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Beyond point estimation



Issues with point estimates

3

Important details to check while quoting point estimates (that is: central value ± 
uncertainty).


Is the estimator biased? How should I estimate/treat biases?

Is the procedure able to guarantee the desired coverage? 


E.g., Estimation of an efficiency. Use observed number non of successes out of 
ntot trials to construct an estimator of the efficiency  ρ̂ = non/ntot  


Observe 3 successes on 10 trials — what is our efficiency and its uncertainty? 

Efficiency is binomial quantity (“either you succeed or not”).  Usually replace ρ̂ = 
0.30 into σ̂ = √ntot ρ̂(1-ρ̂) and obtain the interval [ρ₁, ρ₂] = ρ̂ ± σ̂   This is not a 
proper confidence interval. 

Flaw is manifest when non = ntot  or non = 0, as the estimate would have zero 
uncertainty!

Move to a more general strategy for quoting results, which accounts for biases 
and ensure coverage — construction of confidence intervals.



Confidence intervals
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Given a model p(x|m), what are the values of the unknown parameter m for which 
the observed data x0  are among the least extreme possible values of x?                                                                                                                       
To specify “extreme”, need an ordering. 

Rank values of x for each possible value of m.  High rank means not extreme 
(likely to be included in the interval). Low rank means extreme (likely to be outside 
of the interval).

With that ordering, accumulate the values of highest-ranked (i.e., less extreme) 
values of x until you reach a predetermined fraction of x probability. Such fraction 
is the confidence level (CL). Typically 68%, 95%…

Given an ordering and a CL, the confidence interval [m1, m2] includes those 
values of m for which x0  are not “extreme” at the chosen CL

E.g, the 68% CL interval [m1, m2 ] includes the values of m for which the 
observed data x0 belongs to the least extreme 68% values of x



One-sided, two-sided.
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If “extreme” is defined as low-valued x, start 
accumulating from high values of x.  Yields 
one-sided interval (upper limit on m)

If “extreme” is defined as high-valued x, start 
accumulating from low values of x. Yields one-
sided interval (lower limit on m)

If “extremes” are high- and low-valued x, take 
the smallest central quantile. Yields central  
interval (interval estimate of m)

(simplified interpretation that applies only when x is one-dimensional and p(x|m) 
is such that higher m imply higher average x). The confidence level CL is 
usually chosen to match the standard thresholds 68.3% (1σ) 95.5% (2σ) etc. 

p(x|m)

p(x|m)

p(x|m)



Neyman construction 
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J. Neyman came up with a mathematically rigorous procedure 
that allows constructing confidence intervals with the desired 
level of coverage


Jerzy Neyman (1894-1981)



Neyman construction illustrated
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Prior to looking at data, for each possible true value of parameter m, consider 
p(x|m). Its shape can vary as a function of m. 

m0

m1

m2

p(x|m)

m

(Tipically “x” is chosen to be the maximum likelihood estimator of a parameter)



Neyman illustrated I
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Take a specific value m0 of the parameter 

p(x|m0)



Neyman illustrated II
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p(x|m0)

Use p(x|m0) to define an acceptance range in x, such that p(x ∈ range | m0) = 68%.

68%



Neyman illustrated III
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p(x|m0)

The definition of the acceptance range is not unique


The criterion to choose of the region is the ordering rule — the rule defining the 
order of accumulation of the elements along x until the desired amount of 
probability, corresponding to the chosen confidence level (68%, in our example), is 
accumulated. 

68% 32%



Neyman illustrated V
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p(x|m)

m

m0

m1

m2

Derive the acceptance region for every possible true value of the parameter m



Neyman illustrated VI
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This defines a confidence belt for m.

m

m2

m1

m0

p(x|m)



Neyman illustrated VII
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m

m0

m�

m+

Then you look at data and observe a value x0. The observed value intersects the 
confidence belt. The union of all values of m for which the observed x0 intercepts 
the confidence belt defines the confidence interval [m₋(x0) m₊(x0)] at the 68% CL for 
the parameter. The extremes of the interval are random var. (functions of data x)

In repeated experiments, the boundaries of the confidence intervals [m₋(x) m₊(x)] will 
differ, but 68% of them will contain the (unknown) true value of the parameter m

“projection of the acceptance 
region onto the space of 
parameters”  — a set-theory 
union, not an integral.



