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Electron Ion Collider
a machine to look inside the nucleus

EIC will take precision snapshots of the internal structures of the protons
and neutrons, allowing us a better understanding of the strongest force in nature

A precise theoretical description of our current understanding (the Standard Model)
is also necessary to find any agreement/disagreement with precise experimental data

The inclusive/semi-inclusive deep inelastic scattering (DIS/SIDIS) plays a crucial role.
Parton model connects the partonic cross-section to the hadronic one through

PDFs & FFs. We compute the partonic cross-section using the framework
of perturbative QCD order by order in αs .

Higher order corrections are essential to

• achieve sufficiently/comparably precise theoretical estimates
• reduce the uncertainties arising from the factorization scales

detailed talk by V. Ravindran
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An example from the LHC : NNLO QCD for the SM Higgs

The NNLO QCD corrections played very important role in confirming the SM Higgs.

16.00 pb LO
+ 20.84 pb NLO (EFT)
- 2.05 pb (mt exact NLO)
+ 9.56 pb NNLO (EFT)
+ 0.34 pb NNLO (1/mt)
+ 2.40 pb EW
+ 1.49 pb N3LO (EFT) ⊙ ←− LO

If we had considered LO only, we would have never found the SM Higgs.

For EIC also, higher order corrections will play important role!
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SEMI-INCLUSIVE DIS

a

SIDIS

l + H → l + H
′
+ X

Phase-space:
Final state hadron is tagged!
Extra constrain on the phase-space

dPS|SIDIS = dPS|DIS × δ

(
z
′ −

pa.pb

pa.q

)

DIS

l + H → l + X

Phase-space:
All final states are fully integrated!

The hadronic part is characterized by two structure functions F1 & F2 .
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Parton model & perturbative expansion

Fi = x
i−1∑

a,b

∫ 1

x

dx1

x1
fa(x1, µ

2
F )

∫ 1

z

dz1

z1
Db(z1, µ

2
F ) × Fi,ab

(
x

x1
,
z

z1
, Q

2
, µ

2
F

)
⇓

the finite coefficient functions which can be computed perturbatively

In QCD, we have a series expansion of the partonic cross sections in strong coupling constant αs :

Fab(z) = F(0)
ab

∞∑
m=0

α
m
s F(m)

ab (z)

= F(0)
ab

[
1+ αsF(1)

ab (z) + α
2
sF

(2)
ab (z) + α

3
sF

(3)
ab (z) + · · ·

]
↗

We are interested in the second order correction
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Goal of this talk
• Motivation, kinematics and the basics have been discussed on Monday

talk by V. Ravindran

• In this talk, we discuss the details of the computational technology
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Schematic diagrams for NNLO contributions to SIDIS

Each individual contribution is divergent : 1
ϵ
in dimensional regularization
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Schematic diagrams for NNLO contributions to SIDIS

Sum of all degenerate processes: KLN theorem & mass factorization
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Computational procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF to generate Feynman diagrams
• In-house FORM routines for algebraic manipulation : Lorentz, Dirac and Color algebra
• Reverse unitarity : phase-space integrals to loop integrals

δ(k
2 − m

2
) ∼

1
2πi

( 1
k2 − m2 − i0

−
1

k2 − m2 + i0

)
• Decomposition of the dot products to obtain scalar integrals

2l.p
l2(l − p)2

=
l2 − (l − p)2 + p2

l2(l − p)2
=

1
(l − p)2

−
1
l2

+
p2

l2(l − p)2

• Identity relations among scalar integrals : IBPs, LIs & SRs
• Algebraic linear system of equations relating the integrals

⇓
Master integrals (MIs)

————————————————————————
• Computation of MIs : Method of differential equation (generic & canonical)
• UV renormalization and mass factorization
• Numerical evaluation using suitable PDFs and FFs
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Loop computation procedure: Integration-by-parts identities
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Integration-by-parts identities
[Tkachov, Chetyrkin]

Generalization of Gauss’s theorem in d dimension

Within dimensional regularization, all integrals in d dimension are well-defined and convergent⇒
integrand must be zero at boundary∫ l∏

i=1
Dd

li
d

dlµj

(
vµ

D
n1
1 . . . Dnm

m

)
= 0

∣∣∣∣
v≡l,p

A very simple example 1:

I(n) =

∫
ddl

(2π)d/2
1

(l2 − m2)n

The identity for v ≡ l gives a recursion relation for I(n + 1) ⇒ I(n)

I(n + 1) =
(d − 2n)
2nm2 I(n)

The relation can be represented as

n• • • •

0 1 2 3
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Integration-by-parts identities
[Tkachov, Chetyrkin]Another simple example 2:

I(n1, n2) =

∫
ddl

(2π)d/2
1

(l2 − m2
1)

n1 ((l − q)2 − m2
2)

n2

The relations now depend on n1 and n2 and whether they are positive or non-positive.

