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Abstract

Abstract

We investigate the exact solution of the loop equation for
decaying turbulence. This equation (the Euler ensemble of
rational numbers coupled with the Ising spin chain), is also
equivalent to a quantum partition function of N Fermi
particles on a ring. Combining the number theory methods
with the supercomputer simulation of this 1D system at
N = 200, 000, 000, we compute various quantities in the
statistical limit N → ∞, including the energy decay (1/t)
and energy spectrum of decaying turbulence. This
spectrum is discrete, but it approximates power laws on
average. These quantum effects modify the paradigm of
multifractal scaling.
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Introduction

The turbulence problem looks deceptively simple: find the limit
of the solution of the Navier-Stokes equations when viscosity
goes to zero at a fixed energy dissipation rate.

∂tv⃗ = −ν∇⃗ × ω⃗ + v⃗ × ω⃗ − ∇⃗
(
p+

v⃗2

2

)
; (1)

∇⃗ · v⃗ = 0; (2)

In this limit, the Navier-Stokes equation tends to the Euler equa-
tion everywhere except some singular regions: Vortex sheets and
lines, where large velocity gradients could compensate the factor
of ν.

These regions are randomly distributed in space, making veloc-
ity and vorticity stochastic variables at every point, with local
vorticity values divergent in the turbulent limit.
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Hopf Functional

Hopf outlined the general approach to the turbulence problem
using the functional

Z[J⃗ ] =

〈
exp

(∫
r⃗∈Rd

J⃗(r⃗) · v⃗(r⃗)
)〉

(3)

This functional generates the correlation functions of the velocity
field and satisfies the functional differential equation of the form

∂tZ[J⃗ ] = Ĥ

[
J⃗ ,

δ

δJ⃗

]
Z[J⃗ ] (4)

The turbulence corresponds to a degenerate fixed point of the
Navier-Stokes dynamics for Z, in the same way as the Gibbs
distribution is a degenerate fixed point Z = δ(E − H(p⃗, q⃗)) of
Newton’s dynamics (independent of the position at the energy
surface H(p⃗, q⃗)).
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[
J⃗ ,

δ

δJ⃗

]
Z[J⃗ ] (4)

The turbulence corresponds to a degenerate fixed point of the
Navier-Stokes dynamics for Z, in the same way as the Gibbs
distribution is a degenerate fixed point Z = δ(E − H(p⃗, q⃗)) of
Newton’s dynamics (independent of the position at the energy
surface H(p⃗, q⃗)).



Introduction

Hopf
Functional

Loop Average
and dimension
reduction

Loop equation
as dimension
reduction

The WKB
approximation

Exact solution

Euler
ensemble

Enstrophy
(exact
formula)

Local Vorticity
moments
(µ → 0)

Markov
process

Perturbation
time decay
spectrum
(discrete at
finite N ,
continuous at
N → ∞)

Conclusions

References

Hopf Functional

Hopf outlined the general approach to the turbulence problem
using the functional

Z[J⃗ ] =

〈
exp

(∫
r⃗∈Rd

J⃗(r⃗) · v⃗(r⃗)
)〉

(3)

This functional generates the correlation functions of the velocity
field and satisfies the functional differential equation of the form

∂tZ[J⃗ ] = Ĥ
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Hopf Functional

The decaying turbulence is a degenerate fixed trajectory, slowly
approaching the stable fixed point at zero velocity due to friction
forces represented by viscosity.

The Hopf equation for the Navier-Stokes dynamics is compatible
with such a trajectory, but it is too general and too complex to
compute anything.

Its complexity is equivalent to the non-Gaussian functional in-
tegral, misplacing turbulence in the same category as critical
phenomena in statistical physics.