Neyman’s “magic” explained
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data x

m0

Suppose the true value is m0

Depending on the data observed, 
could get either the red of the green 
intervals. Red intervals don’t include 
m0 — green intervals do.

Since the probability of observing data 
yielding a green interval is CL by 
construction, and green intervals 
contain m0, then any observation 
yields an interval that include true 
value with probability CL

The procedure guarantees coverage.  The result of a measurement is expressed as 
“m is in [a, b] at the 68% CL”.  It does not mean  p(a < m < b) = 90%. It rather means 
that by repeating the procedure, 68% of the obtained intervals include the true value.
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Toy example
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I have externally identical bags of various classes. Each class contains a 
different fraction of white balls (class A = 1%, B= 5%, C = 50%, D= 95%, and 
D = 99%). Pick a bag, extract 5 balls, and infer whether the bag is class A, B 
etc, by setting a 95% CL upper limit on the true fraction of white balls.

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)
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Start constructing one-sided confidence band…
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For true value A, accumulate probability starting from high values of 
observations, which are “extreme” for an upper limit, until the probability 
accumulated is at least 95%

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)
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…continue band construction to true value B…

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)
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…keep constructing the confidence band…



Confidence band is complete
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Green marks the acceptance region, white the exclusion region

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)
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Now look at data
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Pick five balls from an unknown bag. Find only one white ball out of five.    
==> D and E class are out of the confidence region: exclude class D and 
class E at the 95% CL.

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

EXCLUDED at 95% CL 

True fraction of white balls (this is “m”)
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Again on Neyman construction
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m

m2

m1

m0

p(x|m)

x and m don’t need to have the same units, range, or dimensionality

It is true (in precisely the sense defined by the chosen ordering) that the confidence 
interval consists of those values of parameter m for which the observed data values 
x are among the most probable to be observed.



Back to our efficiency 
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ρ̂ = non/ntot  Observe 3 successes on 10 trials — what is our efficiency and its 
uncertainty?  Let’s find exact 68% central confidence intervals [ρ1, ρ1]


Convenient practical trick: endpoints of a central interval at given CL can be found 
from one-sided confidence intervals (lower and upper limits) at 1-(1-CL)/2: 



Confidence intervals for binomial
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Ordering guidelines
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p(x|m0)p(x|m0)

Despite arbitrariness, standards/conventions that are usually followed in the 
construction of the region.

First and foremost: the ordering algorithm should be decided and defined prior to 
look at the experimental data. Otherwise one could artificially exclude the result of 
the experiment as long as the excluded are is less than 1-CL. Also, usually one 
wants a connected region

x0Known observed value



Ordering
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The ordering algorithm is arbitrarily chosen, provided that (i) has been defined 
prior to look at the data (ii) for each value m of the parameter, the integral of the 
pdf along the x region outside of the belt does not exceed 1-CL, e.g, 5% in a 
95% CL confidence region construction

m

m0

m2

Z

x/2 belt
p(x|m2)dx  0.05

[Cranmer]



Probability ordering
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In the past, many tried to get the shortest possible interval, so that the resulting 
confidence intervals were likely narrower yielding more precise measurements. (this is 
the probability ordering or “Crow-Gardner ordering”)

p(x|m0)

This is ill-defined: as probability depends on the metric for the observable x, the 
shortest interval in one metric isn’t shortest in others.

1. Choose one value for m, m=m0, and look at p(x|m0)


2. Rank the x values in decreasing order of p(x|m0)


3. Accumulate x starting from the x with highest probability


4. Accumulate all other x until the desired CL is reached.


5. Repeat for all m



Issues — empty intervals
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Central 90% CL band for a 
Gaussian of unit width

 The resulting confidence regions are empty, which is clearly indicative of a problem.  

Long-standing inconsistencies found in 
simplistic ordering criteria.

For instance Gaussian measurement resolution 
near a physical boundary (e.g., like a 
measurement of neutrino mass square close to 
zero).

