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Experimental particle physicist. Interested in indirect BSM searches for non-
using weak interactions of quarks (“flavor physics”).                                 


 Born, raised, and educated in Pisa, Italy till PhD on B physics in the CDF 
experiment at Fermilab


 2007-2011 Fermilab postdoc on CDF physics analysis (charmless B, Bs 
mixing, CPV in charm)


 2012-2016: CERN staff scientist on LHCb (track-trigger, D mixing, Bs lifetimes)


  2016—: INFN Trieste scientist:  Charmless B in Belle Il.


I am not a professional statistician (hopefully a half-decent practicioner…)

Write me anytime during or after the school for any clarification: 
diego.tonelli@cern.ch 

mailto:diego.tonelli@cern.ch


Statistics
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The science of learning from data by identifying the properties of populations of 
natural phenomena and quantify our corresponding knowledge and uncertainty.

Statistics allows to design better experiments and make the most of our 
observations. It offers a structure to frame our results, interpretate them to derive 
implications, and a language to communicate them. Typical HEP tasks

• Simulate a physics process — modeling

• Measure the value of a physics parameter —  point estimation

• Find its uncertainty — interval estimation

• Compare one hypothesis agains another (search for anomalies) —   hypot. 

testing

• Comparing one hypothesis against all others —  Goodness of fit
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An enthomologist has little doubt when she/he stumbles upon a previously 
unobserved insect. 

No need for histograms, or sophisticated data analyses. One “signal event” 
suffices when background is known to be zero certainly.

Why do I need statistics at all to do physics?
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Why do I need statistics at all to do physics?
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Background only?

Are a limited number of data distributions compatible with expectations from known 
processes only (“background”)?

Or they indicate contributions of new phenomena as well (“signal”)?
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Or is there a flying donkey too?

The challenge: how compatible data are with expectations from background? Is 
there a signal there? If so, what would be the statistical significance? And what is the 
most powerful way of telling the background apart from the signal+background ?



Understanding nature from blurred observations
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Top-down vs bottom-up understanding
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Similar to low-level perception processes, HEP advances through the interplay 
of top-down (theory-guided) and bottom-up (data-driven) processing.

The need for detail (quality and quantity of data) is driven by the distinctiveness 
of the phenomena and our level of familiarity with it.

When a roadmap suggest “what to expect”, little data go a long way (top-down 
dominates). 

Since the 80’s, the standard model has served us well as a road map to guide 
HEP’s exploration, because it offered a few robust no-lose theorems that led to  
the discovery of the W and Z bosons, the top quark, and the Higgs boson. 



1967-2012
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The standard model is now complete. It is robust at the energies explored so far 
and technically up to 1010 GeV.                                                

Are we done?



No.
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2012  — (hopefully not too late): a novel data-driven era.

Why 3 quark and lepton families? Why their mass hierarchies? What’s the origin of 
CP violation? Why does the strong interaction does not violate it? Are neutrino 
Majorana or Dirac? What’s dark matter? And dark energy? [your favorite open 
question here]

Bad news is that top-down comfort is over.                                                                   

It is likely that next progress on some of the most compelling questions will come 
through the bottom-up, brute-force approach: look and try to make a sense of lots 
of data from many different experiments.

Looks like a particularly fitting time to recap on methods of extracting information 
from the data. 



Outline
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 Quick recap of basics


 probability and inference


 point-estimation, interval estimation


 Role of the model and nuisance parameters, 


 hypothesis testing and significance


 Had to cut quite a lot of material to fit in the allotted time and will skip many essential 
topics. Apologies if I skipped your favorite topic or the one that confuses you most —
write me offline and I’ll be glad to discuss it with you.



Quick recap of the basics
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Fundamental notions
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Random event: an event that has >1 possible outcome. The outcome isn’t 
predicted deterministically, but a probability* for each outcome is known. 

Random events are associated to variates (also called “(random) variables”, 
“observables”) x, which take different values x0, x1, etc. corresponding to different 
possible outcomes. 

Each x value has its probability* p(x). The outcomes generate a probability 
distribution of x. 

A collection of random events forms a population: the hypothetical infinite set of 
outcomes from repeated independent and (nearly) identical experiments. 

Observed distributions are interpreted as finite-size random samplings from the 
corresponding population’s parent distributions.

Goal: quantify the collective properties of the parent distributions, not of any 
individual element of the sample.

*Probability intended as limit of long term frequency, more later.



