Second order QCD corrections to SIDIS : Technicalities

Narayan Rana
NISER Bhubaneswar

Probing Hadron Structure at the Electron-Ion Collider
8th February 2024
in collaboration with S. Goyal, S. Moch, V. Pathak, V. Ravindran

Electron Ion Collider

 a machine to look inside the nucleusEIC will take precision snapshots of the internal structures of the protons and neutrons, allowing us a better understanding of the strongest force in nature

A precise theoretical description of our current understanding (the Standard Model) is also necessary to find any agreement/disagreement with precise experimental data

The inclusive/semi-inclusive deep inelastic scattering (DIS/SIDIS) plays a crucial role.
Parton model connects the partonic cross-section to the hadronic one through PDFs \& FFs. We compute the partonic cross-section using the framework of perturbative QCD order by order in α_{s}.

Higher order corrections are essential to

- achieve sufficiently/comparably precise theoretical estimates
- reduce the uncertainties arising from the factorization scales

An example from the LHC : NNLO QCD for the SM Higgs

The NNLO QCD corrections played very important role in confirming the SM Higgs.

```
16.00 pb LO
+20.84 pb NLO (EFT)
-2.05 pb ( }\mp@subsup{m}{t}{}\mathrm{ exact NLO)
+ 9.56 pb NNLO (EFT)
+ 0.34 pb NNLO (1/m}\mp@subsup{|}{t}{}
+ 2.40 pb EW
+ 1.49 pb N N}\textrm{LO}(\textrm{EFT}
```


If we had considered LO only, we would have never found the SM Higgs.
For EIC also, higher order corrections will play important role!

Semi-Inclusive DIS

SIDIS

$$
l+H \rightarrow l+H^{\prime}+X
$$

Phase-space:
Final state hadron is tagged!
Extra constrain on the phase-space

DIS

$$
l+H \rightarrow l+X
$$

Phase-space:
All final states are fully integrated!

$$
\left.d P S\right|_{\mathrm{SIDIS}}=\left.d P S\right|_{\mathrm{DIS}} \times \delta\left(z^{\prime}-\frac{p_{a} \cdot p_{b}}{p_{a} \cdot q}\right)
$$

The hadronic part is characterized by two structure functions $F_{1} \& F_{2}$.

Parton model \& perturbative expansion

$$
F_{i}=x^{i-1} \sum_{a, b} \int_{x}^{1} \frac{d x_{1}}{x_{1}} f_{a}\left(x_{1}, \mu_{F}^{2}\right) \int_{z}^{1} \frac{d z_{1}}{z_{1}} D_{b}\left(z_{1}, \mu_{F}^{2}\right) \times \mathcal{F}_{i, a b}\left(\frac{x}{x_{1}}, \frac{z}{z_{1}}, Q^{2}, \mu_{F}^{2}\right)
$$

the finite coefficient functions which can be computed perturbatively

In QCD, we have a series expansion of the partonic cross sections in strong coupling constant α_{s} :

$$
\begin{aligned}
\mathcal{F}_{a b}(z) & =\mathcal{F}_{a b}^{(0)} \sum_{m=0}^{\infty} \alpha_{s}^{m} \mathcal{F}_{a b}^{(m)}(z) \\
& =\mathcal{F}_{a b}^{(0)}\left[1+\alpha_{s} \mathcal{F}_{a b}^{(1)}(z)+\alpha_{s}^{2} \mathcal{F}_{a b}^{(2)}(z)+\alpha_{s}^{3} \mathcal{F}_{a b}^{(3)}(z)+\cdots\right]
\end{aligned}
$$

We are interested in the second order correction

Goal of this talk

- Motivation, kinematics and the basics have been discussed on Monday talk by V. Ravindran
- In this talk, we discuss the details of the computational technology

Schematic diagrams for NNLO contributions to SIDIS

Each individual contribution is divergent: $\frac{1}{\epsilon}$ in dimensional regularization

Schematic diagrams for NNLO contributions to SIDIS

Sum of all degenerate processes: KLN theorem \& mass factorization

Computational procedure

$$
d=4-2 \epsilon
$$

- Diagrammatic approach -> QGRAF to generate Feynman diagrams
- In-house FORM routines for algebraic manipulation: Lorentz, Dirac and Color algebra
- Reverse unitarity : phase-space integrals to loop integrals

$$
\delta\left(k^{2}-m^{2}\right) \sim \frac{1}{2 \pi i}\left(\frac{1}{k^{2}-m^{2}-i 0}-\frac{1}{k^{2}-m^{2}+i 0}\right)
$$

