Holomorphic curves and the ADHM vortex equations

Aleksander Doan
University College London \& Trinity College, Cambridge

Vortex Moduli, International Centre for Theoretical Sciences, 15 Feb 2023
this talk is based on joint work with Thomas Walpuski (Humboldt-Universität zu Berlin)

Curve counting

Old problem in algebraic geometry
Count holomorphic curves in a complex projective manifold X (given genus, degree/homology class, additional constraints...)

Examples
Two points in $\mathbb{C P}^{n}$ determine a line.
There are 27 lines contained in a cubic surface.
There are 2875 lines contained in a quintic threefold. . .

The moduli space of curves of genus g in a homology class $A \in H_{2}(X, \mathbb{Z})$ has virtual dimension

$$
\operatorname{vdim}=\left(\operatorname{dim}_{\mathbb{C}} X-3\right)(1-g)+\left\langle c_{1}(X), A\right\rangle
$$

When vdim $=0$, we can try to count the curves.

Important case: Calabi-Yau threefolds

$$
\operatorname{dim}_{\mathbb{C}} X=3 \text { and } c_{1}(X)=0
$$

Two problems:

- Transversality: moduli space can have incorrect dimension
- Compactness: curves can degenerate

Pseudo-holomorphic maps

More generally, let
(X, ω) - symplectic manifold, J - almost complex structure inducing a Riemannian metric

$$
g(v, w)=\omega(v, J w)
$$

Gromov-Witten theory studies moduli spaces $\mathcal{M}_{g, A}(X, J)$ of pseudo-holomorphic maps of genus g and homology class A :

$$
\begin{gathered}
u: \Sigma \rightarrow X \\
\mathrm{~d} u \circ j=J \circ \mathrm{~d} u
\end{gathered}
$$

Such maps are harmonic.

One defines a compactification

$$
\mathcal{M}_{g, A}(X, J) \subset \overline{\mathcal{M}}_{g, A}(X, J)
$$

by allowing the domains of maps to degenerate. When vdim $=0$, this leads to the Gromov-Witten invariants

$$
\mathrm{GW}_{g, A}(X) \in \mathbb{Q}
$$

Most maps in $\overline{\mathcal{M}}_{g, A}(X, J)$ are not embeddings, for example

- Multiple covers: $\tilde{\Sigma} \rightarrow \Sigma \rightarrow X$,
- Ghosts: Maps constant on some components of Σ

Question

Are there symplectic invariants which count embedded pseudo-holomorphic curves?
(e.g. similar to the invariant defined by Taubes in dimension four)

$$
\begin{aligned}
& \text { Theorem (with } T \text {. Walpuski) } \\
& X \text { - compact symplectic manifold with } \\
& \qquad \operatorname{dim}_{\mathbb{R}} X=6 \text { and } c_{1}(X)=0 . \\
& \text { For a generic } J \text { there are finitely many embedded pseudo- } \\
& \text { holomorphic curves in every homology class } A \in H_{2}(X, \mathbb{Z}) . \\
& \text { If } A \text { is a primitive class, then the signed count } n_{g, A} \text { of curves } \\
& \text { of genus } g \text { and homology class } A \text { is independent of } J \text {, and } \\
& \text { defines a symplectic invariant of } X .
\end{aligned}
$$

(There is a generalization to arbitrary symplectic six-manifolds.)

Idea of proof

- For a generic J, the moduli space of curves is discrete. Moreover, they are all embedded and pairwise disjoint.
- By contradiction, assume there is a sequence of curves.
- By Federer's Compactness Theorem and work of DeLellis-Spadaro-Spaloar there is a limit current

$$
\sum_{i=1}^{n} m_{i} \delta_{C_{i}}, \quad m_{i} \in \mathbb{N}
$$

For a generic J we must have $n=1$ and the limit is $m \delta_{C}$.

- Idea of Taubes:

Rescale the sequence in the normal direction to C. Take limit to get another curve \tilde{C} in the normal bundle of C.

- \tilde{C} is the graph of a multi-valued pseudo-holomorphic section of the normal bundle of C.
- Existence of such sections is a non-generic phenomenon. This is the content of the super-rigidity conjecture proved by Wendl.

This proves that there are finitely many curves for a generic J.

Why is their count independent of J if A is primitive?

The proof fails when J varies in a family $\left(J_{t}\right)_{t \in[0,1]}$ because multi-valued pseudo-holomorphic sections can appear.

This is related to multiple covers.

Suppose that $A=m B$. A sequence of pseudo-holomorphic curves in the class A can collapse to an m-fold branched cover of a curve in the homology class B. The m-valued section of the normal bundle remembers the infinitesimal direction of this collapse.

This is why the naive count of curves $n_{g, A}$ is not independent of J for a general A.

If A is primitive, there are no multiple covers. You still have to worry about degenerations to ghosts but with some work you can rule those out too using gluing theory for pseudo-holomorphic maps.
$\Longrightarrow n_{g, A}$ is independent of J if A is primitive. $\quad \square$

Digression: Gopakumar-Vafa invariants

Our result is closely related to

The Gopakumar-Vafa conjecture

(a) the Gromov-Witten invariants $\mathrm{GW}_{g, A}(X)$ can be expressed by an explicit formula in terms of integer invariants $\operatorname{BPS}_{g, A}(X) \in \mathbb{Z}$
(b) these integer invariants satisfy

$$
\mathrm{BPS}_{g, A}(X)=0 \quad \text { for } g \gg 1
$$

Part (a) was proved by lonel-Parker in 2018.

