
Topological aspects of strong correlations and gauge theories,

TIFR, India, September 6-10, 2021

Chiral Matter

from quarks to quantum computers

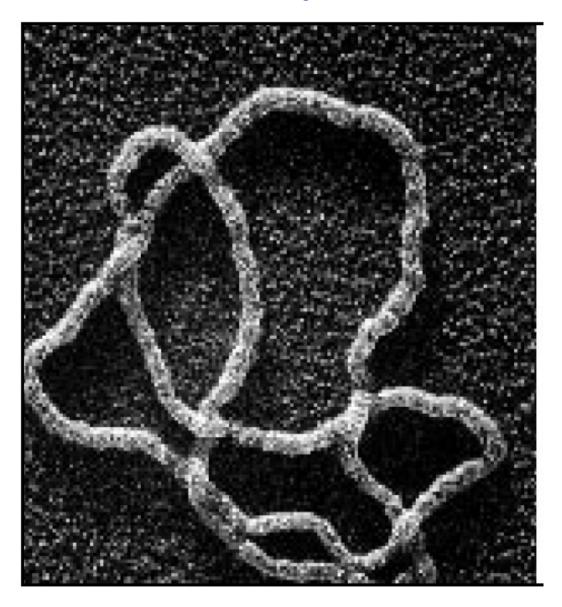
Dmitri Kharzeev

Contents

- 1. Chirality in classical physics
- 2. Chirality in quantum theory
- 3. Chirality in gauge theories
- 4. Chiral magnetic effect (CME) and anomalyinduced transport
- 5. CME in heavy ion collisions and isobar run
- 6. Chiral materials and quantum computers

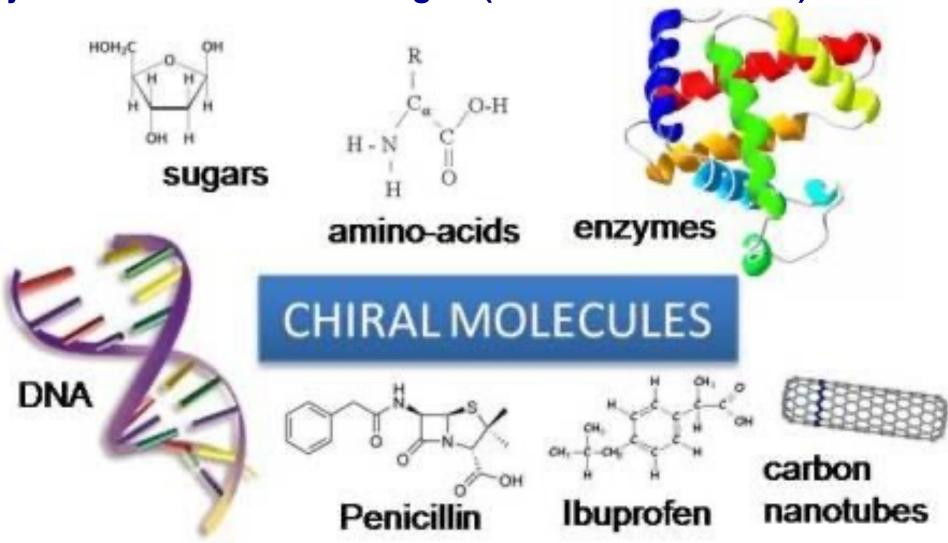
Chirality: the definition

Greek word: χειρ (cheir) - hand


Lord Kelvin (1893):

"I call any geometrical figure, or groups of points, chiral, and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself."

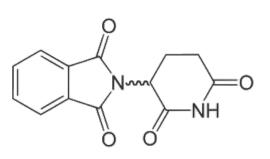
Chirality: DNA



Chirality: DNA

De Witt Sumners, Notices of the AMS, 1995

Living organisms contain almost only left-handed (LH) amino-acids and right-handed (RH) sugars – you would starve on LH sugar! (artificial sweeteners)


2500 chiral drugs! (most of the new)

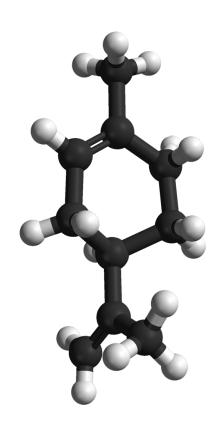
www.rowland.harvard.edu/rjf/fischer

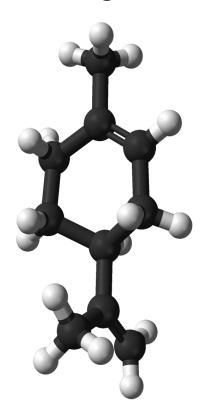
Thalidomide

W. White, "Breaking Bad", Season 1, episode 2

Left-handed molecule is a drug; right-handed is a poison: birth defects, 50% death rate.