(n1, n2)

◦ • • • •
••

•
•
•

• The relations are like translations from one point to another.
• The first goal is to choose the red points (the MIs).
• The second goal is to find an efficient path (IBP reduction rules) with minimal translation.
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Integration-by-parts identities
[Tkachov, Chetyrkin]

Integral families with 7 propagators.

I(n1, n2, . . . , n7)

For NNLO, it’s not difficult! Thousands of Feynman integrals can be written in terms of only a few!
However for three-loop onward, it becomes extremely challenging.

Scalar integrals form a ‘vector space’⇒ IBP reduction is a ‘projection’ to basis vectors

Several technical advances have been made in recent years by improving system-solving strategy,
either due to novel algorithms or to the development of software.

• LiteRed : Symbolical recursion relation
• FIRE, Reduze, Kira : Laporta algorithm; Solves for specific integer values
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Loop computation procedure: Solving remaining integrals
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The method of differential equations
A Feynman integral is a function of spacetime dimension d and kinematic invariants x, z.

Ji = N
∫

ddl1

(2π)d
ddl2

(2π)d
1

l21 l
2
2((l1 − l2)2 − m2)(l1 − q)2(l2 − q)2

≡ f(d, x, z)

The idea is to obtain a differential eqn. for the integral w.r.t. x, z and solve it.
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∫

ddl1

(2π)d
ddl2

(2π)d
1

l21 l
2
2((l1 − l2)2 − m2)(l1 − q)2(l2 − q)2

≡ f(d, x, z)

The idea is to obtain a differential eqn. for the integral w.r.t. x, z and solve it.

d

dz
Ji = some combinations of integrals

⇓ IBP identities/reduction

=

n∑
j=1

cijJj

cij ’s are rational function of d, x and z.

Ji is a basis ‘vector’⇒ d
dz is a ‘rotation’⇒ IBP reduction is a ‘projection’ to basis vectors
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dz



J1
J2
J3
J4
.
.
.
Jn


=



• • • • · · · •
• • • • · · · •
• • • • · · · •
• • • • · · · •
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
• • • • · · · •





J1
J2
J3
J4
.
.
.
Jn



dzJ = A(d, z)J
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Ji = N
∫

ddl1

(2π)d
ddl2

(2π)d
1

l21 l
2
2((l1 − l2)2 − m2)(l1 − q)2(l2 − q)2

≡ f(d, x, z)
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dz



J1
J2
J3
J4
.
.
.
Jn−1
Jn


=



• • • • · · · • •
0 • • • · · · • •
0 • • • · · · • •
0 0 0 • · · · • •
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 · · · • •
0 0 0 0 · · · 0 •





J1
J2
J3
J4
.
.
.
Jn−1
Jn



The bullets (•) indicate a non-zero rational function of d, x and z.

To solve such a system, it would be best to organize it in such a way that it diagonalizes, or at least
it takes a block-triangular form. Then, it can be solved using bottom-up approach.
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The method of differential equations

• However, even a small 2× 2 sub-system is difficult to solve in d-dimension.
• The solution is to expand the sub-system in ϵ and solve order-by-order in ϵ.

d

dz
Jn(z, ϵ) = Cnm(z, ϵ)Jn(z, ϵ) + Rn(z, ϵ)

Taylor expansion in ϵ

Jn(z, ϵ) =
∞∑

k=−2
J

(k)
n (z)ϵ

k
, Cn(z, ϵ) =

∞∑
k=0

C(k)
n (z)ϵ

k
,Rn(z, ϵ) =

∞∑
k=−2

R(k)
n (z)ϵ

k

The leading pole is fixed for a topology (process).

d

dz
J

(k)
n (z) = C(0)

nm(z)J
(k)
n (z) +

k+2∑
p=1

C(p)
nm(z)J

(k−p)
n (z) + R(k)

n (z)
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Algorithm : to solve a system of linear first order diff. eqns.

