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The model 
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The model is the mathematical structure 


                                    p(data | physics) = p(x|m)  


that incorporates all the physics, knowledge, intuition to best describe the 
relevant relations between observables x and unknown parameters m.  


It is a probability model — you don’t know exactly what value of x would be 
observed even if you knew exactly the value of m. 

The model is the fundamental building block of most of HEP inference, both in 
Frequentist and Bayesian procedures. This is the step everyone agrees on. 



Inference
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The model gives the probability to observe certain data assuming some physics


                p(data | physics) is known from the model


That is, the “forward” process, from physics to data, which occurs in 


running experiments (physics true but unknown) and 


simulation (physics known but not necessarily true).


The “backward” process, from data to physics, is inference: objective quantitative 
statements on a population when only a sample of observations is available.   


Not possible using the certainty of deductive logic. Unobservability of the parent 
distribution imposes assessments of probability (or confidence, or uncertainty)



Set-theoretical axioms of probability
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Define the set Ω of all the possible mutually exclusive 
outcomes of a statistical experiment (sample space).                      
An event A is a set containing one or more elementary 
outcomes. 

Assume that probability P is an additive function on the 
set and it is measurable on a continuous scale so that it 
can be represented by a real number. Then

Andrey N. Kolmogorov (1903-1987)

P(A) is non-negative for each possible outcome A.

The probability sum over all possible outcomes (sample space Ω) is unity, P(Ω) = 1.

Probability for observing  A or B is P(A)+P(B) if A and B are disjoint sets 

Abstract concept. Cannot be measured. Need an operational definition.



Operational definitions of probability
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Combinatorial (Laplace): an elementary event A can occur in N distinct and 
equally likely ways; n of these are favorable cases. Then the probability is defined 
as  p(A) = n/N

Frequency theory (Venn, Von Mises): we observe an event A occurring n times in 
N trials; the probability is defined as the limit for N→∞ of p(A) = n/N.  Used in 
most scientific work because it is ``objective”: is the same for all observers and 
can be determined (in principle) to any desired accuracy.

Subjective Bayesian (Ramsey, De Finetti): the probability for an event A to occur 
is the measure of one’s belief for it to occur — akin to our own everyday’s 
thinking

All of the above euristic definitions obey the set-theoretical, axioms based on the 
concept of measure, but they lead to quite differing probability notions, and 
therefore differing inferences.



Frequentist —  limiting frequency on 
independent, identically distributed 
trials


Uses information from observed data 
(and from data that could have been 
observed in other trials).

 Only applies to repeatable events. 
Data are random, theories are not. 

 Hence, restricts deductions based on 
p(data|theory): theories for which the 
set of observed data is more usual are 
favored

What is probability?
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P (A) = lim
N!1

(NA/N)

Bayesian — subjective degree of belief

combines info from observed data with 
subjective judgment. Same data and 
different scientists may lead to 
inconsistent results. May change with 
time as prior information changes.

Treating as random variables any 
unknown broadens the scope of 
application to include theories and 
hypotheses.

Gets to  p(theory | data): the inductive 
reasoning one is interested to. 



In their own words
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``The probability of any event is the ratio between the value at which an 
expectation depending on the happening of an event ought to be computed, 
and the value of the thing expected upon its happening. [..] By chance I mean 
the same as probability” — T. Bayes (1763)

``Probability theory is nothing but common sense reduced to calculation” — 
Laplace (1818)

Frequentist use impeccable logic 
to deal with an issue of no interest 

to anyone.
Bayesians address the question 

everyone is interested in, by using 
assumptions no-one believes



The sample (or whole) space
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For probabilities to be well defined, the 
whole space or sample space need be 
defined (determines normalization)

Whole space can be thought as the space of available possibilities given (i.e., 
conditional to) the assumptions associated with the model.

“90% of our flights arrive on time”                                                                    
Flight delayed several hours are canceled, not ‘delayed’, so they get excluded 
from our sample space.


“Our survey shows that most people lose 5 Kg in a month on this diet”     
Happy customers who lost weight are most likely to respond to our survey. The 
ones who gained weight most likely threw away our survey postcard.



Bayesian inference
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Conditional probabilities
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P(A|B) is the probability of A given that B has occurred. That is, the probability that 
A occurs under the condition that B has occurred. 

