Exercise Sheet | Flavor Physics BSM | ICTS $2022 \mid$ J. Virto Future Flavours: Prospects for Beauty, Charm and Tau Physics

Tutor: Aritra Biswas

1. Flavor symmetry:
(a) Check explicitly that the flavor group $\mathcal{F}=U(3)^{5}$ is a global symmetry of the Standard Model with no Yukawa couplings.
(b) Check explicitly that the flavor subgroup

$$
\mathcal{G}=U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau} \times U(1)_{Y}
$$

is a global symmetry of the full Standard Model.
(c) Starting with a completely generic form for the SM Yukawa couplings, use the Flavor symmetry \mathcal{F} to redefine the fermion fields such that the only change in the full SM Lagrangian is that the Yukawa couplings can be written as:

$$
\begin{aligned}
y_{e}^{i j} & =\operatorname{diag}\left(y_{e}, y_{\mu}, y_{\tau}\right) \\
y_{u}^{i j} & =\operatorname{diag}\left(y_{u}, y_{c}, y_{t}\right) \\
y_{d}^{i j} & =V_{\mathrm{CKM}} \cdot \operatorname{diag}\left(y_{d}, y_{s}, y_{b}\right)
\end{aligned}
$$

2. Determination of the CKM Matrix:

Consider the CKM Matrix in the Wolfenstein parametrization:
$V_{\mathrm{CKM}}=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)=\left(\begin{array}{ccc}1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)$.
(a) Determine the Wolfenstein parameters $\{\lambda, A, \rho, \eta\}$ from:

$$
\begin{aligned}
\Gamma\left(K^{+} \rightarrow \mu^{+} \nu_{\mu}\right)^{\exp } & =3.3793(79) \cdot 10^{-8} \mathrm{eV} \\
\Gamma\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)^{\exp } & =4.38(96) \cdot 10^{-8} \mathrm{eV} \\
\Delta M_{B_{d}}^{\exp } & =3.333(13) \cdot 10^{-10} \mathrm{MeV} \\
\Delta M_{B_{s}}^{\exp } & =1.1688(14) \cdot 10^{-8} \mathrm{MeV}
\end{aligned}
$$

using:

$$
\begin{aligned}
\Gamma(P \rightarrow \ell \nu) & =\left|V_{u q}\right|^{2} \frac{f_{P}^{2} m_{P} m_{\ell}^{2}}{16 \pi v^{4}}\left(1-\frac{m_{\ell}^{2}}{m_{P}^{2}}\right)^{2}\left(1+\delta_{P}\right) \\
\Delta M_{B_{q}} & =\left|V_{t b} V_{t q}\right|^{2} \frac{m_{B_{q}} f_{B_{q}}^{2} m_{W}^{2}}{12 \pi^{2} v^{4}} B_{1}^{q} S_{1}\left(m_{b}\right)
\end{aligned}
$$

(with $P=\{K, B\}$ and $q=\{d, s, b\}$ depending on the case), and the numerical parameters given in the table at the end of the exercise sheet.
Advise: Determine first the quantities $\left\{\left|V_{u s}\right|,\left|V_{u b}\right|,\left|V_{t b} V_{t d}\right|,\left|V_{t b} V_{t s}\right|\right\}$, and then use the Wolfesntein parametrization to order $\mathcal{O}\left(\lambda^{4}\right)$ to determine $\{\lambda, A, \rho, \eta\}$. You will need a computer.
(b) Consider now a BSM contribution in the Low-Energy EFT given by:

$$
\mathcal{L}_{\mathrm{BSM}}=c\left(\bar{b} \gamma^{\mu} P_{R} u\right)\left(\bar{\nu}_{\tau} \gamma_{\mu} \tau\right)+\text { h.c. }
$$

How is the determination of the CKM matrix modified as a function of the Wilson coefficient c ?
3. Consider the following effective Lagrangian relevant for $b \rightarrow$ s $\ell \ell$ processes:

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD}+\mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \frac{\alpha}{4 \pi}\left(C_{9} \mathcal{O}_{9}+C_{10} \mathcal{O}_{10}\right)
$$

with the Low-Energy EFT effective operators

$$
\mathcal{O}_{9}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) ; \quad \mathcal{O}_{10}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) .
$$