• First step is to reduce the sub-system to a higher order eqn in a single unknown

dz

(
J1
J2

)
=

[
• •
• •

] (
J1
J2

)
+

(
R1
R2

)
⇒

a
d2J1
dz2

+ b
dJ1
dz

+ cJ1 + d = 0

J2 = a′ dJ1
dz

+ b′J1 + c′

• Start with the leading pole (ϵ−2) - find the homogeneous solutions (hi(z)) and best
uncoupling procedure - solve for the nonhomogeneous part using the method of variation
of constant

• Structure of homogeneous part is same at each order in ϵ-expansion. Hence the
homogeneous solutions and uncoupling procedure are unique for any order

• Now at each order in ϵ, find the nonhomogeneous part (r(y)) keeping the uncoupling
structure fixed and solve using variation of constant

g(z) =
m∑
i=1

hi(z)

∫
dy

r(y)Wi(y)

W (y)

The results are obtained in terms of iterated integrals (HPLs/GPLs).
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Direct numerical integration of Feynman integrals is tedious, unstable and challenging
to obtain precise results.
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Direct numerical integration of Feynman integrals is tedious, unstable and challenging
to obtain precise results.

Iterated integrals are one-dimensional. They can be computed with great precision in
a short amount of time. Besides, they have the following properties:

(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a
basis is extremely effective to reduce the computation time by few times.

(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z)
to constants (1). This makes the integration really precise.
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a short amount of time. Besides, they have the following properties:

(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a
basis is extremely effective to reduce the computation time by few times.

(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z)
to constants (1). This makes the integration really precise.

Till date, most of the MIs were solved in terms of GPLs
⇓

the iterative kernel is a simple polynomial
∫ x
0

dt
a+t

∫ t
0 · · ·

What happens when we have (multiple) square-roots?!
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Rationalization

Rationalizable

• Find a suitable transformation

Let’s consider
√
4m2 − s .

We can use Landau transformation
s = −m2 (1−x)2

x for this.

Non-rationalizable

• A single transformation can not rationalize all
square-roots simultaneously.

⇓
Square-roots will be present in the iterated integrals.

1) We can accept ’the fact’ and evaluate them with ap-
propriate analytic continuation.

or
2) Instead of using a single transformation rule to ra-
tionalize them, we write the system (each MI) as sum
of functions of dependent variables and treat them
separately. As a result, each sub-system has alpha-
bet with ‘good’ letters with different argument.
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Phase-space computation procedure: Reverse unitarity
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Reverse unitarity

• The IBP identities and method of differential equations are state-of-the-art tools. They only
depend on the ‘form’ of the object (Feynman integrals) and its variables.

• The phase-space integrals are challenging, specially the angular integration.

N
∫

d
d
l1d

d
l2d

d
pb

1
(pa − l1)2 · · ·

δ(l
2
1)δ(l

2
2)δ(p

2
b)δ

d
(pa+q−l1−l2−pb)δ

(
z
′ −

pa.pb

pa.q

)

• The idea is to write the phase-space integrals in the loop-integral format and apply the
methods (IBP & DE).

• Reverse unitarity

δ(k
2 − m

2
) ∼

1
2πi

( 1
k2 − m2 − i0

−
1

k2 − m2 + i0

)

• We can consider only the first term, as the differential equation is independent of the sign
of i0. Of course, we need a boundary conditions to solve differential equations and that is
where the actual physics information (phase-space integrals) goes in!
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To obtain the finite partonic cross-section
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Compute & combine everything and mass factorization

• We compute relevant Feynman diagrams & corresponding Feynman integrals analytically.
• We combine them appropriately, perform mass factorization and obtain the finite partonic
cross-section.
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Results!
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Results

We have computed the non-singlet contributions
to the quark initiated process with quark frag-
menting to hadrons. The finite partonic cross-
section has been convoluted with PDFs and FFs to
obtain the hadronic cross-section through a FOR-
TRAN code.
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0
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0.08
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0.12

)
2

(Qσ

)
2

(Qσ
)-

2 Rµ(σ

NLO
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Checks

• The master integrals were computed using different methods!
• Mass factorization (universal) removes all remaining infrared singularities!
• Successful checks with available results in the threshold limit!
• The constraint (z′) can be integrated in our analytic result. We found perfect agreement
with the fully inclusive result.
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Concluding remarks!
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• EIC will unravel the mysteries of strong force.
• Theoretical precision studies are extremely necessary to fully exploit the EIC data.
• Our current (well-tested) theoretical understanding (the SM) is constrained by its
perturbative nature and hence, higher order perturbative corrections are necessary to
achieve precise theoretical predictions.

——————————————
• In this talk, we have presented the computational details to obtain the first results on NNLO
QCD corrections to SIDIS.

• The technicalities are impressive and generic.
——————————————

• Aside the phenomenological impact of the result, it also sets a milestone for the
computational technique.

Thank you for your attention!
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