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Introduction
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Relativistic heavy ion collisions

Heavy-ion collision experiments as a means to study the properties of nuclear
matter at extremely high energies

Examples:
I Au+Au at RHIC, BNL with √sNN up tp 200 GeV.
I Pb+Pb at LHC, CERN with √sNN up tp 5 TeV.

Image from ATLAS @ CERN (2010)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayHeavyIonCollisions
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Relativistic heavy ion collisions

Collect experimental data:
Number of produced particles, E and p distributions, particle species, ...
Flow coefficients vn, correlations, ...

All observations should be explainable using theory!

Image from ATLAS @ CERN (2010)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayHeavyIonCollisions
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State of the art: a chain of simulations

CGC &
Glasma Non-eq. QGP Eq. QGP Hadron gas

τ . 0.2 fm
c

0.2 fm
c

. τ . 1 fm
c

1 fm
c

. τ . 10 fm
c

10 fm
c

. τ

Classical
Yang-Mills

Kinetic Theory Rel. Viscous
Hydrodynamics

Kinetic Theory

IP-Glasma (2+1D)
openpixi (3+1D)
curraun (2+1D)

KøMPøST MUSIC UrQMD

Input:
I knowledge about nuclei (deep inelastic scattering, CGC models)
I properties of the QGP (collision integrals, viscosity, EOS)

Output:
I predictions for observables (multiplicities, flow coefficients, ...)

https://github.com/schenke/ipglasma
http://openpixi.org/
https://gitlab.com/openpixi/curraun
https://github.com/KMPST/KoMPoST/
http://www.physics.mcgill.ca/music/
https://urqmd.org/
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Color glass condensate

CGC is an effective theory for high energy QCD at weak coupling

Nuclei at high energies:
I Lorentz-contracted along collision axis
I Time-dilated dynamics
I hard partons: carry most of the momentum of the nucleus
I soft partons: high occupation number, (near-classical) coherent state

Split degrees of freedom:
I quarks, high momentum gluons: classical color currents Jµ

I low momentum gluons: classical color fields Aµ

DµF
µν = Jν

CGC allows an effectively classical treatment of high energy nuclei
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Color glass condensate

Nucleus “A” described by color current

J+(x−, xT ) = ρA(x−, xT )

in terms of light cone coordinates x± = (x0 ± x3)/
√

2 and transverse
coordinates xT = (x, y)

x+x− t

z

J+(x−, xT )

I YM eqs. DµF
µν = Jν

I Use covariant gauge ∂µAµ = 0
I YM eqs. reduce to 2D Poisson eq.

−∆TA
+(x−, xT ) = ρA(x−, xT )

I Solve in Fourier space with infrared
regulator m

A+(x−, xT ) =
∫

d2kT
(2π)2

ρ̃A(x−, kT )
k2
T +m2 e−ikT ·xT
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Color glass condensate

Nucleus “B” described by color current

J−(x+, xT ) = ρB(x+, xT )

in terms of light cone coordinates x± = (x0 ± x3)/
√

2 and transverse
coordinates xT = (x, y)

x+x− t

z

J−(x+, xT )

I YM eqs. DµF
µν = Jν

I Use covariant gauge ∂µAµ = 0
I YM eqs. reduce to 2D Poisson eq.

−∆TA
−(x+, xT ) = ρB(x+, xT )

I Solve in Fourier space with infrared
regulator m

A−(x+, xT ) =
∫

d2kT
(2π)2

ρ̃B(x+, kT )
k2
T +m2 e−ikT ·xT
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Color glass condensate

Classical color currents Jµ or charge densities ρ are random fields distributed
according to some probability functional W [ρ]. This requires models.

Observables are computed as expectation values using functional integration:

〈O(Aµ)〉 =
∫
DρO(Aµ[ρ])W [ρ]

A simple model: McLerran-Venugopalan (MV) model

W [ρ] = Z−1 exp
(
−
∫
d2xT dx

− ρ
a(x−, xT )ρa(x−, xT )

2g2µ2λ(x−)

)
〈
ρa(x−, xT )

〉
= 0〈

ρa(x−, xT )ρb(y−, yT )
〉

= g2µ2λ(x−)δabδ(x− − y−)δ(2)(xT − yT )

No notion of finite radius ⇒ suitable for central collisions of very large nuclei
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Color glass condensate

Covariant gauge solutions:

J+(x) = ρA(x) ⇒ A+(x) =
∫

d2kT
(2π)2

ρ̃A(x−, kT )
k2
T +m2 e−ikT ·xT

J−(x) = ρB(x) ⇒ A−(x) =
∫

d2kT
(2π)2

ρ̃B(x+, kT )
k2
T +m2 e−ikT ·xT

Solutions to the YM eqs. are simple for single nuclei, even though YM
eqs. are non-linear.