We restrict the possible outcomes to the subset B, included in Ω. So, B  becomes 
the new sample space. Hence, if the outcome is in A, it is in the intersection of A 
and B. Because the maximum value of P(A and B) is P(B), the conditional 
probability, which as any probability cannot exceed 1, should meet


                P(A|B) = P(A and B) / P(B)


                  P(A and B)  = P(A |B) * P(B) 


              Analogously P(A and B)  = P(B |A) P(A) 


Probability 
that A and B 
occur jointly 

 


= 
(Conditional) probability 

that A occurs given that B 
occurred 

(Marginal) probability 
that B occurs

 


X



Conditional probabilities
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 P(A and B)  = 

Probability for 
jointly observing 

A and B  

(Conditional) 
probability for 

A given B 

(Marginal) 
probability 

for B 

{  P(A|B) * P(B) 

 P(B|A) * P(A)  

(Conditional) 
probability for 

B given A 

(Marginal) 
probability 

for A 



Bayes’ theorem
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Yields a key relation between conditional and marginal probabilities.


P(B|A) is the conditional probability for B given A. Also called posterior because 
evaluated after fixing a specific value of A

P(A|B) is the conditional probability of A given B

P(B) is the prior probability for B, evaluated before knowing any information on A

P(A) is the marginal (or “prior”) probability for event A. Serves as normalization.

T. Bayes 
(1702-1761)



In pictures
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Remember !!!
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P(A|B) is NOT equal to P(B|A).


Variable A: “pregnant”, “not pregnant”


Variable B: “male”, “female”.


P(pregnant | female) ~ 3% but


P(female | pregnant) >>> 3% !



Using Bayes theorem for inference
Suppose both x and m are random variables, with known probability distribution 
p(x|m). x is observable and m inobservable.

Observe x (“perform a measurement of x”), what can I say about m? I basically  
wanna know p(m|x).

Bayes’ theorem tells me all I possibly need. It allows determining the “a 
posteriori” probability  for any value of m 
 
 

posterior probability for the parameter m = Likelihood * prior/normalization
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P(A |B) =
P(B |A)P(A)

P(B)
⇒ p(m |x) =

p(x |m)p(m)
p(x)

=
L(m)p(m)

p(x)



Inference — elementary example

Three identical bags with two balls each, which can be black or white


Pick a random bag (m, unobservable) and a random ball inside it (x, 
observable)

Ball is white (x = w); what can one say about the chosen bag?


Want to know p(m|w), the probability I picked each bag, given that the ball is 
white

16

A B C



Inference — elementary example
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p(m) 1/3 1/3 1/3

1 1/2 0
1/3 1/6 0
2/3 1/3 0

p(w|m)
p(w,m) = p(w|m) p(m)
p(m|w) = p(w|m) p(m)/p(w)

The posterior probabilities are p(A|w) = 66%, p(B|w) = 33%, p(C|w) =0.

A B C



Bayesian inference — posterior density says it all
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p(
m
|x
)

mmin mmax

m value yielding 
highest posterior 
density offers an 

estimate for mbest (but 
depends on metric) 

95% prob. interval

Po
st
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Parameter m 

posterior mean offers 
an estimate of mbest 
that minimizes its 

variance 

(Not unique) interval of m values such that 
Z mmax

mmin

p(m|x)dm = ↵ (e.g., ↵ = 95%)

The posterior probability density p(m|x) is a function of m that provides any 
inference we desire:



Frequentists too “believe” in Bayes theorem
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Application of Bayes’ theorem to random events for which prior information is 
known is the most powerful way of exploiting all the available information.

Knowledge of the probability distribution p(x|m) and prior probabilities for m 
(prior to the observation of x) allows to use the observation x to update the prior 
knowledge and therefore determine the posterior probability density p(m|x).

That is the “backward process” probability - which offers all information one 
might possibly want on m



What if priors aren’t known (or cannot be defined) ?
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In examples seen so far, both x and m were random variables.

But what happens if “m” is not a random variable (as in frequentist view)?

Application of the Bayes’ theorem to hypotheses or theories “m”, to which  
associating probabilities is nontrivial is less straightforward.  

This is where the two schools part.


Frequentist: give up on getting p(m|x). Revert to an estimate based only on data 
and the assumed model p(x|m), not on prior knowledge. 

Bayesian: stick to Bayes’ theorem by assuming priors. Because physicists 

typically expect objective/reproducible results free from subjective input, many 
Bayesian analyses in HEP strive to use priors that have minimal influence on the 
result.