Observed



When constructing the 
band: for each value m0 
of the parameter 
accumulate values of x in 
decreasing order of 


where m̂ is the value that 
maximizes the likelihood 
for that x

Likelihood-ratio ordering (“Feldman and Cousins”)

Issues solved by adopting the likelihood-ratio ordering

The “accumulation score” of each element in x, no longer depends only on p(x|m0) 
but also on p(x|m) at other m values 

LR =
p(x|m0)

p(x|m̂)

m0

m1

m2

p(x|m)

m

p(x|m̂)

p(x|m0)

x



Natural transition from limit to point estimate
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.
Important to keep distinct 

• data x, which, due to resolution and bck 

fluctuations could fluctuate negative. 

• parameter Ns, for which negative values 

do not exist in the model

Observed 
yield can 
fluctuate 
negative 

True signal yield cannot  
be negative

Observation here 
yields a limit

Observation here 
yields measurement

Pa
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Observed x (divided by σx)



Likelihood-ratio ordering
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1. Choose one value for m, m0  and generate simulated pseudodata accordingly.


2. For each observation x calculate (i) the value of the likelihood at m0, p(x|m0)=L(m0) and (ii) the 
maximum likelihood L(m̂) over the space of m values (for that observation)


3. Rank all x in decreasing order of likelihood ratio LR=Lx(m0)/Lx(m̂).


4. Accumulate probability starting from the x with higher LR until the desired CL is reached.


5. Repeat for all m

As the likelihood is metric-invariant so is the ratio of likelihoods. Therefore LR-
ordering preserves the metric, mostly avoids empty confidence regions and has 
several other attractive features. By far the most popular ordering in HEP. 


In your work, take LR-ordering as default option unless there are strong 
motivations against it. 



Got your brain tangled? Try with Poisson.
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It is instructive to trying to reproduce LR bands as per the original paper. http://
arxiv.org/pdf/physics/9711021v2.pdf. Further useful and interesting info in 
http://users.physics.harvard.edu/~feldman/Journeys.pdf 


Observed 
count

Likelihood ratio 
L(μ =0.5)/L(μ̂ )        
(ordering score)

Can use this for Poisson http://stats.areppim.com/calc/calc_poisson.php

L(μ =0.5) 
of  

observed 
count

μ̂  that  
maximizes L 
of observed 

count

L(μ̂ )        
of  

observed 
count

http://arxiv.org/pdf/physics/9711021v2.pdf
http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf


In many cases, can use tabulated values
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Poisson limits (from the original 
Feldman-Cousins paper).

Handy in a counting 
experiment (e.g,, a search for 
an excess in a bin) where I 
observe n0 and know 
~precisely the expected 
background yield b



In many cases, can use tabulated values
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Gaussian limits (from the 
original Feldman-Cousins 
paper)


Handy in a fit to a signal where 
pulls for the signal yield are 
Gaussian
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A shortcut to LR — Wilks’ theorem
Asymptotically (large N), the distribution of the likelihood ratio


approaches a χ²(n) distribution with # of degrees of freedom n 
equal to the number of additional free parameters the numerator 
has wrt the denominator. Samuel S. Wilks (1906-1964)


This holds independently of the shape of p(x|m) (does not need to be Gaussian!) and 
on the value of m (so-called “distribution-free”)

It works due to an asymptotic limit based on the central-limit theorem and applies 
with some restrictions on the family of models: basically a shortcut of the FC in the 
asymptotic limit. If the likelihood is regular enough to be in asymptotic regime with 
the sample at hand, save you massive production of simulated experiments.

−2 log LR(m) = − 2 log
p(x |m)
p(x | m̂)
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Wilks' theorem tells us how LR distribute

1 additional parameter in p(x|m) wrt to p(x|m0)

2 additional parameters in p(x|m) wrt to p(x|m0)

3 additional parameters in p(x|m) wrt to p(x|m0)
4 additional parameters

5 additional parameters

No need to generate the 
distributions of likelihood ratio 
statistic (no need for toys — 
saves lots of work!