- Decomposition of the dot products to obtain scalar integrals

$$
\frac{2 l \cdot p}{l^{2}(l-p)^{2}}=\frac{l^{2}-(l-p)^{2}+p^{2}}{l^{2}(l-p)^{2}}=\frac{1}{(l-p)^{2}}-\frac{1}{l^{2}}+\frac{p^{2}}{l^{2}(l-p)^{2}}
$$

- Identity relations among scalar integrals : IBPs, LIs \& SRs
- Algebraic linear system of equations relating the integrals

```
                        \Downarrow
Master integrals (MIs)
```

- Computation of MIs : Method of differential equation (generic \& canonical)
- UV renormalization and mass factorization
- Numerical evaluation using suitable PDFs and FFs

Computational procedure

$$
d=4-2 \epsilon
$$

- Diagrammatic approach -> QGRAF to generate Feynman diagrams
- In-house FORM routines for algebraic manipulation: Lorentz, Dirac and Color algebra
- Reverse unitarity : phase-space integrals to loop integrals

$$
\delta\left(k^{2}-m^{2}\right) \sim \frac{1}{2 \pi i}\left(\frac{1}{k^{2}-m^{2}-i 0}-\frac{1}{k^{2}-m^{2}+i 0}\right)
$$

- Decomposition of the dot products to obtain scalar integrals

$$
\frac{2 l \cdot p}{l^{2}(l-p)^{2}}=\frac{l^{2}-(l-p)^{2}+p^{2}}{l^{2}(l-p)^{2}}=\frac{1}{(l-p)^{2}}-\frac{1}{l^{2}}+\frac{p^{2}}{l^{2}(l-p)^{2}}
$$

- Identity relations among scalar integrals:IBPS, LIs \& SRs
- Algebraic linear system of equations relating the integrals

```
                        \Downarrow
Master integrals (MIs)
```

- Computation of MIs : Method of differential equation (generic \& canonical)
- UV renormalization and mass factorization
- Numerical evaluation using suitable PDFs and FFs

Loop computation procedure: Integration-by-parts identities

Integration-by-parts identities

Generalization of Gauss's theorem in d dimension
Within dimensional regularization, all integrals in d dimension are well-defined and convergent \Rightarrow integrand must be zero at boundary

$$
\int \prod_{i=1}^{l} \mathcal{D}^{d} l_{i} \frac{d}{d l_{j}^{\mu}}\left(\frac{v^{\mu}}{D_{1}^{n_{1}} \ldots D_{m}^{n_{m}}}\right)=\left.0 \quad\right|_{v \equiv l, p}
$$

A very simple example 1 :

$$
\mathcal{I}(n)=\int \frac{d^{d} l}{(2 \pi)^{d / 2}} \frac{1}{\left(l^{2}-m^{2}\right)^{n}}
$$

The identity for $v \equiv l$ gives a recursion relation for $\mathcal{I}(n+1) \Rightarrow \mathcal{I}(n)$

$$
\mathcal{I}(n+1)=\frac{(d-2 n)}{2 n m^{2}} \mathcal{I}(n)
$$

The relation can be represented as

Integration-by-parts identities

Another simple example 2:

$$
\mathcal{I}\left(n_{1}, n_{2}\right)=\int \frac{d^{d} l}{(2 \pi)^{d / 2}} \frac{1}{\left(l^{2}-m_{1}^{2}\right)^{n_{1}}\left((l-q)^{2}-m_{2}^{2}\right)^{n_{2}}}
$$

The relations now depend on n_{1} and n_{2} and whether they are positive or non-positive.

- The relations are like translations from one point to another.
- The first goal is to choose the red points (the MIs).
- The second goal is to find an efficient path (IBP reduction rules) with minimal translation.

Integral families with 7 propagators.

$$
\mathcal{I}\left(n_{1}, n_{2}, \ldots, n_{7}\right)
$$

For NNLO, it's not difficult! Thousands of Feynman integrals can be written in terms of only a few! However for three-loop onward, it becomes extremely challenging.

Scalar integrals form a 'vector space' \Rightarrow IBP reduction is a 'projection' to basis vectors

Several technical advances have been made in recent years by improving system-solving strategy, either due to novel algorithms or to the development of software.

