Arithmetic groups of higher real rank are not left-orderable (after Deroin and Hurtado)

Dave Witte Morris University of Lethbridge, Alberta, Canada https://deductivepress.ca/dmorris dmorris@deductivepress.ca

Abstract: B. Deroin and S. Hurtado recently proved the 30-year-old conjecture that if *G* is an almost-simple algebraic \mathbb{Q} -group, and the real rank of *G* is at least two, then no arithmetic subgroup of *G* is left-orderable. We will discuss this theorem, and explain some of the main ideas of the proof, by illustrating them in the simpler case where the real field \mathbb{R} is replaced with a *p*-adic field. Harmonic functions and continuous group actions are key tools.

https://deductivepress.ca/dmorris/talks/deroin-hurtado.pdf

Γ = arithmetic group

(or countable group)

Question

- $i \exists left-invariant total order \prec on \Gamma$?
 - total: $x \prec y$ or $x \succ y$ or x = y
 - left-invariant: $x \prec y \implies ax \prec ay, \forall x, y, a$

"Is Γ left-orderable?"

Example

 \mathbb{Z} is left-orderable (namely, <).

left-orderable: $\exists \prec, x \prec y \implies ax \prec ay$

Motivation

Γ is left-orderable \Rightarrow

• Γ has an action on \mathbb{R}

(faithful, continuous, orientation-preserving)

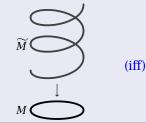
 Group ring Z[Γ] has no zero divisors (conjectured for all torsion-free groups)

•
$$\mathbb{Z}[\Gamma] \cong \mathbb{Z}[\Lambda] \implies \Gamma \cong \Lambda$$
 [Lagrange-Rhemtulla]

• If
$$\Gamma = \pi_1(M)$$
:

M

$$\widetilde{M} \hookrightarrow M \times \mathbb{R}$$



Example

$$\begin{split} \Gamma &= \text{free group} \doteq \operatorname{SL}_2(\mathbb{Z}) \doteq \operatorname{SO}(1,2)_{\mathbb{Z}} \\ &\implies \text{every (f.g.) subgroup of } \Gamma \text{ maps onto } \mathbb{Z}. \\ \text{I.e., } \Gamma \text{ is locally indicable.} \end{split}$$

Proposition (Burns-Hale 1972)

 Γ locally indicable $\Rightarrow \Gamma$ is left-orderable.

Rough idea of proof.

For
$$x, y \in \Gamma$$
, choose $\varphi_{x,y} \colon \langle x, y \rangle \twoheadrightarrow \mathbb{Z}$.
Define $x \prec y$ if $\varphi_{x,y}(x) < \varphi_{x,y}(y)$.

Transitive: For $x, y, z \in \Gamma$, assume (Zorn's Lemma) $\varphi_{x,y}$ = restriction of $\varphi_{x,y,z}$ to $\langle x, y \rangle$ or $x, y \in \ker \varphi_{x,y,z}$

Example

$\dot{SL}_2(\mathbb{Z})$ is left-orderable.

Theorem (Witte 1994)

 $\dot{SL}_3(\mathbb{Z})$ is **not** left-orderable.

Conjecture (1990's)

Arith subgroup of **G** left-orderable \implies rank_R **G** = 1. *I.e.*, **G**(R) \doteq SO(1, n) or SU(1, n) or Sp(1, n) or F_{4,1}. (if **G** is almost Q-simple)

Note: arithmetic subgroups of Sp(1, n) and $F_{4,1}$ have **Kazhdan's property (T)**.

Open question: ¿∃ left-orderable Kazhdan group?

Conjecture (1990's)

Arith subgrp Γ of **G** left-orderable \implies rank_R **G** = 1.

The conjecture is true [Deroin-Hurtado 2024⁺].

Proof uses group actions and real analysis, including **harmonic functions**.