Look at where the value of 
likelihood ratio observed in data 
falls along the appropriate curve 
(determined by the number of 
degrees of freedom)

−2 log LR(m) = − 2 log
p(x |m)
p(x | m̂)

Varying “thresholds” on the value of LR correspond to intervals in the space of 
parameters. Every locus of iso-LR values relative to the minimum “projects 
down” into an interval of the space of parameters with a known CL.
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This is what the MINOS algorithm in MINUIT does

When L(m0,ŝm)/L(m̂,ŝ) equals the threshold values 
tabulated from the χ² distribution, the 
corresponding projection of the profile-likelihood 
onto the m space approximates (large N) a 
Feldman-Cousins central confidence interval 

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
= �

�
�

CL
CL

“projection” onto the space of parameters of a 3-dimensional 
likelihood at the point where -2lnLR varies by 6.25 units 

identifies a 3-dimensional 90%CL central interval

“projection” onto the space of parameters of a 1(2)-
dimensional likelihood at the point where -2lnLR varies by 1.0 
units identifies a 1(2)-dimensional 68(39)% CL central interval

Moves down from the maximum L(m̂,ŝ) evaluating L(m0,ŝm) at each point m0 by 
maximizing wrt parameters s ⃗(i.e., likelihood of m profiled wrt s)⃗.          



Real life — high dimensions
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In most real problems likelihoods are complicated multidimensional functions 
that cannot be analytically maximized. Two main issues:

Constructing confidence intervals is a significant computing 
burden: for each test value of the parameter m, (i) generate 
many samples of pseudodata, (ii) fit, and (iii) then move to 
another m value etc.. Diverges quickly with dimensionality 

With highly-dimensional likelihoods the “set-theory projection” of the full-
dimensional confidence band into the lower-dimensional subspace of the 
parameter of interest leads to information loss: a lot of information on structure in 
the full dimensional space is lost when projected.       


The resulting confidence interval is bigger (less precise results).



Systematic uncertainties
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What systematic uncertainty is

Not only one does not know which data x will be observed for a true value m.    
One does not even know the exact probability for each possible x.

The systematic uncertainty accounts for the differences between our model and reality  

p(x |m)

Assumed model p(x|m)

Real (unknown) theory p(x|m,ν)

Here we do not know the value of ν and we do not know the distribution p(x|ν). 

If we knew p(x|ν), we’d include it in our model to improve it and ν would no longer 
contribute a systematic uncertainty. This is often done for ν's of experimental origin 
(e.g., external experimental inputs), which are often Gaussian

p(x|m) is an approximation of the real 
(and unknown) theory p(x|m,ν).  

Parametrize the difference with 
dpendence on additional unknown 
parameters ν. 

The better the approximation, the 
smaller the systematic uncertainty
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How systematic uncertainty is interpreted 
When a HEP physicist reads ‘result is m̂ = 10 ± 4 (stat) ± 3 (syst)’ , or the 
compact form that combines independent uncertainties m̂ = 10 ± 5 (tot), no 
universal probabilistic interpretation exists.       

Many assume that the results including systematics follow a Gaussian distribution. 
This is in general NOT TRUE, for the very conceptual definition of systematic 
uncertainty (if I knew it was Gaussian, then it would no longer be a systematic)

Reporting details on how systematic effects are considered is important.  It allows for 
readers to form their own scientific opinion on the robustness of our work

Typically assume (consciously or not) that the range 5 < m̂ < 15 contains the true 
value of m with >= 68.3% probability. 

For this to happen, need systematic uncertainty sized to ensure coverage for any of 
the possible alternate models we could have picked (among those consistent with 
our data).



Nuisance parameters
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Our likelihood L(m)=p(x|m) is based on model p(x|m) which is an approximation of 
the real (and unknown) theory p(x|m,ν) that depends on nuisance parameters ν

How does the “distance” between our model and reality impacts results? How 
can we make our results robust against that distance?

It is important to distinguish between 


nuisance parameters that contribute model refinements  (ν has unknown value 
but p(x|ν) is known). 

nuisance parameters that contribute genuine systematics (both the value and 
p(x|ν) of ν are unknown). 



Model refinements 
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In HEP, likelihoods often depend on parameters ν that have unknown true value 
but known distribution p(x|ν), e.g., 


 reconstruction efficiencies, which may be determined from MC or control 
samples, and thus have known p(x|ν) 

 BFs of reference modes, which may be known by other experiments and thus 

have known p(x|ν)

Inclusion of this information in the likelihood is straightforward:

Multiply your default p(x|m) by the likelihood for the nuisance parameters p(x|ν) and 
fit the data. 

You’ll get a determination of ν too (may not be relevant) but the statistical 
uncertainty on m will include a contribution due to the uncertainty on ν.