- LiteRed : Symbolical recursion relation
- FIRE, Reduze, Kira: Laporta algorithm; Solves for specific integer values

Loop computation procedure: Solving remaining integrals

The method of differential equations

A Feynman integral is a function of spacetime dimension d and kinematic invariants x, z.

$$
J_{i}=\mathcal{N} \int \frac{d^{d} l_{1}}{(2 \pi)^{d}} \frac{d^{d} l_{2}}{(2 \pi)^{d}} \frac{1}{l_{1}^{2} l_{2}^{2}\left(\left(l_{1}-l_{2}\right)^{2}-m^{2}\right)\left(l_{1}-q\right)^{2}\left(l_{2}-q\right)^{2}} \equiv f(d, x, z)
$$

The idea is to obtain a differential eqn. for the integral w.r.t. x, z and solve it.

The method of differential equations

A Feynman integral is a function of spacetime dimension d and kinematic invariants x, z.

$$
J_{i}=\mathcal{N} \int \frac{d^{d} l_{1}}{(2 \pi)^{d}} \frac{d^{d} l_{2}}{(2 \pi)^{d}} \frac{1}{l_{1}^{2} l_{2}^{2}\left(\left(l_{1}-l_{2}\right)^{2}-m^{2}\right)\left(l_{1}-q\right)^{2}\left(l_{2}-q\right)^{2}} \equiv f(d, x, z)
$$

The idea is to obtain a differential eqn. for the integral w.r.t. x, z and solve it.

$$
\begin{aligned}
\frac{d}{d z} J_{i}= & \text { some combinations of integrals } \\
& \Downarrow \text { IBP identities/reduction } \\
= & \sum_{j=1}^{n} c_{i j} J_{j}
\end{aligned}
$$

$c_{i j}$'s are rational function of d, x and z.
J_{i} is a basis 'vector' $\Rightarrow \frac{d}{d z}$ is a 'rotation' \Rightarrow IBP reduction is a 'projection' to basis vectors

The method of differential equations

A Feynman integral is a function of spacetime dimension d and kinematic invariants x, z.

$$
J_{i}=\mathcal{N} \int \frac{d^{d} l_{1}}{(2 \pi)^{d}} \frac{d^{d} l_{2}}{(2 \pi)^{d}} \frac{1}{l_{1}^{2} l_{2}^{2}\left(\left(l_{1}-l_{2}\right)^{2}-m^{2}\right)\left(l_{1}-q\right)^{2}\left(l_{2}-q\right)^{2}} \equiv f(d, x, z)
$$

The idea is to obtain a differential eqn. for the integral w.r.t. x, z and solve it.

$$
\begin{gathered}
d_{z}\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3} \\
J_{4} \\
\vdots \\
J_{n}
\end{array}\right)=\left[\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \bullet & \bullet & \cdots & \bullet
\end{array}\right]\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3} \\
J_{4} \\
\vdots \\
J_{n}
\end{array}\right) \\
d_{z \mathbb{J}}=\mathbb{A}(d, z) \mathbb{J}
\end{gathered}
$$

The method of differential equations

A Feynman integral is a function of spacetime dimension d and kinematic invariants x, z.

$$
J_{i}=\mathcal{N} \int \frac{d^{d} l_{1}}{(2 \pi)^{d}} \frac{d^{d} l_{2}}{(2 \pi)^{d}} \frac{1}{l_{1}^{2} l_{2}^{2}\left(\left(l_{1}-l_{2}\right)^{2}-m^{2}\right)\left(l_{1}-q\right)^{2}\left(l_{2}-q\right)^{2}} \equiv f(d, x, z)
$$

The idea is to obtain a differential eqn. for the integral w.r.t. x, z and solve it.

$$
d_{z}\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3} \\
J_{4} \\
\vdots \\
J_{n-1} \\
J_{n}
\end{array}\right)=\left[\begin{array}{ccccccc}
\bullet & \bullet & \bullet & \bullet & \cdots & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet & \cdots & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet & \cdots & \bullet & \bullet \\
0 & 0 & 0 & \bullet & \cdots & \bullet & \bullet \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \bullet & \bullet \\
0 & 0 & 0 & 0 & \cdots & 0 & \bullet
\end{array}\right]\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3} \\
J_{4} \\
\vdots \\
J_{n-1} \\
J_{n}
\end{array}\right)
$$

The bullets (\bullet) indicate a non-zero rational function of d, x and z.
To solve such a system, it would be best to organize it in such a way that it diagonalizes, or at least it takes a block-triangular form. Then, it can be solved using bottom-up approach.

