Potential detector and hardware participation of Indian groups in ePIC at EIC

> Shuddha On behalf of EIC India group

Outline

- EIC India Collaboration and interest
- RICH (Radiator Studies and SiPM)
- Calorimeter experience
- AC LGAD test setup
- Software Interests
- Conclusion

Indian Institutes interested in ePIC at EIC

Indian Interest in ePIC

EIC ePIC Barrel Detector

- Calorimetry
- Particle ID
 - ToF: LGAD
 - dRICH: Radiator characterization and SiPMs
- DAQ/DCS and Slow Control Software
- Simulation studies

dRICH Requirements

• Requirements

- Wide acceptance: $(1.5 < |\eta| \le 3.5)$
- High momentum coverage: upto 50 GeV/c π K separation.
- Dual Radiator RICH: (Aerogel n~1.02 + C₂F₆ gas n~1.0008)
- Large photo sensor surface to be covered in magnetic field.
 - Choice of Photo Sensor is SiPMs due to more number of detected photons.

Our Interests

- 1. Aerogel characterization
 - I. Study of refractive index uniformity.
 - II. Transmittance and reflectance studies.
 - III. Raleigh scattering in UV domain, chromaticity.
 - IV. Aging effects due to water absorption: difference in response between different size and thickness of aerogel blocks.
- 2. SiPM characterizations
 - I. PDE (normal value ~ 40%).
 - II. Dark count Suppression.
 - III. Timing studies.
- 3. Simulation studies.

Typical Aerogel Characterization Setup

- This setup has synergies with ALICE3 pfRICH Aerogel characterization activities.
- Setup is ongoing. It will be ready in the 1.5-year timeline.

SiPMs in India

Two semiconductor fabs in India

Semiconductor Lab (SCL) in Chandigarh, Punjab

आरत इलेक्ट्रॉनिक्स BHARAT ELECTRONICS

Bharat Electronics Ltd. (BEL) in Bengaluru, Karnataka

Not to scale **BEL** sample: (Non-epi, n-type) C10 DET Front Back

SCL sample

SiPMs in India

Sr.	Parameter (targeted by	Specifications		
No	design)	BARC/SCL	SCL	BEL
1	Effective active area (mm ²)	1.5 x 1.5 & 3 x3	1.5 x 1.5	3.3 x 3.3
2	Micro-cell count	676 & 2704	1156	4836
3	Micro-cell size	50 x 50 µm ²	35 x 35 μm ²	
4	Micro-cell fill factor	20% & 75%	61%	55%
5	Capacitance (Cathode - anode)	1000 pF	~330 pF	~100pF/cell and (500 pF @25.5V)
6	Recharge time constant	120 ns – 150 ns	-	-
7	Spectral response range	350 nm – 900 nm	-	350 nm – 900 nm
8	Peak sensitivity wavelength	~ 500 nm	-	420 – 450 nm
9	Photon detection efficiency	-	-	-
10	Breakdown voltage (V_{BD})	22 V	18 V	23 V
11	Overvoltage range (OV)	2 V – 3 V	2.5 V	2 V – 5 V
12	Dark count rate	~ 500 kHz (@ V _{BD} +2.0 V and 0.5 p.e. thr.	20 Hz/ µm ² at 1V OV	-
13	Gain	2 x 10 ⁶ @ V _{BD} +1V	$\sim 10^{6}$	~5.2 x 10 ⁵ @V _{BD} +2V
14	VBR temp. coefficient	20.0 mV/ °C	15.0 mV/%C	-
15	Package type	LCC* 16, 20 pin	TO-8/6 pin	On PCB
16	Package dimension	~ 3.5 x 3.5 mm ²		
17	Dark current	< 5 nA/cm ² @ 20V	$< 10 \text{ nA/cm}^2$	-
18	Quenching resistor (Rg)	300-500 <mark>kΩ</mark>	360 <mark>kΩ</mark>	$R_{sq} = 6.6 \text{ k}\Omega$ and $R_{s} = \sim 32 \text{ M}\Omega$
19	Cross-talk	< 5 % @V _{BD} +2.0 V	-	-

รเ	Sensitive area – 3 $mm imes$ 3 mm , Pixel size – 50 $\mu m imes$ 50 μm			
No.	Properties	On Semiconductor C – Series 30050	SCL Sample	
1	Breakdown Voltage	24.2 V	22.0 V	
2	No of Pixels	2668	2704	
3	Fill factor	72%	75%	
4	Gain	$6 \times 10^6 @ V_{BD} = +2.5 V$	$\sim 2 \times 10^6 @ V_{BD} = +1.0 V$	
5	Temperature dependence of $V_{\mbox{\scriptsize BD}}$	21.5 mV/°C	20.0 mV/°C	
6	Capacitance (Cathode - Anode)	920 pF	1000 pF	
7	Dark count rate	(a) $V_{BD} = +2.5 V$ Typ. 300 kHz	(a) $V_{BD} = +2.0 V$ Typ. 500 kHz	
8	Cross Talk	$@V_{BD} = +2.5 V 10\%$	$@V_{BD} = +2.0 V < 5\%$	