Synthetic: equal mixture

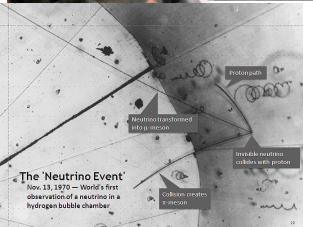

pharmacologist
Frances Oldham
Kelsey receives the
President's Award for
Distinguished Federal
Civilian Service from
President John F.
Kennedy for blocking
sale of thalidomide in
the United States.


Can you smell chirality?

Limonene

Left:

Right:


hydrocarbon

Chirality in subatomic world as the origin of left-right asymmetry of life?

Weak interactions violate parity (T.D. Lee and C.N. Yang) (symmetry between left and right)

Weak interactions thus induce tiny differences between the binding energies of left- and right-handed molecules

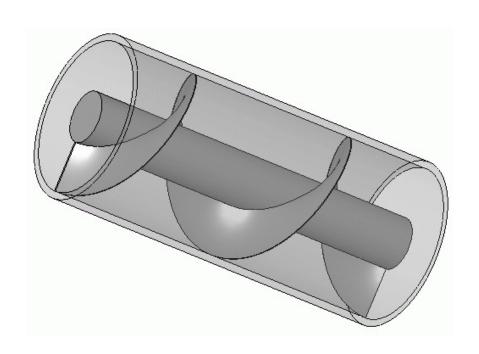
A.Salam: this could be at the origin of left-right asymmetry of life

nighly controversial

The chirality of life

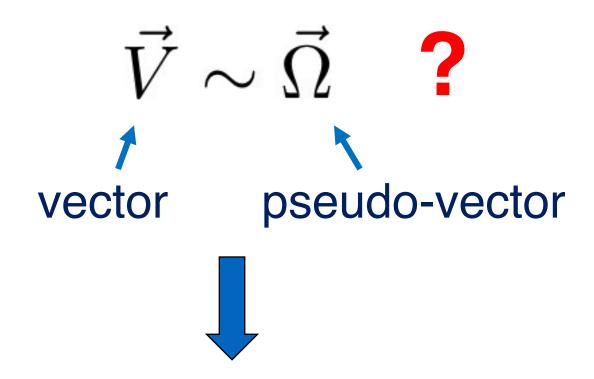
Force of nature gave life its asymmetry 'Left-handed' electrons destroy certain organic molecules faster than their mirror versions.

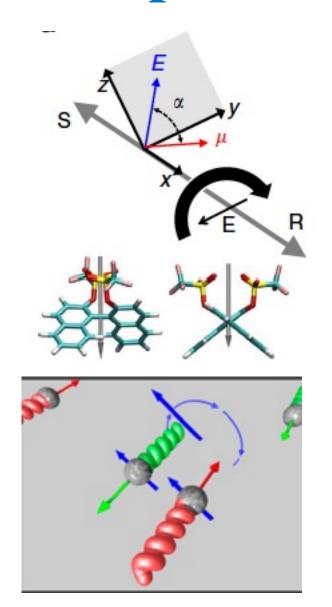
E. Gibney, Nature, 25 September 2014


Chirally Sensitive Electron-Induced Molecular Breakup and the Vester-Ulbricht Hypothesis

Phys. Rev. Lett. 113, 118103 (2014)