Proper systematics in likelihood fits
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The likelihood may also depend on parameters ν where both true value and 
distribution p(x|ν) are unknown e.g.,


parameters regulating the shapes of components (e.g, backgrounds) of your 
sample that cannot be inferred precisely from MC or control samples.

 theoretical parameters that are needed to convert what you measure into a 

higher level physical quantity (decay constants from lattice QCD, ISR/FSR etc. ) 
Treatment of these cases is NOT straightforward. 

Various approaches exist. 

It is important to fully understand the assumptions and limitations associated with 
each so that the implications on the final results and their interpretation is known 
and can be documented.



Bayesian approach
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A straightforward generalization of the standard Bayesian treatment. 


Even if p(x|ν) is unknown, assume a prior p(ν) for the nuisance parameters 
(typically flat or Gaussian) and integrate (“marginalize”) the product of that prior by 
the likelihood over ν. Obtain a posterior p(x|m) that no longer depends on the 
nuisance parameters

p(x |m) = ∫ν
p(x |m, ν)p(ν)dν

and then proceed with Bayesian inference. What you should know/do?


Priors introduce subjective input. Not a problem in Bayesian view. Prone to 
inconsistencies (e.g., inconsistent results obtained by different groups using the 
same data). Concerns worsen for high-dimensional likelihood, since impact of 
priors on final results explodes with dimensionality. Test and report the 
robustness of your results under various choices of priors


No guarantee that final results contain the true value with the desired probability 
(68% or else). Unimportant in Bayesian statistics, but can lead to misinterpreting 
one’s results. Important to state what is done. 



Frequentist: step 1, bracketing the model
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Extreme and possible do not mean 
to include any configuration for ν. 


Only the subset of configurations that 
are consistent with our data and 
objective knowledge are meaningful.

E.g., I might be uncertain about the specific mass shape of a background 
component, but I might have data sidebands that provide some information about 
that shape. Hence, my extreme shape configurations will be chosen among those 
that are still capable of fitting satisfactorily my sideband data.

p(x|m,ν) is unknown, but often data and physics allow for identifying a few 
`extreme configurations’ for ν, say  ν’, and ν’’, that bracket all possible 
configurations of the unknown parameter.

p(x |m)
default model p(x|m)

Plausible extreme case

Implausible extreme case



Frequentist: step 2 replicating possible Universes
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Once extreme cases for ν are chosen, need to know how results would be if nature 
had chosen ν’  or ν’’  as true values for ν


Draw from p(x|m,ν) to generate ensembles of toys for each of the possible 
configurations — say, 1000 toys from p(x|m0, ν’), 1000 from p(x|m0, ν’’), 1000 
from p(x|m1, ν’), 1000 from p(x|m1, ν’’)…., where mi are possible true values for 
the parameters of interest.


Fit each toy and plot the distributions of results m̂ for each ensemble.


The shape and spread of the m̂ distributions under the various configurations 
determines the proper interval that contains the true m value with the desired 
probability, regardless of the true value of ν. 

[Occasionally, the number of nuisance parameters and their correlations prevents 
from identifying intuitively suited extreme cases. Then, sample randomly (uniformly 
in all dimensions) the space of nuisance parameters sufficient times and repeat the 
two points above]



Frequentist approach - What ya see is what ya get
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What you should know/do if you go this way?


You get coverage: results will contain the true value with at least the desired 
probability (68% or else). Reduced risk of misinterpreting one’s results.


Results might be less exciting at face value. The condition that intervals should 
contain the true value of m for whatever configuration of nuisance parameters is 
pessimistic for most possible values of ν. That is, for most ν, intervals will contain 
m with higher than 68% probability (i.e., you get larger uncertainties)


It takes a lot of work. Occasionally, people skip the search for extreme values  ν’, 
ν’’  and just generate toys under the single configuration p(x|m,ν̂), where ν̂ is the 
ML estimate of ν in data (so-called plug-in method). This saves work but spoils 
coverage if the value ν̂ differs from the unknown real value of ν.