Uniform priors?
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Uniform (“flat”) priors are commonplace in HEP papers. “Knowing nothing about 
a parameter, I assign equal probabilities to all its possible values” (the 
noninformative argument)

Sounds intuitively plausible and has attractive practical features: it’s easy and 
the parameter value that maximizes the posterior density is the same that 
maximizes the likelihood (in one dimension)

However, flat priors have serious issues: (i) cannot be normalized without a 
cutoff (ii) puts most of belief at infinity (iii) the noninformative argument is ill-
defined, as any pdf can be transformed into a flat pdf and you’ll get a different 
answer if the prior is flat in m, 1/m, log(m) etc..                                                          
All of this exacerbates with increasing dimensionality of the space of parameters

Lot of thinking (Jeffrey’s most notably) went into pursuing priors containing “as 
little information as possible”, so that the posterior is dominated by the data.  



A better approach -  sensitivity studies
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Support Bayesian results through 
sensitivity studies: investigate the 
sensitivity of one’s analysis on prior 
choices by, e.g., repeating the analysis 
with various choices for priors, or on 
smaller subsets of the sample.


Example from PRD 85, 072002 (2011)

Sensitivity analysis provides reliable information on how much of the final result 
p(m|x) is driven by data (p(x|m)) and how much by the prior p(m) and is therefore a 
very desirable “calibration” of any Bayesian result. 



What if I don’t look at theory m as a random variable?
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What can I compute without priors?

Not p(m|x). That is, not p(theory given data).

Use p(x|m) to favor/disfavor a certain theory based on how likely that theory is 
to generate the data I observe.




The likelihood
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The likelihood function L(m) = p(x|m)
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 With parameter m fixed at a specific value m’, the model p(x|m’) is the probability 
density function of observing generic data x, 

 With data x fixed at the specific set that was observed x0, the model                     

L(m) = p(x0|m) is the likelihood function of the m parameters given your data

The likelihood is not a probability. But it is connected to the probability for 
observing data x for each choice of parameter m. This is not to the probability that 
m has some value given the data. (remember, hypotheses or theories or physical 
constants are not random variables)

The likelihood is a complete summary of the data relevant to the estimate at hand. 
Ideally should be published as is (hopefully we’ll get there in HEP).

The likelihood (that is, the model) is the single strongest driver of inference 
performance: improving the model is the best way of improving the inference.



A likelihood is NOT a pdf
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Probability density function p(x|m) is a parametric function of the observable data x. 

The likelihood function L(m) is a function of the unobservable parameter 

Z

X
p(x|m)dx = 1

Z

M
p(x0|m)dm =?

The pdf, a probability density of the data 
(random variable), should be normalized to unity 
over the domain of the random variable.


The likelihood, a function of the parameter m; it 
obeys no specific normalization.

In addition, the likelihood maximum L(m̂) is invariant under reparametrization of m 
into f(m).

If m̂ is a MLE of m, then f(m̂) is a MLE of f(m). 

No Jacobians here, reinforcing the notion that L(m) is not a pdf for m.



What does the likelihood mean?
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The likelihood expresses the probability of observing the data you observed as 
a function of the parameter value m.

Given the observed set of data x0, 

• parameter values mlow  that decrease L(m|x0) are disfavored: it would be 

unlikely for nature to generate that set of observed data, had the true value of 
m been mlow. 


• Conversely, values mhigh that increase L(m|x0) are favored 

The value of m that maximizes the likelihood is not the “most likely value of m”, 
It is the value of m that makes your data most likely.

Physics usually deals with repeated observations x that are independent and 
identically distributed.  

If the likelihood for a single observation x is L(m) = p(x|m),  the likelihood for the 
whole experiment is the product of the single-event likelihoods L(m) = Π p(x|m)



Why do we insist on the likelihood concept?
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• is consistent (converges in probability to true 
value)


• is efficient (has minimal variance among all 
estimators)


• has a known distribution (Gaussian)

• is reparametrization-invariant

Because likelihood-based estimates have  desirable statistical properties — the go-to 
solution in most of the inferences you will ever do.

The maximum likelihood estimator under pretty weak conditions and asymptotically 
(for infinite observations N…)

However, it’s not perfect either:  it’s biased and does not provide goodness of fit 
information. Plus, in many practical cases the observed data are insufficient to 
consider the regime “asymptotic” and the above properties are not met.