Parent distribution
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expt #1

expt #2

expt #3

expt #N

Parent distribution

…

…

…



You do it everyday
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Most of you regularly quote uncertainties 

For instance, in a counting experiment 
such as an histogram, a bin with N entries  
has an error bar (e.g., of length √ N)

What does the bar exactly mean?                                   

Am I really uncertain if in my sample N 
events are falling in that bin? 

The bar represents the fluctuations in the counts of that bin one expects if the 
experiment was repeated. I.e, the fluctuations between samples drawn from the 
same parent distribution. 

?




Representing data
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Raw data
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Not very informative. 

Assuming that all observations are equivalent, the individual sequence does not 
matter and all relevant information is contained in the frequency of each outcome.



Frequencies
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Better. Still not very intuitive.



Frequency distribution
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Much better. Offers 
immediate visual feel of 


the “shape”, 


the “localization” and 


the  “dispersion” 


of data



Binning — short aside
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Some feel strongly about rules for choosing the bin width. 

Not that relevant as long as event counts remain O(10) or greater in most of the 
interesting region of the distribution (O(10) so that Poisson —> Gaussian, see later) 

More important: binning is a data reduction and as such it induces a loss of 
information.

In continuous data, values of variables for each entry are known up to the native 
precision of the apparatus. 

In binned data, all entries with values within the range of a bin are collectively filed 
in that bin. In all subsequent manipulations they are treated as if they have the 
same value (corresponding to the center of the bin).

That’s why attributing additional uncertainty due to changes in binning is typically 
wrong. Changes in the results are due to the method of data reduction and as such 
included in the statistical uncertainty. Adding uncertainty leads to double counting.



Sample statistics
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Sample mode: value of the variable 
for which the population is larger.


Sample median: mid-range value of 
the variable so that 1/2 of sample has 
larger and 1/2 has smaller values.


Sample mean: arithmetic average of 
the values of the variable across the 
sample

Hard to do any serious analysis by just staring at distributions.                                     


Need to get more quantitative. A few simple quantities can be calculated from the 
available data only (they do not depend on parameters) and encapsulate quantitative 
information of “location” or “central value” of a distribution into a few numbers.



Sample mean —  “where are my data”
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Simple and most common quantity if one wants to summarize the distribution 
information into a single number. 


For a sample of N events, each associated with a variable xi and binned into an 
histogram with n bins, the sample mean is

Unbinned sample mean x̄ =
1

N

NX

i=1

xi

Binned sample mean x̄ =
1

N

nX

j=1

xjnj

Linear: ↵x+ y = ↵x+ y



Sample variance — “How spread they are”

24

The mean says nothing about the dispersion of data, which is another key 
information to grasp the features of a population.

Use the variance: average of the 
difference square from the mean

V (x) = (x� x)2 =
1

N

NX

i=1

(xi � x)2

Easier to remember: the mean of the squares minus the square of the mean

V (x) = x2
i � x2

The root of the variance is the standard deviation, √V(x) = σ,  which is typically 
used as a standard measure of spread.



Multiple dimensions
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In general, more than one variable is 
associated to each random event


Take two variables (easy to generalise 
further): each of N statistical experiments 
observes of a pair of numbers {(x1,y1), (x2, 
y2), …, (xN, xN)}


The sample mean and variance are easily 
generalized to estimate the location and 
dispersion of the sample along each axis 
of the multidimensional space.

An additional useful concept quantifies information about the relation between 
dispersions along different axes.



Covariance and correlation
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Easier to remember: the mean of the product minus the product of the means

In N-dimensional data, define the covariance matrix


Covariance has units so it depends on the choice of units. Better to use a 
unitless quantity, the Pearson linear correlation

Cov(x, y) = xy � x y

Cov(x, y) =
1

N

NX

i=1

(xi � x)(yi � y)

⇢(x, y) =
Cov(x, y)p
V (x)

p
V (y)

=
Cov(x, y)

�x�y

Vij = Cov(x(i), x(j))

and its associated correlation matrix ⇢ij =
Vij

�i�j



Aside: correlation and dependence
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Correlation and dependence between variables are often confused. 

Let’s set the record straight.

• Two variables x and y are (linearly) uncorrelated if ρ(x,y) = 0 

• Two variables x and y are statistically independent if their two-dimensional 

distribution f(x,y)  can be factorized into the product f(x,y) = g(x) h(y).         
The shape of the distribution of one variable does not depend on the value 
of the other variable. In other words, information from one variable does 
not carry information on the other.