What about collisions? How can we solve

DµF
µν = JνA + JνB ?
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The Glasma in 2+1D
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General collision scenario

I Glasma: field produced from
the collision of two CGCs

I Solution to the Yang-Mills
equations

DµF
µν = JνA + JνB

I Fields are non-perturbative
I Recoil of nuclei?
I No analytic solutions in the

forward light cone
I Need approximations to make

progress

x+x−
t

z

Jµ
AJµ

B
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Ultra-relativistic collision scenario

I Assumption 1: no recoil
I Assumption 2: infinitesimally

thin along z

J+(x) = δ(x−)ρA(xT )
J−(x) = δ(x+)ρB(xT )

I Milne coordinates

τ =
√

2x+x−, η = 1
2 ln

(
x+

x−

)
I Invariance under boosts along z

(rapidity η independent)
I Glasma is effectively 2+1D

x+x−
t

z

J+ = δ(x−)ρA(xT )J− = δ(x+)ρB(xT )
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Ultra-relativistic collision scenario

I Initial conditions at boundary
τ = 0+ (analytic result)

I Evolution in future light cone
determined by source-free
Yang-Mills eqs.

DµF
µν = 0

I In practice: real-time lattice
gauge theory for time evolution
along proper time τ

x+x−
t

z

τ
=
0
+

J+ = δ(x−)ρA(xT )J− = δ(x+)ρB(xT )
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The boost-invariant Glasma

Initial conditions:

αi(τ → 0+, xT ) = αiA(xT ) + αiB(xT ),

αη(τ → 0+, xT ) = ig

2
[
αiA(xT ), αiB(xT )

]
,

with the light cone gauge solutions

αi(A,B)(xT ) = 1
ig
V(A,B)(xT )∂iV †(A,B)(xT ).

Wilson lines computed from covariant gauge solutions:

V †(A,B)(xT ) = P exp

−ig +∞∫
−∞

dx′∓A±(x′∓, xT )


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The boost-invariant Glasma

Glasma at τ = 0+ consists of color-electric and -magnetic longitudinal flux
tubes with typical transverse size of Q−1

s (saturation momentum, Qs ≈ g2µ)

Figs. from H. Fujii, K. Itakura, Nucl. Phys. A (2008), [0803.0410]
T. Lappi, L. McLerran, Nucl. Phys. A (2006) [hep-ph/0602189]

Flux tubes expand and decay according to the YM eqs. until system reaches
free streaming state

https://arxiv.org/abs/0803.0410
https://arxiv.org/abs/hep-ph/0602189
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Energy-momentum tensor

One of the main observables is the energy-momentum tensor Tµν

Tµν = 2
g2 Tr

[
FµρF νρ −

1
4g

µνF ρσFρσ

]
.

Expectation value in the MV model (Glasma rest frame):

〈
Tµν

〉
=


〈
ε
〉

0 0 0
0

〈
pT
〉

0 0
0 0

〈
pT
〉

0
0 0 0

〈
pL
〉


Event-by-event: all components of Tµν relevant
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Energy-momentum tensor

One of the main observables is the energy-momentum tensor Tµν

I Problem 1: pressure anisotropy
(solved by KøMPøST)

I Problem 2: boost invariance
I Tµν input for hydrodynamics/kinetic theory

Figs. from: D. Müller, PhD thesis (2019) [1904.04267]
A. Kurkela, A. Mazeliauskas, JF Paquet, S. Schlichting, D. Teaney, PRL (2019) [1805.01604]

https://arxiv.org/abs/1904.04267
https://arxiv.org/abs/1805.01604
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Energy-momentum tensor

One of the main observables is the energy-momentum tensor Tµν

I Problem 1: pressure anisotropy
(solved by KøMPøST)

I Problem 2: boost invariance
I Tµν input for hydrodynamics/kinetic theory

Figs. from ALICE, PLB (2013) [1304.0347] and BRAHMS, PRL (2005) [nucl-ex/0403050]

https://arxiv.org/abs/1304.0347
https://arxiv.org/abs/nucl-ex/0403050
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The Glasma in 3+1D
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Relativistic collision scenario with finite widths

