV shows that

∥u∥ḂV ≃ [Q1+γu]L1,∞(νγ).

▶ On the other hand, ∥u∥Ẇ s1,p1 = ∥Qs1+
γ
p1
u∥Lp1 (νγ) because(∫∫

R2n

|∆hu|p1
|h|s1p1+n

dxdh
) 1

p1 =
(∫∫

R2n

|∆hu|p1
|h|s1p1+γ

dνγ

) 1
p1 .

Similarly ∥u∥Ẇ s,p = ∥Qs+ γ
p
u∥Lp(νγ).

▶ But our choice of γ ensures s+ γ
p = 1 + γ = s1 +

γ
p1
. Using

∥F∥Lp(νγ) ≲ ∥F∥1−θ
L1,∞(νγ)

∥F∥θLp1 (νγ)

for F := Qs+ γ
p
u = Q1+γu = Qs1+

γ
p1
u, we obtain

∥u∥Ẇ s,p ≲ ∥u∥1−θ

ḂV
∥u∥θ

Ẇ s1,p1
.



▶ Let’s revisit the result of Cohen-Dahmen-Daubechies-DeVore.

▶ Suppose 0 < s1 < 1, 1 < p1 < ∞, and

(
1

p
, s) = (1− θ)(1, 1) + θ(

1

p1
, s1) for some 0 < θ < 1.

▶ We saw if s1 <
1
p1

then ∥u∥Ẇ s,p ≲ ∥u∥1−θ

ḂV
∥u∥θ

Ẇ s1,p1
.

▶ The previous proof made crucial use of s1 <
1
p1
, because

∥u∥ḂV ≃ [Q1+γu]L1,∞(νγ) only holds when γ /∈ R \ [−1, 0].

▶ In fact the result is false when s1 ≥ 1
p1

(Brezis-Mironescu).

s

1/p

Ẇ1,1

Ẇs1,p1

/∈ Ẇs,p

0 < slope ≤ 1, i.e. γ ∈ [−1, 0)



▶ Let’s revisit the result of Cohen-Dahmen-Daubechies-DeVore.

▶ Suppose 0 < s1 < 1, 1 < p1 < ∞, and

(
1

p
, s) = (1− θ)(1, 1) + θ(

1

p1
, s1) for some 0 < θ < 1.

▶ We saw if s1 <
1
p1

then ∥u∥Ẇ s,p ≲ ∥u∥1−θ

ḂV
∥u∥θ

Ẇ s1,p1
.

▶ The previous proof made crucial use of s1 <
1
p1
, because

∥u∥ḂV ≃ [Q1+γu]L1,∞(νγ) only holds when γ /∈ R \ [−1, 0].

▶ In fact the result is false when s1 ≥ 1
p1

(Brezis-Mironescu).

▶ Nevertheless, the above proof can be easily adapted, to show
that for any γ′ ∈ R \ [−1, 0], we still have

[Q
s+ γ′

p

u]
Lp,

p1
θ (νγ′ )

≲ ∥u∥1−θ

ḂV
∥u∥θ

Ẇ s1,p1
.

(See joint work with Brezis and Van Schaftingen.)

▶ One is then led to characterize (measurable) functions u for
which the left hand side is finite.



A twist on diagonal Besov spaces

▶ For γ ∈ R, define a measure µγ on Rn × Z so that∫
Rn×Z

F (x, j)dµγ =
∑
j∈Z

2−jγ

∫
Rn

F (x, j)dx.

▶ Then for s ∈ R and 1 < p < ∞,

∥u∥Ḃs
p,p

=
(∑

j∈Z

∫
Rn

[2js|Pju(x)|]pdx
)1/p

=
(∑

j∈Z
2−jγ

∫
Rn

[2
j(s+ γ

p
)|Pju(x)|]pdx

)1/p

= ∥2j(s+
γ
p
)
Pju(x)∥Lp(Rn×Z,µγ).



∥u∥Ḃs
p,p

= ∥2j(s+
γ
p
)
Pju(x)∥Lp(Rn×Z,µγ)

▶ For s ∈ R, 1 < p < ∞, γ ∈ R and 1 ≤ r ≤ ∞, let Ḃs
p(γ, r) be

the space of all tempered distributions u modulo polynomials,
for which

∥u∥Ḃs
p(γ,r)

:= ∥2j(s+
γ
p
)
Pju(x)∥Lp,r(Rn×Z,µγ) < ∞.

▶ Note that Ḃs
p(γ, r) = Ḃs

p,p whenever r = p (independent of γ).