Consider the process $\bar{B}_{s}(p) \rightarrow \ell^{+}\left(p_{+}\right) \ell^{-}\left(p_{-}\right)$, to leading order in G_{F} and α.
(a) Show that the contribution from the operator \mathcal{O}_{9} to $\mathcal{A}\left(\bar{B}_{s} \rightarrow \ell^{+} \ell^{-}\right)$vanishes.
(b) Calculate the contribution from the operator \mathcal{O}_{10} to $\mathcal{A}\left(\bar{B}_{s} \rightarrow \ell^{+} \ell^{-}\right)$. Use the following expression for the relevant hadronic matrix element:

$$
\langle 0| \bar{s}_{\mu} P_{L} b\left|\bar{B}_{s}(p)\right\rangle=-\frac{1}{2} f_{B_{s}} p^{\mu} .
$$

(c) Calculate the unpolarized decay rate, using the formula (e.g. see Peskin)

$$
\Gamma(P \rightarrow \bar{f} f)=\frac{\sqrt{1-4 m_{f}^{2} / m_{P}^{2}}}{16 \pi m_{P}} \overline{|\mathcal{A}|^{2}}
$$

(d) Use the numerical values given in the table below to give a SM prediction to the branching fraction: $\mathcal{B}\left(\bar{B}_{s} \rightarrow \ell^{+} \ell^{-}\right)^{\mathrm{SM}}=\tau_{B_{s}} \Gamma\left(\bar{B}_{s} \rightarrow \ell^{+} \ell^{-}\right)^{\mathrm{SM}}$.
(e) Compare your SM prediction with

$$
\mathcal{B}\left(\bar{B}_{s} \rightarrow \ell^{+} \ell^{-}\right)^{\exp }=(2.93 \pm 0.35) \cdot 10^{9}
$$

and use this to determine/constrain possible NP contributions to C_{10} (write $C_{10}=$ $\left.C_{10}^{\mathrm{SM}}+C_{10}^{\mathrm{NP}}\right)$.
(f) Calculate C_{10}^{NP} in two models:

- Z^{\prime} model with

$$
\mathcal{L}_{Z^{\prime}}=\left(\lambda_{s b} \bar{s} \bar{Z}^{\prime} P_{L} b+h . c .\right)+\lambda_{\ell}^{V} \bar{\ell} \not Z^{\prime} \ell+\lambda_{\ell}^{A} \bar{\ell} Z^{\prime} \gamma_{5} \ell+\frac{1}{2} M_{Z^{\prime}}^{2} Z^{\prime \mu} Z_{\mu}^{\prime} .
$$

- LQ model with

$$
\mathcal{L}_{\phi}=\lambda_{b} \phi \bar{b} P_{L} \ell+\lambda_{s} \phi \bar{s} P_{L} \ell+h . c .+M_{\phi}^{2} \phi^{\dagger} \phi
$$

and constrain $M_{Z^{\prime}}$ and M_{ϕ} if all $\lambda_{i}=0.1$.

$v=246.21965(6) \mathrm{GeV}$	$G_{F}=1.166 \cdot 10^{-5} \mathrm{GeV}^{-2}$
$\alpha\left(m_{b}\right)=1 / 132$	$m_{W}=80.379(12) \mathrm{GeV}$
$m_{\mu}=105.6583745(24) \mathrm{MeV}$	$m_{\tau}=1.77686(12) \mathrm{GeV}$
$\delta_{K}=0.0107(21)$	$\delta_{B} \simeq 0$
$m_{K^{ \pm}}=493.677(16) \mathrm{MeV}$	$m_{B^{ \pm}}=5.27932(14) \mathrm{GeV}$
$m_{B_{d}}=5.27963(15) \mathrm{GeV}$	$m_{B_{s}}=5.36689(19) \mathrm{GeV}$
$f_{K^{ \pm}}=155.7(0.3) \mathrm{MeV}$	$f_{B^{ \pm}}=190.0(1.3) \mathrm{MeV}$
$f_{B_{d}}^{2} B_{1}^{d}=0.0297(17) \mathrm{GeV}{ }^{2}$	$f_{B_{s}}^{2} B_{1}^{s}=0.0432(22) \mathrm{GeV}^{2}$
$S_{1}\left(m_{b}\right) \simeq 1.9848$	$f_{B_{s}}=230.3(1.3) \mathrm{MeV}^{2}$
$\lambda=0.22537(46)$	$A=0.828(21)$
$\rho=0.194(24)$	$\eta=0.391(48)$
$\tau_{B_{s}}=1.527(11) \cdot 10^{-12} s$	$1 s=1.5 \cdot 10^{24} \mathrm{GeV}^{-1}$
$C_{10}^{\mathrm{SM}}\left(m_{b}\right)=-4.309$	

Table 1: Numerical values for the parameters of interest.