I Assumption: no recoil
I Keep width along z finite

J+(x) = ρA(x−, xT )
J−(x) = ρB(x+, xT )

I Finite interaction time
I No boost invariance
I Glasma is 3+1D
I Problem: rapidity dependent

initial conditions in Milne
coordinates?

x+x−
t

z

J+ = ρA(x
−, xT )J− = ρB(x

+, xT )
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Relativistic collision scenario with finite widths

I Give up description in Milne
coordinates (τ, η)

I Describe collision in laboratory
frame (t, z)

I Full 3+1D Yang-Mills eqs. with
current

DµF
µν = JνA + JνB

I Initial conditions at t = t0
(analytic result)

I Simulate full collision with
real-time lattice gauge theory
and colored particle-in-cell

x+x−
t

z

J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J+ = ρA(x
−, xT )J− = ρB(x

+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )J− = ρB(x
+, xT )

t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0t = t0
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Real-time lattice gauge theory

Lattice gauge theory is a gauge covariant discretizion of Yang-Mills theory on
a lattice with lattice spacings aµ

Degrees of freedom: gauge links

Ux,µ = P̄ exp
(
ig

x+âµ∫
x

dx′νAν(x′)
)

≈ exp
(
igaµAµ(x+ 1

2 â
µ)
)

Plaquettes to approximate field strength tensor

Ux,µν = Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν

≈ exp
(
igaµaνFµν(x+ 1

2 â
µ + 1

2 â
ν)
)

xx x+âi+âjx+âi+âj

x+âix+âi

x+âjx+âj

Ux,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ijUx,ij
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Real-time lattice gauge theory

Approximate Yang-Mills action with plaquettes: Wilson action

S = −1
2

∫
d4xTr [FµνFµν ]

≈ a4
∑
x

∑
i

1
(gaµaν)2 Tr

[
1− 1

2Ux,µν −
1
2U
†
x,µν

]

I Discretization is correct up to O(a2)
I Wilson action is symmetric under (space-)time reversal
I Wilson action is gauge invariant under lattice gauge transformations

Ux,µ → ΩxUx,µΩ†x+µ

Ux,µν → ΩxUx,µνΩ†x

I Variation yields gauge covariant equations of motion
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Real-time lattice gauge theory
Discrete Yang-Mills equations (continuous time t)

Ėi(t,x) = −
∑
j

1
gai(aj)2 [Ui,j(t,x) + Ui,−j(t,x)]ah + Ji(t,x)

U̇i(t,x) = igaiEi(t,x)Ui(t,x)

I Time evolution can be performed numerically
I External color current Jµ(t,x)
I Gauge covariant conservation

ρ̇(t,x) +
∑
i

Ji(t,x)− Ux,−i(t)Ji(t,x− âi)U†x,−i(t)
ai

= 0

I Gauss constraint

∑
i

Ei(t,x)− Ux,−i(t)Ei(t,x− âi)U†x,−i(t)
ai

= ρ(t,x)
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Colored particle-in-cell method

I Particle-in-cell (PIC): numerical method to simulate systems with large
number of charged particles (plasma theory)

I Main concept: approximate continuous charge density with large number
of charged particles

ρ(t,x) ≈
∑
n

Qn δ
(3)(x− x(t))

I Colored particle-in-cell (CPIC): non-Abelian generalization

ρ(t,x) ≈
∑
n

Qn(t) δ(3)(x− x(t))

with time-dependent color charge Qn(t)
I Allows gauge covariant treatment of color currents on the lattice
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Colored particle-in-cell method

I How to couple charged particles with continuous positions x(t) with
fields on a lattice? ⇒ Interpolation methods

x x+ âi

x+ âj x+ âi + âj

x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)

x x+ âi

x+ âj x+ âi + âj

x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)

I We use nearest grid point (NGP) interpolation
I Particles contribute to lattice charge density at NGP
I Particle movement generates current whenever NGP changes

Color rotation: particle moves from x to y

Q(t+ ∆t) = Ux→y(t)Q(t)U†x→y(t)
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McLerran-Venugopalan model in 3+1D

Relax ultrarelativistic approximation by allowing for finite width along z

J+
A (x−, xT ) = δ(x−)ρA(xT ) ⇒ J+

A (x−, xT ) = f(x−)ρA(xT )

I Longitudinal profile f(x−) or simply f(z)
I Use Gaussian profile with longitudinal extent L ∝ RA/γ

f(z) = 1√
2πL

exp
(
− z2

2L2

)
I Trivial color longitudinal structure (no fluctuations along z)
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Glasma in 3+1D