Definition (Furstenberg 1963)

Assume:

- μ is a Borel measure on *G* with $\mu(G) = 1$.
- $\varphi: G \to \mathbb{R}$.

$$\varphi$$
 is μ -harmonic if $\forall x \in G$:
 $\varphi(x) = \int_{G} \varphi(gx) d\mu(g)$ for all $x \in G$.

 Γ = arithmetic subgroup of a simple \mathbb{Q} -group **G**. Let $G = \mathbf{G}(\mathbb{R}) = \mathbf{SL}_3(\mathbb{R})$ and assume G/Γ is compact. I.e. **G** is \mathbb{Q} -anisotropic.

harmonic: $\varphi(x) = \int_G \varphi(gx) d\mu(g)$

Theorem (e.g., Ledrappier 1985, Ballmann-Ledrappier 1996) *Every bounded* μ_{Γ} *-harmonic function on* Γ *extends to a unique* μ_{G} *-harmonic function on* G. ($\exists \ \mu_{G} \ on \ G \ and \ \mu_{\Gamma} \ on \ \Gamma$)

Proof. To simplify, replace \mathbb{R} with \mathbb{Q}_p : $G = \mathbf{G}(\mathbb{Q}_p) = \mathrm{SL}_3(\mathbb{Q}_p)$ (and G/Γ is compact) (Γ is *S*-arithmetic, with $S = \{\infty, p\}$) $G = SL_3(\mathbb{Q}_p)$ and G/Γ is compact Let $K = SL_3(\mathbb{Z}_p) =$ compact, open subgroup of G.

K is open, so $K \setminus G$ is discrete, so $K \setminus G / \Gamma$ is finite. For simplicity, assume $G = K \Gamma$: $G \simeq K \times \Gamma$.

Choose μ_G to be bi-*K*-invariant: $\mu_G(A) = \mu_G(kA) = \mu_G(Ak)$ for all $k \in K$.

Exer. $\varphi \mu_G$ -harmonic $(\varphi(x) = \int_G \varphi(gx) d\mu_G(g))$ $\Rightarrow \varphi(kx) = \varphi(x)$: φ is left *K*-invariant.

Corollary (uniqueness)

 $\varphi, \psi \mid_{G}$ -harmonic, $\varphi \mid_{\Gamma} = \psi \mid_{\Gamma} \Rightarrow \varphi = \psi$.

$$\varphi(g)=\varphi(k\gamma)=\varphi(\gamma)=\psi(\gamma)=\psi(k\gamma)=\psi(g)$$

$G \simeq K \times \Gamma$ and μ_G is bi-*K*-invariant

Fubini's Theorem: $\mu_G = \mu_K \times \mu_{\Gamma}$.

Exercise (existence)

For $\varphi \colon \Gamma \to \mathbb{R}$, define $\hat{\varphi} \colon G \to \mathbb{R}$ by $\hat{\varphi}(k\gamma) = \varphi(\gamma)$. Show: φ is μ_{Γ} -harmonic $\Rightarrow \hat{\varphi}$ is μ_{G} -harmonic.

Hint. For
$$x \in \Gamma$$
:

$$\int_{G} \hat{\varphi}(gx) dg = \int_{K} \int_{\Gamma} \hat{\varphi}(kyx) dy dk$$

$$= \int_{K} \int_{\Gamma} \hat{\varphi}(yx) dy dk$$

$$= \int_{\Gamma} \hat{\varphi}(yx) dy$$

$$= \varphi(x)$$

$$= \hat{\varphi}(x).$$

This is easier than the real case!

Vague idea of Deroin-Hurtado proof

Theorem (Deroin-Hurtado 2024⁺)

Arith subgrp Γ of **G** left-orderable \implies rank_R **G** = 1.

Assume Γ is left-orderable. So Γ acts on \mathbb{R} .

 $G = \mathbf{G}(\mathbb{R})$ has no (nontrivial, continuous) action on \mathbb{R} : Stab_{*G*}(*x*) is a subgroup of codimension 1. $\rightarrow \leftarrow$ To get a contradiction, might try to show that the action of Γ extends to an action of *G*.