Highly dimensional likelihoods might spoil the final precision, due to the 
topologically inherent information-loss that occurs when projecting from the 
higher-dimensional (m, ν) space to the m subspace (see next slides)



Frequentist approach - profiling the likelihood
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To obviate the loss of information (and computational complexity) in problems 
where likelihoods are functions of many variables, replace the likelihood with a 
lower-dimensional structure, the profile-likelihood, and base inference on that.

The profile likelihood is obtained by maximizing the likelihood with respect to a 
subset of its variables (usually the nuisance parameters ν) and replacing their 
maximized values ν̂ inside it:

L(m1, m2, . . . , mn, ν1, ν2, . . . , νm |x) ⇒ Lp(m1, m2, . . . , mn | ̂ν1, ̂ν2, . . . , ̂νm, x)

The original likelihood is function of n + m variables and the profile likelihood is 
function of only n variables.

The profile likelihood is not a likelihood nor it has its mathematical properties. 

However, profile-likelihood properties approach sufficiently well the likelihood 
properties in many problems thus offering a solid lower-dimensional instrument 
to perform inference.



Hybrid approaches
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Some mix Bayesian and frequentist approaches, especially when trying to include 
systematic uncertainties in exclusion limits. 

These approaches usually involve “folding in” the systematic uncertainty along with 
the statistical one first, and then determining limits using the total uncertainty

The folding can happen by either


convolving the likelihood with a Gaussian of width equal to systematic uncert.;

summing in quadrature the statistical and systematic uncertainty;

marginalizing the likelihood only with respect to the nuisance parameters (as in 
slide 18) and then treat the resulting posterior as a proper likelihood for usage in 
standard frequentist inference (Cousins-Highland, NIM A320, 331 (1992),  
RooStats::HybridCalculator)


While statistical reliability of these methods may vary, it is rarely desirable to mix 
Bayesian and frequentist techniques within the same inference, as that obfuscates a 
proper interpretation of the final results.
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Reduce the dimensionality of the problem. Not by integration as Bayesian do, but 
by derivation: replacing the likelihood with a lower-dimensional function obtained 
by maximizing the likelihood wrt the nuisance parameters.


FC ratio-ordering applied to likelihoods profiled (i.e., maximized) with respect to 
the uninteresting parameters.  The profile-likelihood is not a likelihood. It is a lower-
dimensional derivation of it that preserves some of the attractive features of the 
likelihood.

Profile-likelihood ratio ordering

Variable Meaning
m Parameters of interest (”physics parameters”)
s Nuisance parameters
m̂, ŝ Parameters that maximize L(x|m, s)
ŝ⇤ Parameter that maximizes L(x|m = m0, s)

PLR = L(x|m=m0,ŝ
⇤)

L(x|m̂,ŝ)



50

In practice

1. Choose one value m0 for m and one value s0  for s, and generate pseudodata x accordingly


2. For each sample x (i) maximize p(x|m=m0,s)=L(m=m0,s) with respect to s to get L(m=m0,ŝ*) and 
(ii) maximize the likelihood L(m,s) over the space of m and s to obtain L(m̂,ŝ)


3. Rank all x in decreasing order of profile likelihood ratio PLR=L(m=m0,ŝ*)/L(m̂,ŝ)


4. Start from the x with higher PLR and accumulate the others until the desired CL is reached.


5. Repeat for all values of m


6. [Repeat for values of s sampled in their whole range of existence]

Generate pseudodata that sample the full multidimensional space of the parameters.  
fit each sample twice, one with all parameters (physics and nuisance) floating, and 
another one with physics parameters fixed to their test value m0.  

Step 6 is essential to ensure the procedure has coverage for all values of the 
nuisance parameters.                                                                                    
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Key: how to treat nuisance paramt. in generation
Step 6 is essential to ensure coverage for all values of the nuisance parameters: this 
is the “supremum p-value method”  Can be expensive. 


Often circumvented using the “plugin method”: only generate pseudodata at the s 
values estimated on data.  Equivalent to assume that the true values of the 
nuisance parameters are exactly those measured in data. Likely to be an optimistic 
assumption that spoils coverage.