The method of differential equations

- However, even a small 2×2 sub-system is difficult to solve in d-dimension.
- The solution is to expand the sub-system in ϵ and solve order-by-order in ϵ.

$$
\frac{d}{d z} J_{n}(z, \epsilon)=\mathcal{C}_{n m}(z, \epsilon) J_{n}(z, \epsilon)+\mathcal{R}_{n}(z, \epsilon)
$$

Taylor expansion in ϵ

$$
J_{n}(z, \epsilon)=\sum_{k=-2}^{\infty} J_{n}^{(k)}(z) \epsilon^{k}, \mathcal{C}_{n}(z, \epsilon)=\sum_{k=0}^{\infty} \mathcal{C}_{n}^{(k)}(z) \epsilon^{k}, \mathcal{R}_{n}(z, \epsilon)=\sum_{k=-2}^{\infty} \mathcal{R}_{n}^{(k)}(z) \epsilon^{k}
$$

The leading pole is fixed for a topology (process).

$$
\frac{d}{d z} J_{n}^{(k)}(z)=\mathcal{C}_{n m}^{(0)}(z) J_{n}^{(k)}(z)+\sum_{p=1}^{k+2} \mathcal{C}_{n m}^{(p)}(z) J_{n}^{(k-p)}(z)+\mathcal{R}_{n}^{(k)}(z)
$$

The method of differential equations

- However, even a small 2×2 sub-system is difficult to solve in d-dimension.
- The solution is to expand the sub-system in ϵ and solve order-by-order in ϵ.

$$
\frac{d}{d z} J_{n}(z, \epsilon)=\mathcal{C}_{n m}(z, \epsilon) J_{n}(z, \epsilon)+\mathcal{R}_{n}(z, \epsilon)
$$

Taylor expansion in ϵ

$$
J_{n}(z, \epsilon)=\sum_{k=-2}^{\infty} J_{n}^{(k)}(z) \epsilon^{k}, \mathcal{C}_{n}(z, \epsilon)=\sum_{k=0}^{\infty} \mathcal{C}_{n}^{(k)}(z) \epsilon^{k}, \mathcal{R}_{n}(z, \epsilon)=\sum_{k=-2}^{\infty} \mathcal{R}_{n}^{(k)}(z) \epsilon^{k}
$$

The leading pole is fixed for a topology (process). The homogeneous part is same for all k !

$$
\frac{d}{d z} J_{n}^{(k)}(z)=\mathcal{C}_{n m}^{(0)}(z) J_{n}^{(k)}(z)+\sum_{p=1}^{k+2} \mathcal{C}_{n m}^{(p)}(z) J_{n}^{(k-p)}(z)+\mathcal{R}_{n}^{(k)}(z)
$$

Algorithm : to solve a system of linear first order diff. eqns.

- First step is to reduce the sub-system to a higher order eqn in a single unknown

$$
d_{z}\binom{J_{1}}{J_{2}}=\left[\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right]\binom{J_{1}}{J_{2}}+\binom{R_{1}}{R_{2}} \Rightarrow \begin{aligned}
& a \frac{d^{2} J_{1}}{d z^{2}}+b \frac{d J_{1}}{d z}+c J_{1}+d=0 \\
& J_{2}=a^{\prime} \frac{d J_{1}}{d z}+b^{\prime} J_{1}+c^{\prime}
\end{aligned}
$$

- Start with the leading pole $\left(\epsilon^{-2}\right)$ - find the homogeneous solutions $\left(h_{i}(z)\right)$ and best uncoupling procedure - solve for the nonhomogeneous part using the method of variation of constant
- Structure of homogeneous part is same at each order in ϵ-expansion. Hence the homogeneous solutions and uncoupling procedure are unique for any order
- Now at each order in ϵ, find the nonhomogeneous part $(r(y))$ keeping the uncoupling structure fixed and solve using variation of constant

$$
g(z)=\sum_{i=1}^{m} h_{i}(z) \int d y \frac{r(y) W_{i}(y)}{W(y)}
$$

The results are obtained in terms of iterated integrals (HPLs/GPLs).

Iterated integrals

From Feynman integrals to iterated integrals: What do we gain?
Direct numerical integration of Feynman integrals is tedious, unstable and challenging to obtain precise results.

Iterated integrals

From Feynman integrals to iterated integrals: What do we gain?

Direct numerical integration of Feynman integrals is tedious, unstable and challenging to obtain precise results.

Iterated integrals are one-dimensional. They can be computed with great precision in a short amount of time. Besides, they have the following properties:
(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a basis is extremely effective to reduce the computation time by few times.
(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z) to constants (1). This makes the integration really precise.

Iterated integrals

From Feynman integrals to iterated integrals: What do we gain?

Direct numerical integration of Feynman integrals is tedious, unstable and challenging to obtain precise results.