▶ But examples show that Ḃs
p(γ, r) ̸= Ḃs

p(γ
′, r) whenever r > p

and γ ̸= γ′.

▶ Such distribution of weight into the measure has appeared
also in work on radial Fourier multipliers, and Fourier
restriction theorems with affine arclength measure on curves.



Difference quotient characterization for Ḃs
p(γ, r)

Theorem (Doḿınguez, Seeger, Street, Van Schaftingen, Yung)

Let 0 < s < 1, 1 < p < ∞, 1 ≤ r ≤ ∞ and γ ∈ R.
(a) If u ∈ Ḃs

p(γ, r), then the tempered distribution u can be
identified with a tempered, L1

loc function, such that

[Qs+ γ
p
u]Lp,r(νγ) ≲ ∥u∥Ḃs

p(γ,r)
.

(b) If u is a measurable function on Rn with Qs+ γ
p
u ∈ Lp,r(νγ),

then u defines a tempered distribution in Ḃs
p(γ, r), with

∥u∥Ḃs
p(γ,r)

≲ [Qs+ γ
p
u]Lp,r(νγ).

▶ In particular, for Schwartz functions u, for such s, p, γ, r,

∥u∥Ḃs
p(γ,r)

:= ∥2j(s+
γ
p
)
Pju(x)∥Lp,r(Rn×Z,µγ) ≃

[ ∆hu

|h|s+
γ
p

]
Lp,r(R2n,νγ)

.

▶ For r = p (so that Ḃs
p(γ, r) = Ḃs

p,p), such characterization is
known if ‘measurable’ in (b) is replaced by L1

loc.



Interpolation of diagonal Besov spaces

Theorem (Doḿınguez, Seeger, Street, Van Schaftingen, Yung)

Let 1 ≤ p0, p1 ≤ ∞, p0 ̸= p1, and s0, s1 ∈ R. Then for 0 < θ < 1
and 1 ≤ r ≤ ∞,

[Ḃs0
p0,p0 , Ḃ

s1
p1,p1 ]θ,r = Ḃs

p(γ, r),

with comparable norms, where (1p , s) = (1− θ)( 1
p0
, s0) + θ( 1

p1
, s1)

and

γ = − s0 − s1
1
p0

− 1
p1

.

s

1/p

( 1
p
, s)

Ḃ
s0
p0,p0

Ḃ
s1
p1,p1

slope = −γ ∈ R



Interpolation of diagonal Besov spaces

Theorem (Doḿınguez, Seeger, Street, Van Schaftingen, Yung)

Let 1 ≤ p0, p1 ≤ ∞, p0 ̸= p1, and s0, s1 ∈ R. Then for 0 < θ < 1
and 1 ≤ r ≤ ∞,

[Ḃs0
p0,p0 , Ḃ

s1
p1,p1 ]θ,r = Ḃs

p(γ, r),

with comparable norms, where (1p , s) = (1− θ)( 1
p0
, s0) + θ( 1

p1
, s1)

and

γ = − s0 − s1
1
p0

− 1
p1

.

▶ In particular, using our previous characterization of Ḃs
p(γ, r), if

in addition 0 < s0, s1 < 1, then

∥u∥[Ḃs0
p0,p0

,Ḃ
s1
p1,p1

]θ,r
≃

[ ∆hu

|h|s+
γ
p

]
Lp,r(νγ)

.

▶ The case r = p, namely [Ḃs0
p0,p0 , Ḃ

s1
p1,p1 ]θ,p = Ḃs

p,p, is classical.



Applications to nonlinear approximation

▶ Fix a system of (smooth) wavelet basis of L2(Rn).

▶ Let 1 < q < ∞. For u ∈ Lq(Rn) and k ≥ 1, let σk(u)Lq be
the distance in Lq(Rn) between u and its best k-term
approximation in terms of the wavelet basis.

▶ For α > 0 and 0 < r ≤ ∞, let Aα
r (L

q) be the set of functions
u ∈ Lq(Rn) for which

∥u∥Aα
r (L

q) =
( ∞∑

k=1

[kασk(u)Lq ]r 1k

)1/r
if r < ∞

with the obvious modification when r = ∞.

▶ This is useful in statistics, image processing, compression,
numerical solutions to PDEs, ...

▶ Idea: ∥u∥Aα
r (L

q) increases as α increases. For this norm to be
finite for big α, one needs u to have very few essential terms
in its wavelet expansion, making u very smooth.