J. M. Dreiling and T. J. Gay

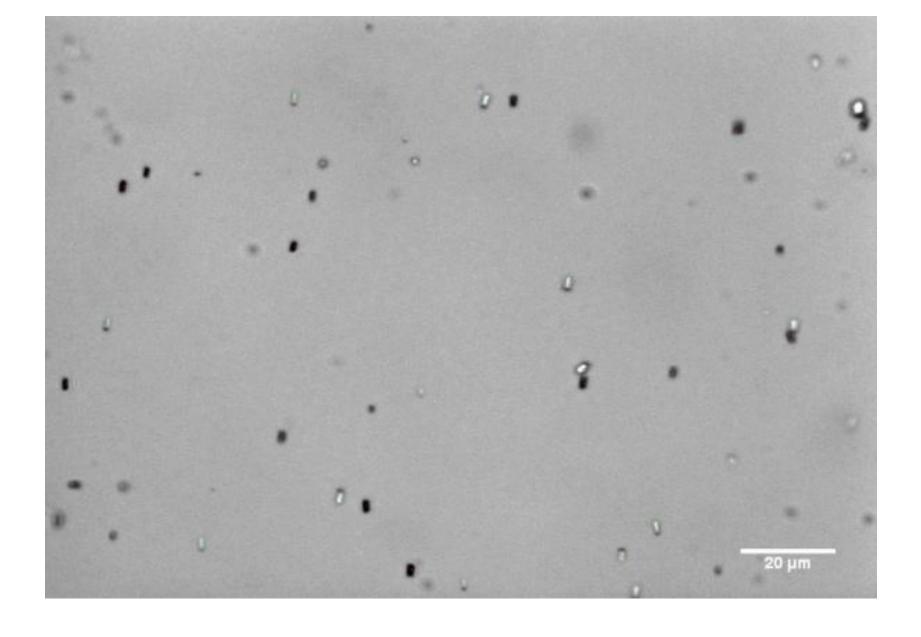

Chirality and hydrodynamics 240 B.C.


The Archimedes screw

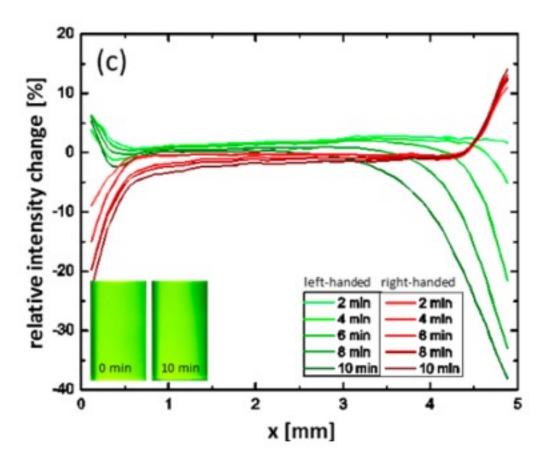
Chiral propulsion

Velocity parallel to angular velocity requires the breaking of parity

Propeller effect in a fluid



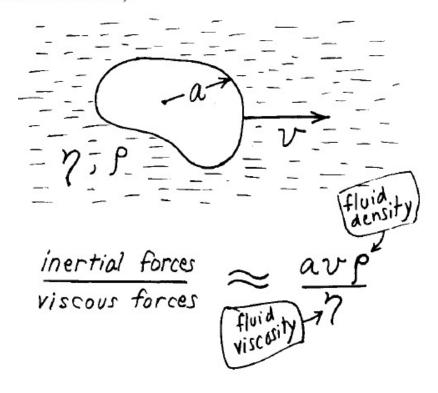
How to rotate the chiral molecule in a fluid?


Use the coupling of an external electric field to the molecule's electric dipole moment!

Rotating electric field – rotating molecule

Baranova, Zel'dovich '78

D.Schamel et al, JACS 135, 12353 (2013)

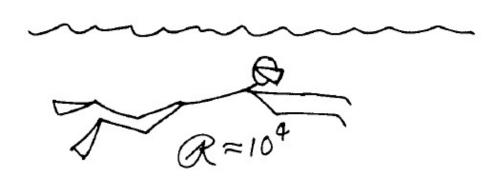


D.Schamel et al, JACS 135, 12353 (2013)

Life at low Reynolds number

E. M. Purcell

Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138 (Received 12 June 1976)



E.M.Purcell (1912-1997)

Nobel prize, 1952 (Nuclear Magnetic Resonance)

$$\mathcal{R} = \frac{avp}{\eta} = \frac{av}{v}$$

$$= \sqrt{\bar{o}^2} \frac{cm^2}{sec} \text{ for water}$$

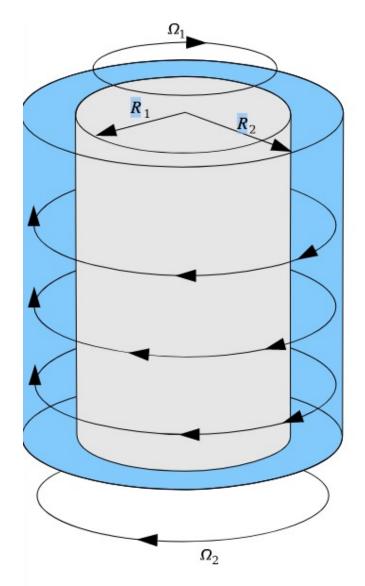
IF Q << 1:

Time doesn't matter. The pattern of motion is the same, whether slow or fast, whether forward or backward in time.

The Scallop Theorem

Stokes equation ("creeping flow")

T-invariance!