• Variables that are independent are also uncorrelated.

• Variables that are uncorrelated may still be dependent



Aside: correlation strength and sign
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Note: correlation says nothing about the “slope”



Aside: dependence
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In all of these samples, the correlation is zero. But the two variables are clearly not 
independent.


Understanding dependences in multivariate samples of data is important. For 
instance, in likelihood fits, failure to identify dependence between observables 
result in wrong results.



Aside: Testing for correlation and dependence
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For testing 
dependence should 
plot distribution of 
one variable “in 
slices” of the other, 
and check that they 
overlap.

Testing for correlations is easy: just compute the correlation coefficients and 
make sure they are consistent with zero. 


If you see a correlation, then the variables are certainly dependent. If you 
don’t see a correlation, you may need to still check against dependence.



Aside: causality
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Correlations are oft-used to demonstrate causality: causes of phenomena are 
what is relevant to “understand what’s going on” and build scientific evidence.

This is a sensitive business. Statistics won’t tell you much about causality. Any 
statement of causality is necessarily associated with some degree of arbitrariness 
from the analysts.  (Physics relies on established laws that help evaluating 
plausibility of causal connections. In social sciences, speculations on causality 
based on observed correlations can get much wilder) 

When two phenomena A and B appear to be correlated, it is hard to find out in 
which of the following cases you are:

• A causes B 


• B causes A

• A third phenomenon C causes both A and B


• Correlation is just a coincidence



Aside: A causes B (or B causes A?) 
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Aside: A third phenomenon C causes both A and B
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Warm temperatures push people to buy more ice-creams, and also to spend 
more time outside and party, increasing chances that members of opposing 
gangs meet and get violent on turf or drug-dealing issues.

NYC study, late 80ies



Aside: spurious correlations
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Data: US Department of Agriculture and Center for Disease Control and Prevention. Plot: tylervigen.com 

http://tylervigen.com


Aside: spurious correlations
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Data: National Vital Statistics Reports and US Department of Agriculture. Plot: tylervigen.com 

http://tylervigen.com
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Describing data
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Frequency distributions to pdfs
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Most frequency distributions in 
experimental science are highly regular.

This suggest that frequency distributions 
can be approximated by smooth curves 
parametrized by simple mathematical 
expressions.

(Think of bringing the number of 
observations to infinite, the bin-width to 
zero, and maintaining unit area)

These would approximate the “theoretical” 
probability functions. Not yet defined what 
probability is, let’s use the intuitive idea as a 
working approximation for the moment.


increase the number of observations



Applies to continuous variables. Choose a short range Δx of the variable. The 
local frequency of events is approximated by f(x)Δx. 

Probability density function 
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dF = f(x)dx

f(x) is the probability density function.         

�x

f(x)�x

f(x)

 function of the “data” x. 

 not a probability — has units of x-1 

 normalized to unity.

As Δx→0, the probability that x is 
contained in the range  x and x + dx                                                             

The equivalent for discrete variables is 
the probability mass function, which has 
no units and is a proper probability

�x



Ubiquitous pdf’s
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A few pdf occur frequently in nearly any statistical problem 


• Gaussian


• Poisson


• Binomial


Be familiar with these (more discussion in backup if needed).                              
Look up http://staff.fysik.su.se/~walck/suf9601.pdf for a more comprehensive 
list. 

PDF are generally multidimensional

f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j

f(j;µ) =
µj

j!
e�µ

f(x;µ,�) =
1

�
p
2⇡

e
(x�µ)2

2�2

f(~x; ~m) = f(x1, x2, ..., xn;m1,m2, ...,mm)



Cumulative
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dF = f(x)dx

 is the cumulative density function expresses the probability that x 
is between -∞ and x

F (x)

F (x)



Joint, conditional, marginal
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f(x1, x2; m) is the joint pdf. Contains the 
whole information. Related to 
probability that x1 and x2 assume 
simultaneously values in certain ranges.

f(x2 | x1; m) is the conditional pdf. 
Related to probability that x1 is in a 
certain range, given that x2 has a 
specified defined value.