Midway between plugin and supremum: generate pseudata at s ⃗values sampled in a 
plausible subvolume centered on their estimates in data. Berger and Boos: sample 
along each dimension si  a range around the estimated value ŝ with CL much larger 
than the target CL of the profile-likelihood interval. (e.g, when constructing a 68% 
CL band in m, sample a 99.7% CL range in each dimension in s space).                         
Applied in JASA, 89, 427 (1994) https://arxiv.org/pdf/0810.3229.pdf      Phys. Rev. Lett 100 161802,                                                                                              

Comprehensive review of treatment of nuisance parameters: Sec 4 in www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

https://arxiv.org/pdf/0810.3229.pdf
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Interval estimation roadmap
I want to report my results as a confidence interval 

Assume priors for 
physics and nuisance 

parameters

Integrate (marginalize) priors on 
nuisance parameters to get the 
posterior on physics parameters

Check for prior dependence

Check if Wilks theorem conditions apply

Assume model p(x|m)

Use differences in 
PLR to determine final 

interval 

Construct confidence 
region using PLR-

ordering 

Check for undercoverage

yes no/not sure

To
ug

h 
in

te
gr

al
s

Lo
ts

 o
f s

im
ul

at
io

n

I am feeling 
Bayesian…

I don’t stomach 
priors..



Hypothesis testing 
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Are my data compatible with background?



55

Or they suggest the presence of an anomaly?

The p-value is a random variable that helps answering this question                                                                    
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/

http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/
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Ingredients (prepare prior to any observation)
1. Need two hypotheses. For instance: only known phenomena contribute“null” or 
“background” ) new phenomena contribute too (“alternate” or “signal”)

2. Need a function x of the data (e.g., signal-event count), whose distribution 
under the null p(x|b) “differs” from that under the signal hypothesis p(x|s+b).  

3. Generate these two distributions (typically done using simulation) 

3. Set, prior to the observation, the false-positive rate: how much “signal-like” the 
observed value of x should be to exclude the background only hypothesis. 

Arbitrary function x of the data that allows separating between the two hypotheses

Di
st

rib
ut

io
n 

of
 x p(x|b) p(x|s+b)

Observation xobs



Step 2: look at the data  

That is, look at what particular value xobs the 
quantity x takes up in your data 
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https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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p-values for discovering a new effect

Observe xobs. The location of xobs  relative to the two pdf offers a quantitative 
measure of data compatibility with either hypotheses.

p-value: relative fraction of the integral of the null model over values of x as signal-
like as those observed and more. The smaller the p-value, the stronger the 
evidence against the null hypothesis. If p-value < false-positive rate, exclude the 
background-only hypothesis at CL = 1-(p-value).

Arbitrary function x of the data that allows for separation between the two hypotheses

Di
st

rib
ut

io
n 

of
 x xobsp(x|b) p(x|s+b)

p-value of the data 
with respect to the 

null hypothesis 
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p-values for excluding a new effect
If the purpose is to exclude a new effect, then one tests the signal hypothesis, and 
quotes the p-value with respect to that.


Is the relative fraction of the integral of the signal model over values of x as 
background-like as that observed and more. The smaller the p-value, the stronger 
the evidence against the signal hypothesis.

Arbitrary function x of the data that allows for separation between the two hypotheses

Di
st

rib
ut

io
n 

of
 x xobs p(x|s+b)p(x|b)

p-value of the data with respect 
to the signal hypothesis 
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This is Popperian testing

Cannot prove that an hypothesis is true, only that it’s false.

“Discover” a signal by excluding its absence (that is, by excluding 
that only background contributes).  Limit to the existence of a signal 
by excluding is presence.

Karl Popper (1902-1994)

A p-value is not a probability. It is a random variable (function of the data) that is 
distributed uniformly if the tested hypothesis is true.

It does not express the probability that an hypothesis is true or false!                  
Wrong claim “The measurement shows that the probability for hypothesis blah is ..”                                                                                                                             

P-values connect to the probability to observe xobs or a more extreme value if a 
specific hypothesis were true. Proper claim: “Assuming that the hypothesis blah 
holds, the probability to observe a fluctuation as extreme as that observed in our 
data or more is…”
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One-slide recap

This is x, 
whatever 

function of 
data whose 
distribution 
is sensitive 
to separate 
H0 from H1

x

This is p(x|b), the distribution of x under the 
null hypothesis

This is p(x|s+b), the distribution of x under the 
signal hypothesis

Symbol Meaning
↵ Rate of false positives (Type I error: reject H0, while it was true)
� Rate of false negatives (Type II error: reject H1, while it was true)

1� � Power of the test

Bckg like observation Signal like observation
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“Significance”
“At how many sigma such and such result is significant?” 