▶ DeVore, Jawerth and Popov proved that if s > 0 and
1
r = 1

q +
s
n , then

As/n
r (Lq) = Ḃs

r,r,

confirming the previous heuristic that functions in Aα
r (L

q)
gets smoother as α increases in this special case.

▶ Building upon recent work of Besoy, Haroske and Triebel, we
consider the case 1

r ̸= 1
q +

s
n .

Theorem (Doḿınguez, Seeger, Street, Van Schaftingen, Yung)

For 1 < q < ∞, 0 < s < n(1− 1
q ), and 1 ≤ r ≤ ∞, if 1

p = 1
q +

s
n ,

then
As/n

r (Lq) = Ḃs
p(−n, r).

▶ The case r = ∞ is of special interest in applications; see e.g.
Hansen and Sickel.



Ideas of proofs: some positive results about ḂV
▶ Let’s remember what we said about ḂV. Let γ ∈ R \ [−1, 0].

▶ We said for n ≥ 1 and u ∈ L1
loc(Rn),[u(x+ h)− u(x)

|h|1+γ

]
L1,∞(R2n,|h|γ−ndxdh)

≃ ∥∇u∥M(Rn)

in the sense that one side is finite iff the other is, and that the
two sides are comparable.

▶ Let’s prove ≲ when n = γ = 1, which we rewrite as[u(y)− u(x)

|y − x|2
]
L1,∞(R2,dxdy)

≲ ∥u′∥M(R),

for the case u ∈ ḂV(R). First show this for u ∈ C1
c (R).

▶ The proof relies on the Vitali covering lemma in 1-dimension:
If X is a collection of intervals on R with supI∈X |I| < ∞,
then there exists a subcollection Y ⊂ X such that
all intervals from Y are pairwise disjoint up to end-points, and
every I ∈ X is contained in 5J for some J ∈ Y .



▶ Goal: Show that for u ∈ C1
c (R) and λ > 0,

|Eλ| ≲
1

λ
∥u′∥L1(R)

where Eλ :=
{
(x, y) ∈ R2 : |u(y)−u(x)|

|y−x|2 > λ
}
.

▶ Let X be the collection of intervals [x, y] where (x, y) ∈ Eλ.

▶ Vitali covering lemma applies to X because if I = [x, y] ∈ X,

|I|2 = |x− y|2 < 1

λ
|u(x)− u(y)| ≤ 1

λ

∫
I
|u′| ≤ 1

λ
∥u′∥L1(R).

▶ We obtain a subcollection Y ⊂ X such that all intervals from
Y are pairwise disjoint up to end-points, and every I ∈ X is
contained in 5J for some J ∈ Y .

▶ As a result, Eλ ⊂
⋃
I∈X

I × I ⊂
⋃
J∈Y

(5J)× (5J), and

|Eλ| ≤
∑
J∈Y

|5J |2 ≤ 25
∑
J∈Y

1

λ

∫
J
|u′| ≤ 25

λ
∥u′∥L1(R).



▶ We have shown that for u ∈ C1
c (R),[u(y)− u(x)

|y − x|2
]
L1,∞(R2,dxdy)

≲ ∥u′∥M(R). (2)

▶ We want to show this for general u ∈ ḂV(R).
▶ But C1

c (R) is not dense in ḂV(R). Not even in Ẇ 1,1(R).
▶ The issue is that even if u ∈ C∞(R) and u′ ∈ Cc(R), it is

possible for u to take different values at +∞ and −∞.
Hence u itself is not compactly supported.

▶ This is a problem that only occurs in 1 dim: the complement
of a compact set is always connected in higher dimensions.

▶ Fortunately, if C is the set of all u ∈ C1(R) with u′ compactly
supported in R (this is slightly bigger than C1

c (R)), then (2)
still holds for C via the same proof, and C is dense in Ẇ 1,1(R).

▶ So (2) holds for all u ∈ Ẇ 1,1(R).
▶ By approximating ḂV(R) functions with Ẇ 1,1(R) functions

pointwise a.e., one shows (2) holds for u ∈ ḂV(R) as well.



▶ Recap: Let γ ∈ R \ [−1, 0].

▶ We said for n ≥ 1 and u ∈ L1
loc(Rn),[u(x+ h)− u(x)

|h|1+γ

]
L1,∞(R2n,|h|γ−ndxdh)

≃ ∥∇u∥M(Rn)

in the sense that one side is finite iff the other is, and that the
two sides are comparable.

▶ When n = γ = 1 we sketched the proof of ≲.