Example — exponential
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Decay process. Assume exponential model. Pdf 


Observe a set of N decay times and infer the lifetime by maximizing the likelihood.


p(t|⌧) = 1

⌧
e�t/⌧

L(⌧) =
NY

k=1

1

⌧
e�tk/⌧ =

✓
1

⌧

◆N

exp

 
�
PN

k=1 tk
⌧

!

Lk(⌧) = p(tk|⌧) =
1

⌧
e�tk/⌧

Probability density of 
survival after time t

Likelihood of 
observation of kth 

event at t = tk 

Likelihood of 
observation of the full 

data set 



Example - exponential (cont’d) 
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As high values of the likelihood are associated with favored values of the 
unknown parameter (lifetime tau here), set to zero derivative to maximize


dL(⌧)

d⌧
=

"
NX

k=1

tk(1/⌧)
N+2 �N(1/⌧)N+1

#
exp

 
�
PN

k=1 tk
⌧

!

dL(⌧)/d⌧ = 0 implies ⌧̂ =
NX

k=1

tk/N
the value tau corresponding to the 
average of observed decay times 

maximizes the likelihood
Had I framed my inference in terms of natural width,  Γ = 1/τ


Because L is invariant under parameter transform, its maximum too is so.

L(�) = �N exp

 
��

NX

k=1

tk

!
�̂ = N/(

NX

k=1

tk) = 1/⌧̂



Probability mass function


(Discrete) function of data j

Example — Poisson
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Poisson-distributed signal, no background.


Observe j = 5. What’s the maximum likelihood estimate for my Poisson mean?

p(j|µ) = µj

j!
e�µ = L(µ) L(µ|j = 5) =

µ5

5!
e�µ

Likelihood


(Continuous) function of physics par 
mu


p(j|µ) = µj

j!
e�µ = L(µ)

Minimize -ln L.
 � d

dµ
lnL(µ)|µ̂ = 0 � d

dµ
(µ� j lnµ+ ln j!) = 1� j

µ

Given observation j, the ML estimator of the mean rate of success μ is μ̂ = j  



Poisson illustrated
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j = 5

j

Model: Poisson-distributed signal, no background.


Observe j = 5.



Poisson illustrated
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j = 5
µ = 0.5

j

Model: Poisson-distributed signal, no background.


Observe j = 5.



Poisson illustrated
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j = 5
µ = 0.5

j

µ = 5

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger]



Poisson illustrated
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j = 5
µ = 0.5

j

µ = 5
µ = 20

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger]



Poisson illustrated
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j = 5
µ = 0.5

j

µ = 5

µ = 20

µ j = 5

Model: Poisson-distributed signal, no background.


Observe j = 5.

Likelihood 
for μ at j=5

μ



What about the (statistical) uncertainty?
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Recall: the best-fit value m̂ is function of observed 
data x0, m̂ = m̂(x0).  Other data x1 yield different 
best-fit value m̂’ = m̂’(x1)

By repeating over many data sets, get distribution 
of best-fit values. Uncertainty is its standard dev.

Analytical calculation of E[(m̂(x) - E[m̂(x)])2] requires 
analytical form of p(x|m) and tractable integrals.

Rarely applicable except in textbook examples

• Approximate uncertainty with its ideal lower limit. 

• Get it brute-force from simulation.

Given observations x0, and assuming L(m)= p(x0|m), the value m̂ that maximizes L 
offers an estimate (“central” or “best fit”) of the true value of m. 

How about the uncertainty? Depends on the estimator’s variance — spread of 
results in repeated experiments

Gaussian only in the ideal 
asymptotic limit (infinite 
observations N for each 

experiment)

 distribution of m̂ 



The Fisher information is a measure of the information carried by an observation x 
over a parameter m, which is connected to x by the model p(x|m) = Lx(m) 


The variance of an estimator is as high or higher than the inverse of the Fisher 
information.


Hence, approximate the variance as the curvature (2nd derivative) of the log-L at its 
maximum. This is the uncertainty MINUIT returns after MIGRAD/HESSE. 

Accurate only for linear problems. No guarantee that for N finite the estimator has 
reached minimum variance. The number of observations needed to approximate 
asymptotic regime depend on the proiblem. If in doubt check with toys.