Iterated integrals are one-dimensional. They can be computed with great precision in a short amount of time. Besides, they have the following properties:
(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a basis is extremely effective to reduce the computation time by few times.
(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z) to constants (1). This makes the integration really precise.

Till date, most of the MIs were solved in terms of GPLs
\Downarrow
the iterative kernel is a simple polynomial $\quad \int_{0}^{x} \frac{d t}{a+t} \int_{0}^{t} \cdots$
What happens when we have (multiple) square-roots?!

Rationalization

Rationalizable

- Find a suitable transformation

Let's consider $\sqrt{4 m^{2}-s}$.
We can use Landau transformation $s=-m^{2} \frac{(1-x)^{2}}{x}$ for this.

Non-rationalizable

- A single transformation can not rationalize all square-roots simultaneously.
\Downarrow
Square-roots will be present in the iterated integrals.

1) We can accept 'the fact' and evaluate them with appropriate analytic continuation.
or
2) Instead of using a single transformation rule to rationalize them, we write the system (each MI) as sum of functions of dependent variables and treat them separately. As a result, each sub-system has alphabet with 'good' letters with different argument.

Phase-space computation procedure: Reverse unitarity

Reverse unitarity

- The IBP identities and method of differential equations are state-of-the-art tools. They only depend on the 'form' of the object (Feynman integrals) and its variables.
- The phase-space integrals are challenging, specially the angular integration.

$$
\mathcal{N} \int d^{d} l_{1} d^{d} l_{2} d^{d} p_{b} \frac{1}{\left(p_{a}-l_{1}\right)^{2} \ldots} \delta\left(l_{1}^{2}\right) \delta\left(l_{2}^{2}\right) \delta\left(p_{b}^{2}\right) \delta^{d}\left(p_{a}+q-l_{1}-l_{2}-p_{b}\right) \delta\left(z^{\prime}-\frac{p_{a} \cdot p_{b}}{p_{a} \cdot q}\right)
$$

- The idea is to write the phase-space integrals in the loop-integral format and apply the methods (IBP \& DE).

Reverse unitarity

- The IBP identities and method of differential equations are state-of-the-art tools. They only depend on the 'form' of the object (Feynman integrals) and its variables.
- The phase-space integrals are challenging, specially the angular integration.

$$
\mathcal{N} \int d^{d} l_{1} d^{d} l_{2} d^{d} p_{b} \frac{1}{\left(p_{a}-l_{1}\right)^{2} \cdots} \delta\left(l_{1}^{2}\right) \delta\left(l_{2}^{2}\right) \delta\left(p_{b}^{2}\right) \delta^{d}\left(p_{a}+q-l_{1}-l_{2}-p_{b}\right) \delta\left(z^{\prime}-\frac{p_{a} \cdot p_{b}}{p_{a} \cdot q}\right)
$$

- The idea is to write the phase-space integrals in the loop-integral format and apply the methods (IBP \& DE).
- Reverse unitarity

$$
\delta\left(k^{2}-m^{2}\right) \sim \frac{1}{2 \pi i}\left(\frac{1}{k^{2}-m^{2}-i 0}-\frac{1}{k^{2}-m^{2}+i 0}\right)
$$

- We can consider only the first term, as the differential equation is independent of the sign of $i 0$. Of course, we need a boundary conditions to solve differential equations and that is where the actual physics information (phase-space integrals) goes in!

To obtain the finite partonic cross-section

Compute \& combine everything and mass factorization

- We compute relevant Feynman diagrams \& corresponding Feynman integrals analytically.
- We combine them appropriately, perform mass factorization and obtain the finite partonic cross-section.

Results

We have computed the non-singlet contributions to the quark initiated process with quark fragmenting to hadrons. The finite partonic crosssection has been convoluted with PDFs and FFs to obtain the hadronic cross-section through a FOR-
 TRAN code.

Checks

- The master integrals were computed using different methods!
- Mass factorization (universal) removes all remaining infrared singularities!
- Successful checks with available results in the threshold limit!
- The constraint (z^{\prime}) can be integrated in our analytic result. We found perfect agreement with the fully inclusive result.

- EIC will unravel the mysteries of strong force.
- Theoretical precision studies are extremely necessary to fully exploit the EIC data.
- Our current (well-tested) theoretical understanding (the SM) is constrained by its perturbative nature and hence, higher order perturbative corrections are necessary to achieve precise theoretical predictions.
- In this talk, we have presented the computational details to obtain the first results on NNLO QCD corrections to SIDIS.
- The technicalities are impressive and generic.
- Aside the phenomenological impact of the result, it also sets a milestone for the computational technique.

Thank you for your attention!