▶ Still assuming n = γ = 1, let’s see why the reversed inequality
holds, i.e. why the ḂV(R) norm of u is controlled by[u(x+ h)− u(x)

|h|2
]
L1,∞(R2,dxdh)

.

▶ First consider the special case u ∈ C2
c (R). Then consider the

general case for u ∈ L1
loc(R).



▶ If we already know u ∈ C2
c (R), then one can show

∥u′∥L1(R) = lim
λ→+∞

λ

2
L2

{
(x, h) ∈ R2 :

|u(x+ h)− u(x)|
|h|2

> λ
}
.

This is because the set on the right side is roughly the same as{
(x, h) ∈ R2 :

|u′(x)|
|h|

> λ
}

whose L2 measure is equal to∫
R

∫
|h|≤ |u′(x)|

λ

dhdx =

∫
R
2
|u′(x)|

λ
dx.

This approximation gets better as λ → +∞, hence the first
equality holds.

▶ Since limλ→+∞ ≤ supλ>0, we see that for u ∈ C2
c (R),

∥u′∥L1(R) ≤
1

2

[u(x+ h)− u(x)

|h|2
]
L1,∞(R2,dxdh)

.



▶ On the other hand, this limiting formula

∥u′∥M(R) = lim
λ→+∞

λ

2
L2

{
(x, h) ∈ R2 :

|u(x+ h)− u(x)|
|h|2

> λ
}

is known to fail for general u ∈ ḂV(R). Thus the above proof
won’t work in general.

▶ What comes to our rescue is the BBM formula.
▶ If u ∈ L1

loc(R) and A :=
[
u(x+h)−u(x)

|h|2

]
L1,∞(R2,dxdh)

< ∞, one

can show that

lim
s→1−

(1− s)

∫∫
[−R,R]2

|u(x+ h)− u(x)|
|h|1+s

dxdh ≲ A

uniformly in R, because

|u(x+ h)− u(x)|
|h|1+s

=

(
|u(x+ h)− u(x)|

|h|2

) 1+s
2

|u(x+h)−u(x)|
1−s
2

and the first factor is in L
2

1+s
,∞(R2, dxdh) when A < ∞.

▶ The BBM formula then gives u ∈ ḂV(R) with ∥u′∥M(R) ≲ A.



Related works
▶ Recently, Óscar Doḿınguez and Mario Milman have been able

to put some of the above results in an abstract framework.

▶ They proved that if X is a σ-finite measure space, 1 ≤ p < ∞
and {Tt}t>0 is a family of sublinear operators on Lp(X), then
for all f ∈ Lp(X) satisfying

∥Ttf − f∥L∞(X) ≲f t1/p for all t > 0,

we have
lim
λ→∞

(
λ|Eλ|1/p

)
= ∥f∥Lp(X),

where

Eλ :=
{
(x, t) ∈ X × (0,∞) :

|Ttf(x)|
t1/p

> λ
}
.

▶ They found an impressive list of applications, from a
characterization of ∥∆u∥Lp(Rn) and ∥∂x1∂x2u∥Lp(R2), to
relations between ∥f∥Lp(Rn) with level set estimates for
spherical averages of f for p > n

n−1 , to ergodic theory, etc.



Open questions
▶ Let n ≥ 1, νγ := |h|γ−ndxdh, 1 ≤ p < ∞, u ∈ L1

loc(Rn), and

Eλ :=
{
(x, h) ∈ R2n :

|∆hu(x)|
|h|1+

γ
p

> λ
}
.

1. Suppose

lim inf
λ→+∞

(
λνγ(Eλ)

1/p
)
< +∞ for some γ > 0, or

lim inf
λ→0+

(
λνγ(Eλ)

1/p
)
< +∞ for some γ < 0.

Must it be true that u ∈ Ẇ 1,p(Rn) if 1 < p < ∞, and
u ∈ ḂV(Rn) if p = 1?

2. Suppose p = 1, and u ∈ ḂV(Rn). Must it be true that

∥∇u∥M(Rn) ≲ lim inf
λ→+∞

(
λνγ(Eλ)

)
if γ > 0?

∥∇u∥M(Rn) ≲ lim inf
λ→0+

(
λνγ(Eλ)

)
if γ < 0?

These are true if we assume additionally u ∈ Ẇ 1,1(Rn).



▶ See works of Nguyen, Brezis and Bourgain for positive
answers to the above questions when γ = −p.

▶ See also Poliakovsky’s work for γ = n, where lim inf is
replaced by lim sup.