3D density plot of energy density ε(x)

Fig. adapted from A. Ipp, D. Müller, PLB (2017) [1703.00017]

https://arxiv.org/abs/1703.00017
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Energy-momentum tensor

Expectation value in the 3+1D MV model (laboratory frame):

〈
Tµν

〉
=


〈
ε
〉

0 0
〈
SL
〉

0
〈
pT
〉

0 0
0 0

〈
pT
〉

0〈
SL
〉

0 0
〈
pL
〉


I Longitudinal energy flux (Poynting vector)
〈
SL
〉

I What is the rapidity dependence of the produced Glasma?
I Observable of interest: local rest frame energy density

〈
εloc
〉

I Choose local frame s.t.
〈
SL
〉

vanishes and obtain diagonal
〈
Tµν

〉
I Use Milne coordinates to obtain

〈
εloc
〉
(τ, η)
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Rapidity profiles

Comparison of space-time rapidity η dependence of
〈
εloc
〉

at τ = 1 fm/c to
charged particle multiplicity as a function of momentum rapidity y from
BRAHMS experiment at RHIC

−2 −1 0 1 2

y

d
N d
y
(y
)/

d
N d
y
(0
)

−2 −1 0 1 2

0.6

0.8

1

ηs

ε l
o
c
(τ

0
,η

s
)/
ε l
o
c
(τ

0
,0
)

√
sNN = 200GeV

(a)

(b)

(c)

IR regulator m dependence: (a) m = 0.2 GeV, (b) m = 0.4 GeV, (c) m = 0.8 GeV
Red line: Landau model
Fig. from A. Ipp, D. Müller, PLB (2017) [1703.00017]
Data from BRAHMS, PRL (2005) [nucl-ex/0403050]

https://arxiv.org/abs/1703.00017
https://arxiv.org/abs/nucl-ex/0403050
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Pressure anisotropy

I At early times: color fields of the nucleus dominate over Glasma
I At late times: free-streaming limit

〈
pL
〉
≈ 0

I Same anisotropy issue as in 2+1D Glasma
I Full space-time distribution of e.g. transverse pressure pT

−1
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0

0.5

1
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ε

0 0.5 1
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η = 0

pL(τ)
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0
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/f
m

3
]

0 0.5
τ [fm/c]

η = 0

pL(τ)

20× pT (τ)

ε(τ)
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Pressure anisotropy

I At early times: color fields of the nucleus dominate over Glasma
I At late times: free-streaming limit

〈
pL
〉
≈ 0

I Same anisotropy issue as in 2+1D Glasma
I Full space-time distribution of e.g. transverse pressure pT

t [fm/c]
z [fm]

p
T
(t
,z
)/
p
T
(0
,0
)

Figs. from A. Ipp, D. Müller, PLB (2017) [1703.00017]
J. Casalderrey-Solana, M. P. Heller, D. Mateos, W. van der Schee, PRL (2013) [1305.4919]

https://arxiv.org/abs/1703.00017
https://arxiv.org/abs/1305.4919
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Extensions

Model for charge density ρ(x) is too simple:
I No finite radius
I No longitudinal color fluctuations

J+
A (x−, xT ) = f(x−)ρA(xT ) ⇒ J+

A (x−, xT ) = ρA(x−, xT )

Numerical issues:
I 3+1D simulations are computationally expensive!
I High lattice resolution for numerical stability
I Large simulation volumes for realistic results
I Semi-implicit methods as an alternative to standard leapfrog approach

For details, see: A. Ipp, D. Müller, EPJC (2018) [1804.01995]

https://arxiv.org/abs/1804.01995
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Other works on 3+1D Glasma

S. Schlichting, B. Schenke, PRC (2016) [1605.07158]
I Rapidity dependence from JIMWLK
I No full 3+1D dynamics, “stitched together” 2+1D
I LHC energies

S. McDonald, S. Jeon, C. Gale, QM 2018 & 2019 [1807.05409], [2001.08636]
I Rapidity dependence from JIMWLK
I 3+1D dynamics in (τ, η) + hydrodynamics
I LHC energies
I No rigorous derivation of the initial conditions