It is much simpler in our theory.
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Loop Average and dimension reduction

The loop average is a particular case of the Hopf functional with
the source J⃗(r⃗) concentrated on a fixed loop in space

J⃗C(r⃗) =
ıγ

ν

∮
dC⃗(θ)δ

(
r⃗ − C⃗(θ)

)
(5)

The loop average is defined as

Ψ[γ,C] =

〈
exp

(∫
r⃗∈Rd

J⃗C(r⃗) · v⃗(r⃗)
)〉

=〈
exp

( ıγ
ν
ΓC

)〉
; (6)

ΓC =

∮
dC⃗(θ) · v⃗(C⃗(θ)); (7)
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Loop equation as dimension reduction

We derived a closed functional equation for the loop average in
incompressible Navier-Stokes equationM93, M23PR

ıν∂tΨ[γ,C] =〈
γ

∮
dC⃗(θ) ·

(
−ν∇⃗ × ω⃗ + v⃗ × ω⃗

)
exp

( ıγ
ν
ΓC

)〉
=∮

dC⃗(θ) · L⃗

[
δ

δC⃗(.)

]
Ψ[γ,C] (8)

The operator L⃗
[

δ
δC⃗(.)

]
only depends on the functional derivative,

but does not depend on the coordinate C⃗(.) in loop space.

This independence (translation invariance) is the key to the so-
lution.
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Loop equation as dimension reduction

This equation is equivalent to the Schrödinger equation in loop

space with Hamiltonian ĤC =
∮
dC⃗(θ) · L⃗

[
δ

δC⃗(.)

]
.

A plane wave in loop space solves this Schrödinger equation

Ψ[γ,C] =

〈
exp

(
ıγ

ν

∮
dC⃗(θ) · P⃗ (t, θ)

)〉
; (9)

ıγ∂tP⃗ = L⃗
[
−ı

γ

ν
∂θP⃗ (t, θ)

]
; (10)

ν∂tP⃗ = −γ2(∆P⃗ )2P⃗ +

∆P⃗

(
γ2P⃗ ·∆P⃗ + ı γ

(
(P⃗ ·∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
; (11)

with ∆P⃗ = P⃗ (θ + 0)− P⃗ (θ − 0), P⃗ = P⃗ (θ+0)+P⃗ (θ−0)
2 .
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The WKB approximation

The simplest thing to do with the Schrödingen equation beyond
perturbation theory is the WBK approximation.

In the case of the loop equation, the WKB approximation pro-
duced the Area law M93, M23PR

Ψ[γ,C] → f(γ,Amin[C]); (12)

P [Γ, C] =

∫ ∞

−∞
dγΨ[γ,C] exp (−ıγΓ/ν) →

exp
(
a− b|Γ|/

√
Amin[C]

)
√
|Γ|

(13)

This Area law was verified in remarkable DNS by Sreeni and
Kartik Iyer in 2019, 2020 in ten decades of PDF tail. The scaling
law

√
Amin[C] was recently confirmed by Kartik Iyer.
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Exact solution

An analytic solution was found a few months ago.

Surprisingly, its parameters are random integers.

P⃗ (t, θ) =

√
ν

2(t+ t0)
Ω̂ · F⃗ (θ)

γ
; Ω̂ ∈ O(3); (14)

F⃗k =

{
cos(αk), sin(αk), i cos

(
β
2

)}
2 sin

(
β
2

) ; (15)

θk =
2πk

N
; β =

2πp

q
; N → ∞; (16)

αk+1 = αk + σkβ; σk = ±1, β
∑

σk = 2πpr; (17)

The parameters Ω̂, N, p, q, r, σ0 . . . σN−1 are random, making
this solution for F⃗ (θ) a fixed manifold rather than a fixed point.
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Euler ensemble

This is not a toy model like the 1D Burgers equation but an
exact stochastic solution of the 3D Navier-Stokes equation.

We treat it as a quantum statistical system with a chemical
potential µ → 0 (the Euler ensemble). The partition function is
calculable

Z(µ) =∑
N

e−µN
∑

2<q<N

φ(q)
∑
r

2|(N−qr)

2−N

(
N

(N + qr)/2

)
; (18)

φ(q) = q
∏
p|q

(
1− 1

p

)
; (19)

Z(µ) → 9

4
√
2π2µ5/2

; (20)
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Local Vorticity moments (µ → 0)

Anomalous dissipation

∂tE = −ν
〈
ω⃗(⃗0)2

〉
= − Bν

µ2(t+ t0)2
; (25)