Zinger proved that for a primitive class $A \in H_{2}(X, \mathbb{Z})$,

$$
\operatorname{BPS}_{g, A}(X)=n_{g, A}(X)
$$

where the right-hand side is our "naive count". Therefore, our finiteness result proves (b) when A is a primitive homology class.

Theorem (with E. Ionel and T. Walpuski)
Part (b) of the Gopakumar-Vafa conjecture holds.

For A non-primitive

$$
\operatorname{BPS}_{g, A}(X) \neq n_{g, A}(X)
$$

but we can use tools from geometric measure theory, as we did to prove the earlier theorem, to conclude finiteness of $\operatorname{BPS}_{g, A}(X)$.

In particular, these two theorems imply that

$$
\operatorname{BPS}_{g, A}(X)=\sum_{d} \sum_{[C]=A / d} w_{g, d}(C, J)
$$

for some integer weights $w_{g, d}$ depending on J.
What is the geometric meaning of these weights?
cf. recent work of Bai-Swamanathan

End of digression.

Relation to gauge theory

We want to correct the naive count to get an invariant.
Let $A=2 B$ with B primitive. Look for invariant of the form

$$
P T_{A}(X, J)=\sum_{[C]=A} w_{1}(C, J)+\sum_{[C]=B} w_{2}(C, J)
$$

$w_{1}, w_{2}=$ integer weights depending on J
Let $\left(J_{t}\right)$ be a family such that as $\tilde{C} \rightarrow 2 C$ as $t \rightarrow 1 / 2$.

$$
[\tilde{C}]=A, \quad[C]=B
$$

We want that

$$
w_{1}\left(\tilde{C}, J_{0}\right)+w_{2}\left(C, J_{0}\right)=w_{2}\left(C, J_{1}\right)
$$

How to find such weights?

The degeneration $\tilde{C} \rightarrow 2 C$ happens when there exists a two-valued J-holomorphic section of the normal bundle:

$$
C \rightarrow \operatorname{Sym}^{2} N_{C / X}
$$

Therefore, we want $w_{2}(C, J)$ to change precisely whenever such a section exists.

A similar problem was studied in G_{2} geometry by Haydys and Walpuski, following ideas of Donaldson, Thomas, and Segal.

They proposed to count calibrated 3-manifolds inside 7-dimensional G_{2} manifolds with weights given by counting solutions to non-abelian Seiberg-Witten equations.

By consider the equations over $C \times \mathbb{R}$ we get equations on C.

In conclusion, we want to define $w_{2}(C, J)$ by counting solutions to non-abelian vortex equations on C depending on J :

$$
\left\{\begin{array}{l}
\bar{\partial}_{J, A} \xi=0, \quad \bar{\partial}_{A} \alpha=0, \quad \bar{\partial}_{A} \beta=0 \\
{[\xi \wedge \xi]+\alpha \cdot \beta=0} \\
i * F_{A}+\left[\xi \wedge \xi^{*}\right]+\alpha \alpha^{*}-\beta^{*} \beta=0
\end{array}\right.
$$

ξ is a section of $N_{C / X} \otimes$ End E for a rank two bundle $E \rightarrow C$ A is a $\mathrm{U}(2)$ connection on E
(They are called the ADHM vortex equations because they are closely related to the ADHM construction of instantons on \mathbb{R}^{4}.)

The only way for the count of solutions to change is when there is a sequence of solutions with $\|\xi\|_{L^{2}} \rightarrow \infty$ (and A, α, β bounded). After rescaling, this leads to

$$
\begin{aligned}
& \xi \in \Gamma\left(N_{C / X} \otimes \operatorname{End} E\right) \\
& {[\xi \wedge \xi]=0} \\
& {\left[\xi \wedge \xi^{*}\right]=0}
\end{aligned}
$$

Here $E \rightarrow C$ is a rank two bundle. By Hitchin's spectral curve construction, such data is equivalent to a section $C \rightarrow \operatorname{Sym}^{2} N_{C / X}$.

Conjecture (work in progress with T. Walpuski)

1. For generic J, we can define
$w_{k}(C, J)=$ count of ADHM vortices with structure group $\mathrm{U}(k)$
2. The sum

$$
P T_{A}(X, J)=\sum_{k \mid A[C]=A / k} \sum_{k}(C, J)
$$

is independent of J and defines a symplectic invariant of (X, ω).
3. If (X, J) is projective, then $P T_{A}(X, J)$ agrees with the Pandharipande-Thomas invariant defined using sheaf theory.

To prove that $w_{k}(C, J)$ is well-defined we need to study the compactness problem for these equations (following Taubes, Haydys-Walpuski, Walpuski-Zhang).

The main issue is the appearance of singular sets in the limit $\|\xi\|_{L^{2}} \rightarrow \infty$. Such a singular set corresponds to the branching locus of a section $C \rightarrow \operatorname{Sym}^{k} N_{C / X}$.

To prove that $\mathrm{PT}_{A}(X, J)$ is independent of J, we need to combine this analysis with deformation and compactness theory for curves. Wendl's work on super-rigidity and methods of geometric measure theory will play an important role in this part.

Thank you for your attention!