Sir G. Stokes (1819-1903)

Geometry of the gauge field on the space of shapes

A.Shapere, F.Wilczek '88

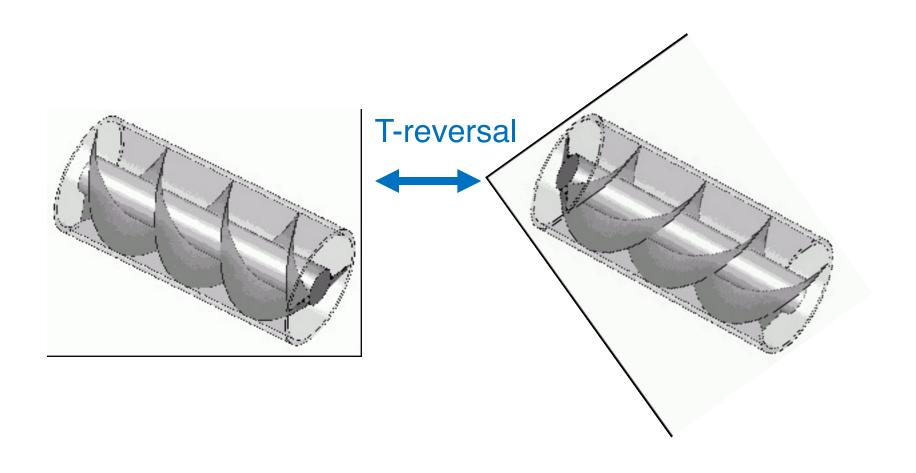
Time reversability in hydrodynamics

Couette flow

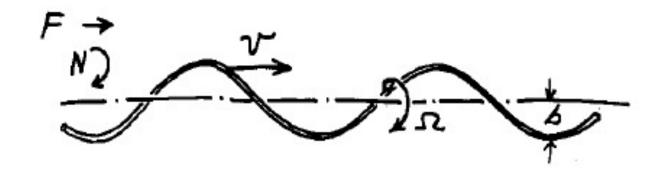
M.Couette 1858-1943

Born: Tours, France

Time reversability in hydrodynamics


Couette flow

Video credit: UNM



Need to break T-invariance to move – chirality!

Left-handed screw

The propulsion matrix

$$|P| = |A|$$

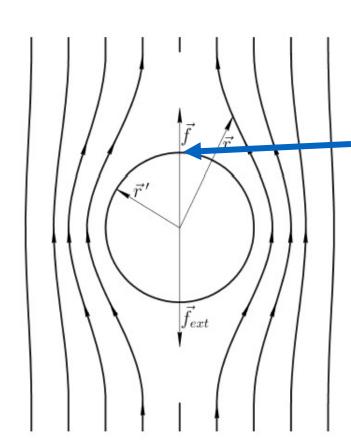
Chirality imbalance = transport

Chiral propulsion:

the Green's function approach

The Stokes equation with a point force:

$$-\nabla P + \nu \nabla^2 \mathbf{v} = -\mathbf{F} \ \delta(\mathbf{r})$$


The Green's function ("Stokeslet"):

$$G_{ij}(\mathbf{r}) = \frac{\delta_{ij}}{r} + \frac{r_i r_j}{r^3}$$

The solution for an arbitrary moving body:

$$v_i(\mathbf{r}) = \frac{1}{8\pi\nu} \int_S G_{ij}(\mathbf{r} - \mathbf{r}') f_j(r') d\sigma'$$

Sphere in a viscous fluid: the Stokes' law

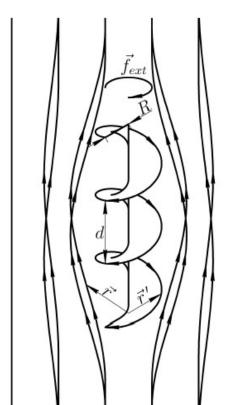
$$v_i(\mathbf{r}) = \frac{1}{8\pi\nu} \int_S G_{ij}(\mathbf{r} - \mathbf{r}') f_j(r') d\sigma'$$

Let us evaluate the fluid velocity here; due to the "non-slip" boundary condition, this will be the velocity of the sphere.

Even though the Green's function is singular, parity symmetry of the sphere leads to the cancellation of the divergent terms:

S.Ayf, I.Kuk, DK, arXiv:1804.08664

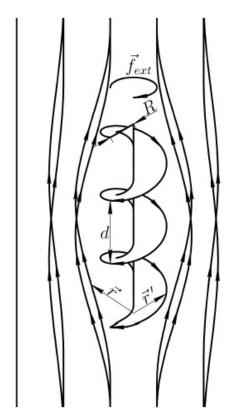
$$v_z^{sphere} = \lim_{z \to R} v_z = \lim_{z \to R} \frac{F_z(R^2 - 3z^2)}{12\pi\eta z^3} = -\frac{F_z}{6\pi\eta R} = \frac{F_z^{ext}}{6\pi\eta R}$$