The “number of sigma” (or z-value) is just a remapping of p-values into integrals of 
one tail of a Gaussian.  It expresses by how many sigma away of mean of my 
observation would be if the test statistic x would be distributed as Gaussian



63

Examples: p-values in coin tossing 
Check if a coin is fair. The probability to observe j heads in n trials is binomial


Null hypothesis: the coin is fair (p=0.5). Get 17 heads out of 20 trials. Regions of 
data space with equal or lesser compatibility with null, relative to j=17 include 
n=17, 18, 19, 20, 0, 1, 2, 3. 

P(n=0,1,2,3,17,18,19,or 20) = 0.26%.


Hence, if the null were true (coin is fair) and we would repeat the experiment 
many times, only 0.26% of the times we would obtain a result as extreme or 
more than that observed. 


f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j =

n!

(n� j)!j!
pj(1� p)n�j
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p-values in mass peak
Suppose you measure a value x for each 
event and bin the resulting distribution.


The count in each bin is a Poisson random 
variable, whose mean in the bck-only 
hypothesis is given by the dashed line


Observe a peak of 11 events in the central 
bins, with expected background 3.2 events.

P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5*10-4


Is this evaluation fair or biased?
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“Local” p-value and “look-elsewhere effect” 

That evaluation accounts for the chances of an 
upward fluctuation only in that very position at x~9 
where I observed it.  That’s the “local p-value”. 


“global p-value” need to account for the chances 
that an excess could have arisen in any pair of 
adjacent bins.  With 20 bins (10 pairs of adjacent 
bins) the local p-value gets multiplied by ≈10.

The larger the size of the test space, the higher the probabilities to observe rare 
fluctuations. 


When quoting p-values, need to correct for the effect of multiple testing (i.e., 
account that we have also been “looking elsewhere” from where the anomaly is). 


Use simulation, or approximate correction factors as, e.g., in EPJ C70, 525 (2010)

Peak could have been 
observed here

..or here
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Look elsewhere, monkeys, and Shakespeare



Sources - books
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G. Cowan,“Statistical 
data analysis”

F. James, “Statistical Methods in 
Experimental Physics, data analysis”

G. Casella, R. Berger, 
“Statistical Inference”

A. Stuart, et al “Kendall’s Advanced 
Theory of Statistics Vol 2A”

• Good starting point • Very good book at the 
right level for HEP • Advanced book • Ultimate bible

If you are serious about statistics, get the Cowan and James, and consult the other 
two in the library when needed. 
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Further readings — lecture slides/docs

• Statistics@ http://hcpss.web.cern.ch/hcpss/  (Excellent lectures by K. Cranmer, G. Cowan, B. Cousins et al. Some are 
video-recorded). Similar expertise level to the lectures given here.


• Lectures from Glen Cowan’s page https://www.pp.rhul.ac.uk/~cowan/ Similar or more basic expertise level


• Terascale Stat School (especially 2015 F. James’ lectures) https://indico.desy.de/conferenceDisplay.py?confId=11244 
More advanced.


• T. Junk’s lectures from www-cdf.fnal.gov/~trj/  Similar expertise level


• L. Lyons lectures: https://indico.cern.ch/event/431038/ Similar or more basic expertise level


• Notes from CDF’s Statistics Committee public page https://www-cdf.fnal.gov/physics/statistics/  Basic to advanced


• B. Cousins: https://arxiv.org/abs/1807.05996. Look at his statistics papers on http://inspirehep.net/help/easy-search 
and at the references he reccommends. Advanced


• Proceedings/docs from the PHYSTAT conferences and workshops, linked from phystat.org Advanced

http://hcpss.web.cern.ch/hcpss/
https://www.pp.rhul.ac.uk/~cowan/
https://indico.desy.de/conferenceDisplay.py?confId=11244
http://www-cdf.fnal.gov/~trj/
https://indico.cern.ch/event/431038/
https://www-cdf.fnal.gov/physics/statistics/
https://arxiv.org/abs/1807.05996
http://inspirehep.net/help/easy-search
http://phystat.org
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Thanks for your attention