3+1D CPIC approach (this talk)
I Rapidity dependence from finite width, no JIMWLK
I 3+1D dynamics in (t, z)
I RHIC energies
I Rigorous initial conditions, but no longitudinal fluctuations (yet)

https://arxiv.org/abs/1605.07158
https://arxiv.org/abs/1807.05409
https://arxiv.org/abs/2001.08636
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Jets in the Glasma
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Jets in the Glasma

I Tµν is not everything!
I Jets: highly energetic, focused particle

“sprays” that originate from hard scatterings
of partons during the collision at τ ≈ 0

I Interactions with the medium
I momentum broadening (opening angle)
I energy loss (quenching)

I Jets interact with all stages of the medium
I Strong color fields of the Glasma might affect

jets even before the hydrodynamical stage

Fig. from D. d’Enterria, Jet quenching, Landolt-Bornstein (2010) [0902.2011]

https://arxiv.org/abs/0902.2011
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Jets in the Glasma

Fig. from A. Ipp, D. I. Müller, D. Schuh, PRD (2020) [2001.10001]

https://arxiv.org/abs/2001.10001
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Jets in the Glasma

I Model early-time jet as single quark (or gluon)
I Very high initial momentum, no deflection
I Interaction with the Glasma via the non-Abelian Lorentz force
I Accumulation of transverse momentum p⊥ over time
I 2+1D Glasma for simplicity

Wong equations

dpµ
dt

= g Qa
dxν

dt
F aµν(x(t)) dpµ

dt
= q

dxν

dt
Fµν(x(t))

dQa

dt
= g

dxµ

dt
fabcAbµ(x(t))Qc dq

dt
= 0

Background field Aµ from 2+1D Glasma simulation
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Jet momentum broadening in the Glasma

I Integrate Wong’s equations
I Average over color charges of the jet and background field

Main result for a quark moving along x-axis (i = y, z):

〈
p2
i (τ)

〉
q

= g2

Nc

τ∫
0

dτ ′
τ∫

0

dτ ′′
〈
Tr
[
f i(τ ′)f i(τ ′′)

]〉
fy(τ) = U(τ) (Ey(τ)−Bz(τ))U†(τ)
fz(τ) = U(τ) (Ez(τ) +By(τ))U†(τ)

Color rotation matrix in temporal gauge Aτ = 0:

U(τ) = P exp

−ig τ∫
0

dτ ′Ax(τ ′)


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Jet momentum broadening in the Glasma

Simplified jet broadening picture in
terms of Glasma flux tubes:
I Electric flux tubes:

∆pz (or rapidity) broadening
I Magnetic flux tubes:

∆py (or azimuthal) broadening
I Electric and magnetic flux tubes

are not created equally
I Momentum broadening is

anisotropic

Fig. from A. Ipp, D. I. Müller, D. Schuh, PLB (2020) [2009.14206]

https://arxiv.org/abs/2009.14206
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Jet momentum broadening in the Glasma

Simplified jet broadening picture in
terms of Glasma flux tubes:
I Electric flux tubes:

∆pz (or rapidity) broadening
I Magnetic flux tubes:

∆py (or azimuthal) broadening
I Electric and magnetic flux tubes

are not created equally
I Momentum broadening is

anisotropic

0 1 2 3 4 5

−1

0

1

2

3

·10−4

Qsr

r
C
(r
)/
Q

3 s

〈
EzEz

〉
〈
BzBz

〉

m/(g2µ) = 0

m/(g2µ) = 0.05

m/(g2µ) = 0.10

m/(g2µ) = 0.20

Plot: initial correlation functions
for Ez and Bz

Fig. from A. Ipp, D. I. Müller, D. Schuh, PRD (2020) [2001.10001]

https://arxiv.org/abs/2001.10001
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Accumulated momenta at τ = 0.6 fm/c

I Accumulated momenta at
transition time τ0 = 0.6 fm/c
for various Qs〈
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Fig. from A. Ipp, D. I. Müller, D. Schuh, PLB (2020) [2009.14206]

https://arxiv.org/abs/2009.14206
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Jet momentum broadening in the Glasma

Jet broadening parameter q̂: accumulated (squared) momentum per unit time

q̂⊥(τ) =
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Most momentum is accumulated in the earliest stages of the Glasma!

Fig. from A. Ipp, D. I. Müller, D. Schuh, PLB (2020) [2009.14206]

https://arxiv.org/abs/2009.14206
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Outlook

3+1D Glasma
I Collisions at higher energies (LHC)
I Include longitudinal structure

Jets in the Glasma
I Energy loss
I CPIC simulations for jets
I Jets in 3+1D Glasma
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Thank you!
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