MLE variance from the minimum variance bound
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V̂ (m̂) ⇡ �1/E
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◆�1 ���
m=m̂

[Ix(m)]ij = − E [ ∂2 ln(Lx(m))
∂mimj ]



MLE variance from simulation
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Use simplified simulated experiments (“toy Monte Carlo”) drawn from the likelihood 
to understand the distribution of the ML estimators and their properties prior to 
applying them to data. 


 Choose a plausible true value of the relevant parameter m 

 Feed it into L(m) and generate several sets of simulated data x from random 

numbers distributed according to p(x|m)  

 Maximize the likelihood in each set (that is, repeat the experiment) and look at 

the distribution of the estimator    

 Repeat for all relevant choices of true value m (important and often overlooked)



A standard diagnostics - “fit pulls”

40
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Each entry based on the “result of the measurement” in a simulated experiment, 
generated with the same set of true parameters

Distribution of the difference between ML estimate and the true 
value of the parameter, divided by the estimate of the std dev.

ML estimator of y 
perhaps biased. 

Uncertainty  seems OK



What is the statistical uncertainty?
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The square root of the variance of the estimator.

Usually, a result is quoted as m̂ ± σ

This means that in repeated experiments, 68.3% 
of the resulting [m̂ - σ, m̂ + σ] intervals include 
(“cover”) the true value of the parameter being 
estimated.

This differs from stating “in 68.3% of the 
experiments the true value is the  [m̂-σ, m̂+σ] 
range” or “there is 68.3% probability that the true 
value is in the [m̂-σ, m̂+σ] range”

Language is important. 

The true value m is not random: cannot move 
around or have a probability.  

Only data, that is, the interval extremes (which are 
functions of data), are random and fluctuate 
around the true value.

95.5% confidence intervals 
resulting from 20 identical 
measurements of a true 

value of 2.0

m



Coverage
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The capability for an inference procedure to yield uncertainties that cover the true 
value with the stated confidence level is a fundamental requirement in frequentist 
inference. Why?

Honest and consistent communication with our peers: when they read “the result 
is m̂ ± σ” they assume that the [m̂ - σ, m̂ + σ] interval has 68.3% probability to 
include the true value of the parameter being estimated.

Coverage is generally desired/expected in HEP (even in Bayesian measurements). 

Coverage is a feature of the procedure used, not of a single measurement.                
The single interval resulting from a specific measurement may contain or not the 
true value. 

(Like in linear algebra one defines a vector as an element of a vector space with 
some properties, a confidence interval is an element of a set of intervals that have 
coverage under repeated sampling).

Explicitly checking coverage against various choices of true values for the 
unknown parameter m is a key (and oft-overlooked) check for any analysis, 
especially complicated global fits used to make exciting claims. 



`
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  A property of the procedure, not of the single measurement.


Coverage — reminder



When the MLE fails
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Other estimators: least-squares (in one slide)
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N independent observations x1,…,xN that fluctuate 
following Gaussian distributions of known* variance 
σ²ᵢ around their known* expected values f(Xi; m) that 
are functions of a known* control variable Xi and 
unknown parameter m.  


Maximimizing the (Gaussian) likelihood corresponds  
to minimizing the least-squares estimator of m

χ(m) =
N

∑
i=1

(xi − f(Xi; m))2

σ2
i

X (control variable)

x (o
bs

er
ve

d 
da

ta
)

LS properties are inferior or equivalent to the MLE. But LS  offers an advantage: its 
value at the minimum χ²min offers a measure of the agreement of the model to the 
data (goodness-of-fit) since the distribution of χ²min is known and can be compared 
with the observed χ²min  value.  Holds rigorously only if the red conditions above 
are true (happens rarely in real analysis)

f(X;m)

x±σ

*known means known — not estimated. That is, known means there is no uncertainty, something that ~never happens in real life. One usually 
approximates the known variance with the estimated one



Can we get goodness-of-fit for MLE?
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Not in fits to unbinned data.

Usage of the MLE distribution to derive goodness-of-fit as suggested by some 
books is flawed (see https://arxiv.org/abs/physics/0310167)

Euristic methods discussed in https://arxiv.org/abs/1006.3019 are shown to 
“work” in simple toy MC examples, but no general demonstration of their 
success and properties is given — no guarantee exists that they’ll work in any 
general problem.

To date, no widely accepted method for evaluating goodness-of-fit in unbinned 
fits exists. 

https://arxiv.org/abs/physics/0310167
https://arxiv.org/abs/1006.3019