Sphere in a viscous fluid: the Stokes' law

$$v_z^{sphere} = \frac{F_z^{ext}}{6\pi\eta R}$$

For the sphere (an achiral object), we have encountered no divergences, but the final result contains the shear viscosity – an UV cutoff of hydrodynamics

Propeller in a viscous fluid

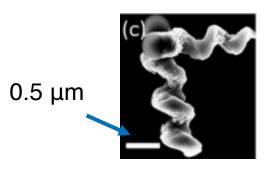

This time, no parity symmetry, and thus no cancelation of divergence:

$$v_z(z) = \frac{1}{8\pi\eta} \int \int \frac{(z-z')(r_j - r_j')f_j(\mathbf{r})'}{(\rho^2 + \epsilon^2)^{\frac{3}{2}}} d\sigma'$$

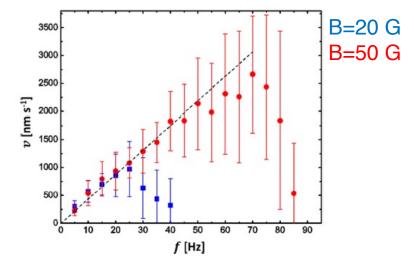
However, the same divergence appears for other components (torque):

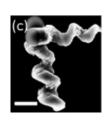
$$v_{y}(x) = \frac{1}{8\pi\eta} \iint \left(\frac{f_{y}(\mathbf{r}')(\rho^{2} + 2\epsilon^{2})}{\rho^{2} + \epsilon^{2}} + \frac{(x'y' - xy')f_{x}(\mathbf{r}')}{(\rho^{2} + \epsilon^{2})^{\frac{3}{2}}} + \frac{y'y'f_{y}(\mathbf{r}')}{(\rho^{2} + \epsilon^{2})^{\frac{3}{2}}} \right) d\sigma',$$

Propeller in a viscous fluid

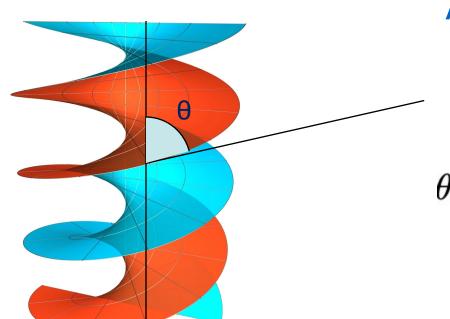


Therefore, the final expression for the propulsion velocity expressed in terms of the angular velocity


$$v_z = \alpha \ \omega$$


contains no divergences and does not depend on viscosity

of the fluid!


S.Ayf, I.Kuk, DK, arXiv:1804.08664

Chiral propulsion

Chiral propulsion in the Stokes regime is determined entirely by geometry. What is the value of the pitch angle θ that is optimal for chiral propulsion?

A very simple answer:

$$\alpha \sim \cos \theta \sin 2\theta$$

L.Korneev, DK, A.Abanov arXiv:2105.12181 [physics.flu-dyn] Phys.Fluids '21

Motility modes of Spiroplasma melliferum BC3: A helical, wall-less bacterium driven by a linear motor

March 2003 Molecular Microbiology 47(3):657-69

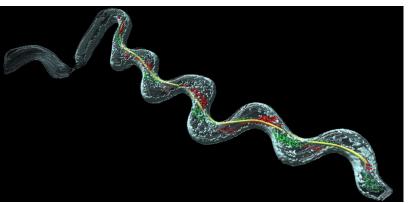
DOI:<u>10.1046/j.1365-2958.2003.03200.x</u>

Source · PubMed

Authors:

 $\theta = \tan^{-1}(1/\sqrt{2}) \simeq 35.26^{\circ}$

L.Korneev, DK, A.Abanov arXiv:2105.12181 [physics.flu-dyn]


Rami Gilad

Asher Porat

Shlomo Trachtenberg

Motility modes of Spiroplasma melliferum BC3: A helical, wall-less bacterium driven by a linear motor

March 2003 · Molecular Microbiology 47(3):657-69

DOI:10.1046/j.1365-2958.2003.03200.x

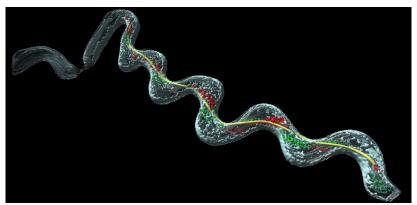
Source · PubMed

 $\theta = \tan^{-1}(1/\sqrt{2}) \simeq 35.26^{\circ}$

Authors:

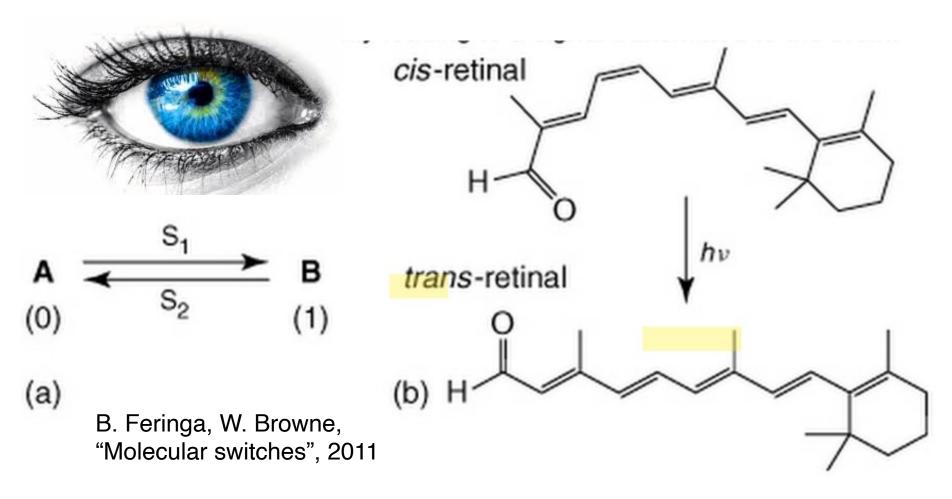
Additions

Rami Gilad



Asher Porat

L.Korneev, DK, A.Abanov arXiv:2105.12181 [physics.flu-dyn]


Shlomo Trachtenberg

"...helical pitch angle observed for the helical Spiroplasma melliferum is 35 degrees..."

Chirality and vision

Protein-bound retinal molecule as a chiroptical switch: the mechanism of vision chiral photo-pharmacology

Chiroptical switching of chiral molecules

Need circularly polarized light (CPL), with frequency optimized for inducing the tunnel transition between the enantiomers.

Review: B.Feringa, J. Org. Chem., 2007, 72 (18), pp 6635–6652

Applications: pharmaceutics, "chiral photomedicine", optical data storage and processing, ...

Scientific Background on the Nobel Prize in Chemistry 2016

MOLECULAR MACHINES

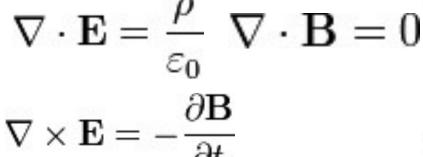
J.-P.Sauvage

Sir J.F.Stoddart

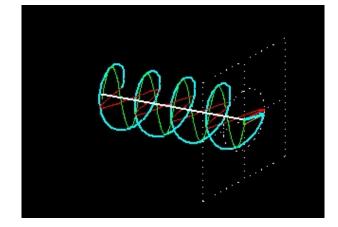
B.L. Feringa

Light and electromagnetism

THE


LONDON, EDINBURGII AND DUBLIN

PHILOSOPHICAL MAGAZINE


JOURNAL OF SCIENCE.

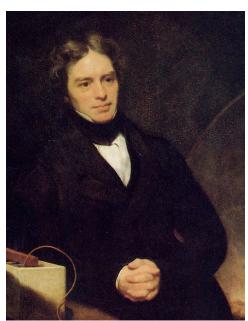
[FOURTH SERIES.]

MARCH 1861,

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

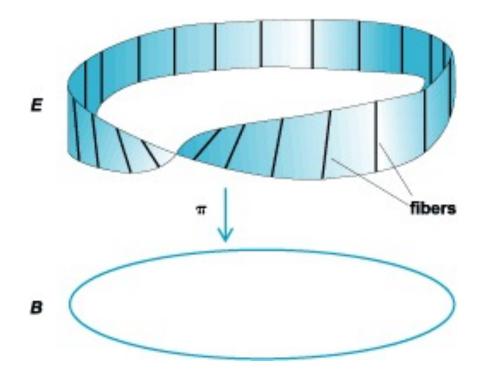
XXV. On Physical Lines of Force. By J. C. Maxwell, ProJames C. Maxwell, 1831-1879 fessor of Natural Philosophy in King's Callege, London*. James C. Maxwell, 1831-1879
PART 1.—The Theory of Molecular Vortices applied to Magnetic Phenomena.

In all phenomena involving attractions or repulsions, or any forces depending on the relative position of bodies, we have to determine the magnitude and direction of the force which would act on a given body, if placed in a given position.