Unfortunately, it is more complicated than that.

- Assume Γ is left-orderable. So Γ acts on \mathbb{R} .
- Compactify this Γ-action: (Deroin et al. [2013, 2013, 2024⁺]) construct a compact set *C*, with an action of Γ, s.t. *C* is a union of Γ-inv't copies of ℝ, ("foliation") and the Γ-action has no fixed points.
- Every continuous action on a compact space has a "stationary" measure μ : (Func Analysis) $\gamma \mapsto \mu(\gamma A)$ is harmonic.
- Induce Γ-action on *C* to action of *G*: (classical) embed *C* in larger *Ĉ*, such that *G* acts on *Ĉ* (and same action of Γ on the subset *C*).
- Harmonic functions on Γ extend to *G*:
 ∃ stationary measure μ̂ for the *G*-action.

∃ stationary measure $\hat{\mu}$ for the *G*-action on \hat{C} . $g \mapsto \hat{\mu}(gA)$ is harmonic

- Hard part: $\hat{\mu}$ is *G*-invariant: $\hat{\mu}(gA) = \hat{\mu}(A)$. (Assumes rank_R **G** > 1)
- By a restriction process, ∃ Γ-inv't measure on *C*, and, hence, a Γ-invariant measure on (a.e.) ℝ.
- This implies Γ acts by translations: $\forall \gamma, \exists c = c(\gamma) \in \mathbb{R}, \ \gamma(x) = x + c.$
- Then $c: \Gamma \to \mathbb{R}$ is a homomorphism. So $c(\gamma) = 0$. (Assumes rank_R **G** > 1)

• *Contradiction:* Γ-action has no fixed points.

Proof of the hard part: $\hat{\mu}$ is *G*-invariant

Let
$$P = \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix}$$
 and $A = \begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix} \subset P$.
For $a \in A$, $U_a^+ = \left\{ u \in G \mid a^n u a^{-n} \to 1 \\ as n \to -\infty \right\}$.

Theorem (Furstenburg 1963)

 $\exists P$ -invariant measure μ_P , $\hat{\mu} = \int_K k_* \mu_P dk$.

Key. $U_a^+ \subseteq P$ and *a* is μ_P is $C_G(a)$ -inv't.

 $a^{n} = \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \Rightarrow U_{a}^{+} = \begin{bmatrix} 1 & 1 & * \\ 1 & 1 & * \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} * & * \\ * & * \\ 1 \end{bmatrix} \text{-inv't.}$ $a^{n} = \begin{bmatrix} \bullet \\ \bullet \end{bmatrix} \Rightarrow U_{a}^{+} = \begin{bmatrix} 1 & * & * \\ 1 & 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & * & * \\ * & * \end{bmatrix} \text{-inv't.}$ These centralizers generate *G*.

Main reference:

Bertrand Deroin and Sebastian Hurtado: Non left-orderability of lattices in higher rank semi-simple Lie groups. https://arxiv.org/abs/2008.10687

Harmonic functions extend to G:

François Ledrappier: Poisson boundaries of discrete groups of matrices. *Israel J. Math.* 50 (1985), no. 4, 319–336.

Werner Ballmann and François Ledrappier: Discretization of positive harmonic functions on Riemannian manifolds and Martin boundary. *Séminaires et Congrès*, Soc. Math. France (1996) 77–92. MR 1427756

Compactifying an action on \mathbb{R} *:*

Bertrand Deroin: Almost-periodic actions on the real line. *Enseign. Math.* 59 (2013) 183–194. MR 3113604

Bertrand Deroin, Victor Kleptsyn, Andrés Navas, Kamlesh Parwani: Symmetric random walks on $Homeo_+(\mathbb{R})$. *Ann. Probab.* 41 (2013) 2066–2089. MR 3098067