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PLAN:

A- Choquet Deny on nilpotent groups.

B- Ratner-Shah and Benoist-Quint equidistribution theorems.

C- Random ergodic theorems and Random Ratner theorem.

D- Local limit theorem on the Heisenberg group, limiting law, Lévy area, etc.

E- Non-centered local limit theorem on an arbitrary nilpotent Lie group.



1. Review of the Choquet-Deny property

Choquet-Deny (1960) :  

i.e

Furstenberg/Dynkin-Malyutov ’60s: the same holds for discrete nilpotent groups.

Frisch-Hartman-Tamuz-Vahidi ’19: in fact this characterizes nilpotent-by-finite groups 

among finitely generated groups.

Furstenberg’s question: Does Choquet-Deny hold for all nilpotent locally compact 

groups?

Guivarc’h’s thesis ’70: YES if µ has a finite moment, i.e. 



2. Raghunathan-Dani conjectures : Ratner’s theorem (1990)

NOTE: Item 3) is a consequence of 1) via the Choquet-Deny theorem on R :



3. Benoist-Quint ‘08:

Note: if all stationary measures are invariant, we say that the action is stiff (Furstenberg).



3. Benoist-Quint ‘08:

Note: Ratner’s and B-Q’s theorems are equidistribution theorems valid for every point x.



3. Benoist-Quint ‘08:

Note: Ratner’s and B-Q’s theorems are equidistribution theorems valid for every point x.

By contrast ergodic theorems give convergence of averages for almost every point with respect 

to some invariant ergodic measure. For random walk averages one has classical ergodic 

theorems:



3. Benoist-Quint

Remark: In the setting of Benoist-Quint’s theorem, Bénard (’21) has recently shown that the 

convergence also holds without Cesaro averages, provided the measure charges the identity:



4.Random Ratner’s theorem

Nimish Shah (’90s), answering a question of Ratner, has generalized her equidistribution theorem to 

higher dimensional unipotent groups.



4. Random Ratner’s theorem:

Our main result is that the equidistribution continues to hold for unipotent orbits when ordinary averages 

are replaced by random walk averages, namely:

The proof will appear as a consequence of a general Local Limit Theorem we establish on 

arbitrary connected nilpotent Lie groups and discuss in the second part of this talk.

Rk: this extends my (unpublished) 2004 PhD thesis, where the same was shown for µ 

symmetric with finite support. 



4. Random Ratner’s theorem:

Remark: The centeredness assumption in 2. is necessary: non-centered aperiodic walks can very 

well have full escape of mass at infinity.



5. The classical local limit theorem on R:

The LLT gives uniform gaussian approximation in windows of bounded scale. While the CLT needs only a finite 

2nd moment assumption on the law, the LLT also requires that the measure be aperiodic (i.e. not contained in a 

coset of a proper closed subgroup). Although cases of the LLT (e.g. when the measure is Bernoulli) go back to 

the 18th century, in this form (for an arbitrary aperiodic measure) it was first proved by Ch. Stone (’60s). 



5. The classical local limit theorem on R:

From this corollary one deduces the convergence of random averages in the setting of Ratner’s theorem for one-

parameter unipotent subgroups. On arbitrary nilpotent groups a similar result can be deduced from the LLT we are 

about to state, yielding a proof of Theorem 1.



6. The Heisenberg group:

Dilation automorphisms:

The limit measure ν depends only on the 1st and 2nd moments of µ. Another proof follows from the

thesis of D. Wehn’s (1959), where a general infinitesimal CLT is proven on arbitrary Lie groups.

Tutubalin (’60s) proved a Central Limit Theorem in the centered case:



6. The Heisenberg group:



6. The Heisenberg group:

The Lévy area is the signed area 

around the chord from the origin to 

(x,y). 

The blue parts are counted 

positively, while the green 

part contribute negatively.

The measure ν is the distribution at time t=1 of a normalized Brownian motion on U



6. The Heisenberg group:

Proofs of the CLT typically rely on variants of Trotter’s theorem on convergence of sequences of 

semigroups of operators. Much harder to establish is a Local Limit Theorem.

Varopoulos and Alexopoulos have developed in the 1990s very versatile analytical tools to

prove LLTs and heat kernel estimates on groups of polynomial growth. However these results

require the driving measure µ to be absolutely continuous w.r.t Haar (and often symmetric). In

2004, I obtained the following LLT on the Heisenberg group, valid for any (compactly

supported) aperiodic and centered measure:



6. The Heisenberg group:

By contrast, when the measure is not centered, the behavior of the walk is quite different:



6. The Heisenberg group:

By contrast, when the measure is not centered, the behavior of the walk is quite different:



Centered case: the apple Non-centered case: ellipsoid



6. The Heisenberg group, proof of the LLT:

To prove the LLT, one needs to estimate the Fourier transform of the measure. 

Key exponential sum 

cancellation estimate:

In my ’04 thesis, I used unitary representations of the Heisenberg group, and a spectral gap estimate to 

establish the above key cancellation estimate.



6. The Heisenberg group, proof of the LLT:

In my ’04 thesis, I used unitary representations of the Heisenberg group, and the following spectral gap 

estimate to establish the above key estimate:

Recently, Diaconis and Hough (2018) have given a new proof of the key estimate, based on a combinatorial 

“path-swapping” idea. 

This idea turns out to be quite versatile and also works in the non-centered case.

Another crucial step in the proof, is an analogue of the gaussian replacement scheme used in classical proofs 

of the standard CLT for sums of real random variables (Lindeberg’s method). 

The replacement scheme here is with the limiting measure: 

One compares and controls the difference of their Fourier transform.



6. The Heisenberg group, Diaconis-Hough “path-swap”

Hence:



7. General nilpotent groups

The case of a general nilpotent Lie group is much more involved. Hough (2018) managed to handle 

the centered case. 



7. General nilpotent groups



7. General nilpotent groups: associated graded group



7. General nilpotent groups: associated graded group



7. General nilpotent groups: non-centered CLT

With these notations the CLT on an arbitrary nilpotent Lie group takes the following form – and is

due to Raugi ‘78



7. General nilpotent groups: non-centered LLT

Aperiodicity of the measure ensures that this PDE satisfies Hörmander’s criterion. The solution is

smooth, non-negative, and can be shown to satisfy a Harnack principle and the following

pointwise gaussian estimates:



7. General nilpotent groups: non-centered LLT

The limit law ν is centered on U, has same covariance matrix as µ and same mean on 𝑚2. It is uniquely

determined by this data.

The method of proof builds on the ideas of Diaconis-Hough and Hough, uses Fourier estimates and a

more sophisticated variant of the path-swap idea to establish exponential sums cancellation. It also

exploits a form of gaussian replacement adapted to this setting.

Power saving rates of convergence can be obtained if 1_B is replaced by a smooth function f. Also a

Berry-Essen estimate (quantitative CLT) with square root error can be derived.

Consequences of the result include a new proof of the Choquet-Deny theorem for these measures, as

well as the probabilistic Ratner equidistribution theorem described earlier.



Thank you!