∫ f(x1, x2; m ) dx2 is the marginal pdf. 
Related to the probability that x1 is in a 
certain range regardless of x2   value 

Generalize to the n-dimensional pdf f(x1, x2, …, xn)

x2

x1

Joint

Conditional 
“plot x2 in a 
slice of x1”

Marginal 
“project x1”



Characterizing the pdf
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A pdf imposes a weight on each point of the sample space. Can be used to 
obtain the average value of any function g(x) of the random variable


In analogy with what done for data distributions, the theoretical pdfs can be 
characterized by a few numbers that provide quantitative information of their 
location and dispersion. 


The expectation value of x 

V (x) = hx2i � hxi2 = E[x2]� E2[x] =

Z
(x� hxi)2f(x)dx

Expectation value of g hg(x)i = E[g(x)] =

Z
g(x)f(x)dx

hxi = E[x] =

Z
xf(x)dx

The expectation value of (x-E[x])2



Pdf g(y) of functions y(x) of a random variable
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P (xa < x < xb) =

Z xb

xa

f(x)dx =

Z y(xb)

y(xa)
g(y)dy = P (y(xa) < y < y(xb))

Z y(xb)

y(xa)
g(y)dy =

Z xb

xa

g(y(x))

����
dy

dx

���� dx f(x) = g(y)

����
dy

dx

����therefore

Because
g(y) =

f (x(y))
(dy/dx)

The Jacobian that modifies the volume element makes the mode (peak) of the 
probability density not invariant under change of metric: inferences based on the 
maximum probability are ill-defined.

Functions of random variables are random variables.  
Take f(x) as pdf of the random variable x and y(x) a 
function of x (e.g., change of variables). The pdf for y(x) 
is obtained by imposing the conservation of probability 
in the two metrics. One-dimensional, one-branched 
function case is easy:




A special case — probability integral transform
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If x is continuous and f(x) is its pdf, consider the special change of variables 
that transforms x into its cumulative


Using the relation                                             one gets 


which result into g(y) =1


Any continuous distribution can be transformed into an uniform distribution. 


Important consequences on attempts to attribute a conceptually special role 
(“uninformative”) to uniform distributions — more later.

y(x) =

Z x

�1
f(x0)dx0

f(x) = g(y)

����
dy

dx

����
����
dy

dx

���� = f(x)



From description to estimation
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Statistical inference and role of probability
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Except trivial cases, cannot make inferences from sample 
to population with the certainty of deductive logic.


Quantitative findings and propositions need be associated 
with assessments of probability (or confidence, or 
uncertainty) due to the unobservability of the whole 
population but only of a random sampling of it.

Can we make objective and informative statements about a population when 
only a sample of the possible observations is available? This is the realm of 
statistical inference.

Unfortunately statisticians divide in two schools, who disagree on first 
principles, mainly related to the notion and meaning of probability



Statistics: the inverse problem of probability
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The theory of probability is a branch of pure mathematics. It is based on axioms 
and definitions, from which propositions are obtained deductively. The neatest 
approach is based on set theory, measure theory, and Lebesgue integration. 


The theory of statistics is essentially inductive and empirical because  it 
attempts at inferring the values of unknown parameters and information on 
hypotheses from observation of events


A probability problem: find the probability of observing j heads when tossing a 
coin N times, knowing the probability of landing heads. 

A statistics problem: a coin is tossed N times and lands heads j times. What can 
one say on the probability of landing heads? 



Fundamental ingredients
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Given some data, need to 

1. Identify all relevant observations x;

2. Identify all relevant unknown parameters m;

3. Construct a model for both



The model 
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The model is the mathematical structure 


                                    p(data | physics) = p(x|m)  


that incorporates all the physics, knowledge, intuition to best describe the 
relevant relations between observables x and unknown parameters m.  


It is a probability model — you don’t know exactly what value of x would be 
observed even if you knew exactly the value of m. 


The width of p(x|m) is connected to the statistical uncertainty of your inference

The model is the fundamental building block of most of HEP inference, both in 
Frequentist and Bayesian procedures. This is the step everyone agrees on. 
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Tentative stopping point



Many thanks
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to G. Punzi, B. Cousins J. Heinrich, L. Ristori, E. Milotti,       
F. Le Diberder. K. Kinoshita

for enlightning many of the notions discussed here in formal lectures, discussions, 
etc…

for making your slides publicly available so that I could steal from them.

to G. Cowan, K. Cranmer,  A. Rogozhnikov, H. Prosper, M. Kagan,         
T. Junk, T. Hastie, F. James, R. Barlow, J. Rademacker, L. Lyons,             
B. Cousins, T. Dorigo, N. Berger, E. Gross 