B =
35π2

13824ζ(3)
; (26)

Vorticity moments〈
ω(⃗0)2n

〉
→ Ξn

(t+ t0)2nµ3n−1
if n > 0; (27)

Ξn =
π

3
2
−2n23−5nζ(2n)Γ

(
3n+ 3

2

)
9(2n+ 1)ζ(2n+ 1)Γ(n+ 1)

(28)



Introduction

Hopf
Functional

Loop Average
and dimension
reduction

Loop equation
as dimension
reduction

The WKB
approximation

Exact solution

Euler
ensemble

Enstrophy
(exact
formula)

Local Vorticity
moments
(µ → 0)

Markov
process

Perturbation
time decay
spectrum
(discrete at
finite N ,
continuous at
N → ∞)

Conclusions

References

Local Vorticity moments (µ → 0)

Anomalous dissipation

∂tE = −ν
〈
ω⃗(⃗0)2

〉
= − Bν

µ2(t+ t0)2
; (25)

B =
35π2

13824ζ(3)
; (26)

Vorticity moments〈
ω(⃗0)2n

〉
→ Ξn

(t+ t0)2nµ3n−1
if n > 0; (27)

Ξn =
π

3
2
−2n23−5nζ(2n)Γ

(
3n+ 3

2

)
9(2n+ 1)ζ(2n+ 1)Γ(n+ 1)

(28)



Introduction

Hopf
Functional

Loop Average
and dimension
reduction

Loop equation
as dimension
reduction

The WKB
approximation

Exact solution

Euler
ensemble

Enstrophy
(exact
formula)

Local Vorticity
moments
(µ → 0)

Markov
process

Perturbation
time decay
spectrum
(discrete at
finite N ,
continuous at
N → ∞)

Conclusions

References

Local Vorticity moments (µ → 0)

Anomalous dissipation

∂tE = −ν
〈
ω⃗(⃗0)2

〉
= − Bν

µ2(t+ t0)2
; (25)

B =
35π2

13824ζ(3)
; (26)

Vorticity moments〈
ω(⃗0)2n

〉
→ Ξn

(t+ t0)2nµ3n−1
if n > 0; (27)

Ξn =
π

3
2
−2n23−5nζ(2n)Γ

(
3n+ 3

2

)
9(2n+ 1)ζ(2n+ 1)Γ(n+ 1)

(28)



Introduction

Hopf
Functional

Loop Average
and dimension
reduction

Loop equation
as dimension
reduction

The WKB
approximation

Exact solution

Euler
ensemble

Enstrophy
(exact
formula)

Local Vorticity
moments
(µ → 0)

Markov
process

Perturbation
time decay
spectrum
(discrete at
finite N ,
continuous at
N → ∞)

Conclusions

References

Local Vorticity moments (µ → 0)

Anomalous dissipation

∂tE = −ν
〈
ω⃗(⃗0)2

〉
= − Bν

µ2(t+ t0)2
; (25)

B =
35π2

13824ζ(3)
; (26)

Vorticity moments〈
ω(⃗0)2n

〉
→ Ξn

(t+ t0)2nµ3n−1
if n > 0; (27)

Ξn =
π

3
2
−2n23−5nζ(2n)Γ

(
3n+ 3

2

)
9(2n+ 1)ζ(2n+ 1)Γ(n+ 1)

(28)



Introduction

Hopf
Functional

Loop Average
and dimension
reduction

Loop equation
as dimension
reduction

The WKB
approximation

Exact solution

Euler
ensemble

Enstrophy
(exact
formula)

Local Vorticity
moments
(µ → 0)

Markov
process

Perturbation
time decay
spectrum
(discrete at
finite N ,
continuous at
N → ∞)

Conclusions

References

Local Vorticity moments (µ → 0)

Anomalous dissipation

∂tE = −ν
〈
ω⃗(⃗0)2

〉
= − Bν

µ2(t+ t0)2
; (25)

B =
35π2

13824ζ(3)
; (26)

Vorticity moments〈
ω(⃗0)2n

〉
→ Ξn

(t+ t0)2nµ3n−1
if n > 0; (27)