In the case of a body acted on by the gravitation of a sphere, this force is inversely as the source of the distance and in a

the case of a body acted on by the gravitation of a sphere, this force is inversely as the square of the distance, and in a straight line to the centre of the sphere. In the case of two attracting spheres, or of a body not spherical, the magnitude and direction of the force vary according to more complicated laws. In electric and magnetic phenomena, the magnitude and direction of the resultant force at any point is the main subject of investigation. Suppose that the direction of the force at any point is known, then, if we draw a line so that in every part of its course it coincides in direction with the force at that point, this line may be called a line of force, since it indicates the direction of the force in every part of its course.

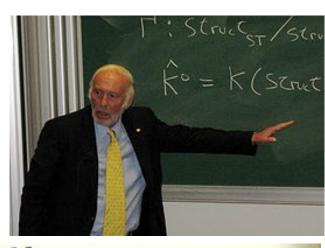
By drawing a sufficient number of lines of force, we may indicate the direction of the force in every part of the space in which it acts.


Thus if we strew iron filings on paper near a magnet, each filing will be magnetized by induction, and the consecutive filings will unite by their opposite poles, so as to form fibres, and these fibres will indicate the direction of the lines of force. The beautiful illustration of the presence of magnetic force afforded by this experiment, naturally tends to make us think of

Maxwell theory
is left-right
symmetric

Michael Faraday, 1791-1867

Gauge fields and topology


NB: Maxwell electrodynamics as a curvature of a line bundle

Möbius strip, the simplest nontrivial example of a fiber bundle

Gauge theories "live" in a fiber bundle space that possesses non-trivial topology (knots, links, twists,...)

Chern-Simons forms

6. Applications to 3-manifolds

In this section M will denote a compact, oriented, Riemannian 3-manifold, and $F(M) \xrightarrow{\pi} M$ will denote its SO(3) oriented frame bundle equipped with the Riemannian connection θ and curvature tensor Ω . For A, B skew symmetric matrices, the specific formula for P_1 shows $P_1(A \otimes B) = -(1/8\pi^2)$ tr AB. Calculating from (3.5) shows

$$TP_1(\theta) = rac{1}{4\pi^2} \{ heta_{12} \wedge \theta_{13} \wedge \theta_{23} + heta_{12} \wedge \Omega_{12} + heta_{13} \wedge \Omega_{13} + heta_{23} \wedge \Omega_{23} \}$$
.

What does it mean for a gauge theory?

Chern-Simons theory

CHARACTERISTIC FORMS

(6.1)
$$TP_{1}(\theta) = \frac{1}{4\pi^{2}} \{\theta_{12} \wedge \theta_{13} \wedge \theta_{23} + \theta_{12} \wedge \Omega_{12} + \theta_{13} \wedge \Omega_{13} + \theta_{23} \wedge \Omega_{23} \}.$$

What does it mean for electromagnetism?

Riemannian connection Gauge field

$$S_{CS} = \frac{k}{8\pi} \int_{M} d^3x \, \epsilon^{ijk} \left(A_i F_{jk} + \frac{2}{3} A_i [A_j, A_k] \right)$$

"magnetic helicity"

Chern-Simons form and circularly polarized light

How to describe the helicity of the circularly polarized light?

Magnetic helicity itself does not obey electric-magnetic symmetry of Maxwell equations in vacuum:

$$\mathbf{E} \to \cos \theta \, \, \mathbf{E} + \sin \theta \, \, \mathbf{B}$$

$$\mathbf{B} \to \cos \theta \ \mathbf{B} - \sin \theta \ \mathbf{E}$$

Heaviside, 1892 Larmor, 1897

We can however enforce this symmetry by introducing, in addition to the magnetic helicity, the dual pseudovector gauge potential C. In Coulomb gauge C is defined by:

$$\nabla \mathbf{A} = \nabla \mathbf{C} = 0$$
 $\mathbf{E} = -\nabla \times \mathbf{C} = -\dot{\mathbf{A}}$

Bateman, 1915

$$\mathbf{B} = \nabla \times \mathbf{A} = -\dot{\mathbf{C}}$$

Optical helicity of the circularly polarized light

Electric-magnetic transformation

$$\mathbf{E} \to \cos \theta \, \, \mathbf{E} + \sin \theta \, \, \mathbf{B}$$

$$\mathbf{B} \to \cos \theta \ \mathbf{B} - \sin \theta \ \mathbf{E}$$

is induced by

$$\mathbf{A} \to \cos \theta \ \mathbf{A} + \sin \theta \ \mathbf{C}$$

$$\mathbf{C} \to \cos \theta \ \mathbf{C} - \sin \theta \ \mathbf{A}$$

We can now define the **optical helicity** by adding CS terms for A and C:

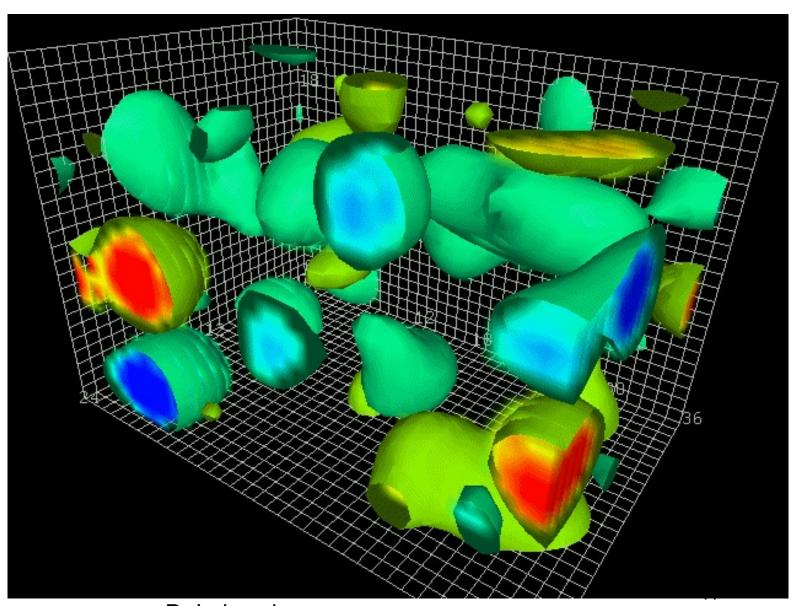
$$H \equiv \frac{1}{2} \int d^3x \left(\mathbf{A} \cdot (\nabla \times \mathbf{A}) + \mathbf{C} \cdot (\nabla \times \mathbf{C}) \right) = \frac{1}{2} \int d^3x \left(\mathbf{A} \cdot \mathbf{B} - \mathbf{C} \cdot \mathbf{E} \right)$$

Candlin, 1965; Trueba, Ranada, 1996; Afanasiev, Stepanovsky, 1996; Cameron, Barnett, Yao, 2012

Optical helicity of the circularly polarized light

The optical helicity

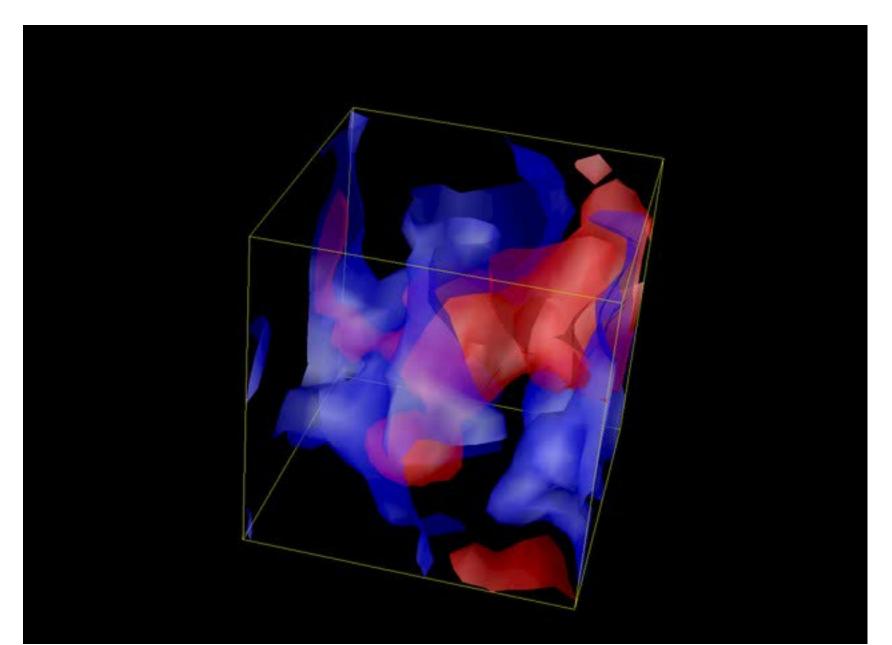
$$H = \frac{1}{2} \int d^3x \left(\mathbf{A} \cdot \mathbf{B} - \mathbf{C} \cdot \mathbf{E} \right)$$


is invariant under electric-magnetic symmetry

$$\mathbf{A} \to \cos \theta \ \mathbf{A} + \sin \theta \ \mathbf{C}$$

 $\mathbf{C} \to \cos \theta \ \mathbf{C} - \sin \theta \ \mathbf{A}$

It is a T-even, P-odd quantity that is conserved in the absence of interactions with chiral (P-odd) matter:


$$\frac{dH}{dt} = 0$$

Topological number fluctuations in QCD vacuum (3+1)d ("cooled" configurations)

D. Leinweber

"Topological foam" in QCD vacuum, (3+1) Dimensions ITEP Lattice Group