Ξn =
π

3
2
−2n23−5nζ(2n)Γ

(
3n+ 3

2

)
9(2n+ 1)ζ(2n+ 1)Γ(n+ 1)

(28)



Introduction

Hopf
Functional

Loop Average
and dimension
reduction

Loop equation
as dimension
reduction

The WKB
approximation

Exact solution

Euler
ensemble

Enstrophy
(exact
formula)

Local Vorticity
moments
(µ → 0)

Markov
process

Perturbation
time decay
spectrum
(discrete at
finite N ,
continuous at
N → ∞)

Conclusions

References

Markov process

Our system is less than one-dimensional.

This is a periodic Markov process with just two integer variables.

n+ = N+; n− = N−; (29)

P(n+ ⇒ n+ − 1) =
n+

n+ + n−
; σ = +1; (30)

P(n− ⇒ n− − 1) =
n−

n+ + n−
; σ = −1; (31)

This Markov property leads to O(N0) memory in simulation,
which allows simulations of astronomically large systems. Maxim
Bulatov and I simulated N = 2 ∗ 108 at NYU AD GPU cluster
with T ∼ 2 ∗ 108 random samples of the Euler ensemble.
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Perturbation time decay spectrum (discrete at
finite N , continuous at N → ∞)

δP⃗ (t, θ) = (t+ t0)
−λG⃗(θ); (32)

spectrum : det

[
N∏
k=1

M̂k − Î((4λ2 − 1)γ2)N

]
= 0; (33)

M̂k = µ0Î + µ1F⃗k ⊗∆F⃗k + µ2∆F⃗k ⊗ F⃗k +

µ3∆F⃗k ⊗∆F⃗k + µ4F⃗k ⊗ F⃗k; (34)

∆F⃗k = F⃗k+1 − F⃗k; (35)

µ0 = γ2(1− 4λ2); (36)

µ1 = 2; (37)

µ2 = 2(γ + i)(2γ(1 + 2λ)− i); (38)

µ3 = 2iγ(1 + 2λ) + 1; (39)

µ4 = 4− 4iγ; (40)
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Conclusions

Our solution for the loop average in decaying turbulence shows
nonperturbative effects, which are missing in the weak turbulence
(1/ν expansion), particularly the quantization of the solution’s
parameters.

These quantum effects follow from the mathematical equivalence
of the Navier-Stokes statistics to the quantum mechanics in loop
space.

The quantum statistical system, corresponding to the solution
of the Schrödinger equation in loop space, can be regarded as
a dual to the turbulent velocity field theory; in the same sense,
quantum gravity is dual to the gauge theory in ADS/CFT cor-
respondence: correlation functions coincide, though dynamical
variables differ.
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Conclusions

Compared to the other critical phenomena, this theory is quite
simple: It is not a field theory but a quantum statistical system
isomorphic to a periodic Markov process with two integer vari-
ables.

The spectrum of anomalous dimensions presents a formidable
mathematical problem in conformal bootstrap. Still, the spectral
equation in this theory is explicitly calculated at any finite N .

It becomes a continuous spectrum in the local limit, leading
to powers of logarithm of time in front of a power decay with
anomalous dimension.
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Conclusions

The solution is conceptually simple but technically involved. It
reveals unexpected relations between turbulence and number
theory.

In particular, the anomalous energy dissipation constant B is
related to the prime factorization of large integers.

The analytic computation of the decay spectrum from the char-
acteristic equation (33) in the local limit N → ∞ remains a
problem for the number theory.

To verify the predictions of this theory, we need real and numer-
ical experiments with decaying turbulence at extreme Reynolds
numbers.
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The solution is conceptually simple but technically involved. It
reveals unexpected relations between turbulence and number
theory.

In particular, the anomalous energy dissipation constant B is
related to the prime factorization of large integers.

The analytic computation of the decay spectrum from the char-
acteristic equation (33) in the local limit N → ∞ remains a
problem for the number theory.

To verify the predictions of this theory, we need real and numer-
ical experiments with decaying turbulence at extreme Reynolds
numbers.
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