• Specifications are similar to some commercially available SiPMs

SiPM test setup at NISER

Test setup @ NISER: Few channels Preamp (cremat 110) and Shaping amplifier (cremat 200) with shaping time 100 ns SiPM inside

CAEN Digitizer (DT5730) 8 ch, 14 bit resolution, 500 MS/s sampling rate, 2Vpp dynamic range With DPP firmware

Detector bias supply (Keithley 2470 SMU)

26

- PETIROC-based test setup is at NISER
- CITIROC DAQ is under procurement

LED Driver available at NISER

SP5601 LED Driver Request a quot

Features

Manua

- Pulse width: 8 ns
- LED color: violet (400 nm) 1500 mcd
- Pulse generator: internal/external
- Optical output connectors: FC
- Optical fiber included
- Dimension: 79 x 42 x 102 mm³ (WxHxD

L Downloads

The CR-113-R2.1 can be used either in a direct coupled (DC) node or an AC coupled mode If the detector current exceeds

0

A CAEN

CAEN PETIROC based DAQ

the detector box

SiPM test results:

BEL Sample

- SiPM fabricated in CMOS 180 nm process
- SiPM was mounted on DIP package
 - Pixel size: $35 \times 35 \ \mu m^2$;
 - Effective area: $3 \times 3 mm^2$;
 - No. Of Cells: 4836;
 - Fill Factor: 55%; and
 - Breakdown voltage: $\sim 23 V$;

- Connected in Reverse bias mode
- Reverse voltage applied using Keithley 2470
 - Sweep: 0 to 26 V with (0.25 V step)

SiPM test results:

SCL Sample

- SiPM fabricated in CMOS 180 nm process
- SiPM was mounted on DIP package
 - Pixel size: $35 \times 35 \ \mu m^2$;
 - Effective area: $1.5 \times 1.5 \ mm^2$;
 - No. Of Cells: 1156;
 - Fill Factor: 61%; and
 - Breakdown voltage: $\sim 17.5 V$;

SiPM sample on DIP

- Connected in Reverse bias mode
- Reverse voltage applied using Keithly 2470
 - Sweep: 0 to 20 V with (0.5 V step)

SiPM Specifications for dRICH

SiPM technical specs

Slides presented by Roberto Preghenella from INFN Bologna on behalf of the dRICH Collaboration in TIC meeting, 6 November 2023: Slide Number 8.

baseline sensor device

64 (8x8) channel SiPM array 3x3 mm² / channel

Parameters	Value	Value (all parameters at the recommended operating voltage and T = 25 C, unless specified)		
Device type	SiPM array			
Number of channels	64	8 x 8 matrix		
Active Area	3 x 3 mm ²	active area of one channel, total active area is 64 x 3 x 3 mm ²		
Device Area	< 28 x 28 mm ²	device area should be small such as to have > 75% fraction of active area over device total area		
Pixel Size	40 - 80 um	pitch of the microcell SPAD		
Package Type	surface mount			
Operating voltage	< 64 V			
Peak Sensitivity	400 - 450 nm			
PDE	> 35%	at peak sensitivity wavelength		
Gain	> 1.5 106			
DCR	< 1.5 MHz			
Temperature coefficient of Vop	< 60 mV / C			
Direct crosstalk probability	< 10%			
Terminal capacity	< 600 pF			
Packing granularity			verv important	
Vop variation within a tray	< 300 mV	Vop variation between channels in one device	/ parameters to	
Recharge Time	< 100 ns	ctau recharge time constant	/ ensure detector	
Fill Factor	> 70%		/ performance over	
Protective Layer	silicone resin (n = 1.5 - 1.6)	radiation resistant, heat resistant (up to T = 180 C)	f the years	
DCR at low temperature	< 10 kHz	at T = -30 C	we will evaluate as	
DCR increase with radiation damage	< 1 MHz / 10º neq	at T = -30 C, after a radiation damage corresponding to 109 1-MeV neutron equivalent / cm2 (neq)	part of QA, testing	
Residual DCR after annealing	< 25 kHz / 10 ⁹ neq	at T = -30 C, after a radiation damage of 10 ⁹ neq and a 150 hours annealing cycle at T = 150 C	sensor samples in	
Single photon time resolution	< 200 ps FWHM	corresponding to < 85 ps RMS	received batches	

<u>Ref: [20231106][EPIC][TIC] dRICH photosensor status (bnl.gov)</u>

Shuddha, NISER, Bhubaneswar, India

8

SiPM Specifications

Parameters	dRICH (array of 8x8 with TSV)	FW EMCal (Hamamatsu S12572-015P) - Japan	SCL/BARC (India)
Active area	$3x3 \text{ mm}^2$	$3x3 \text{ mm}^2$	$1.5 \text{x} 1.5 \text{ mm}^2 / 3 \text{x} 3 \text{ mm}^2$
No. of Pixels	4000 - 1000	40,000	1156 / 2704
Peak wavelength	400-450 nm	460 nm	500 nm
Pixel pitch	40-80-µm	15-µm	50-µm
Photon detection efficiency (PDE)	35%	25%	unmeasured
Gain	>1.5x10 ⁶	2.3×10^5	~10 ⁶
Fill factor	>70%	53%	61% / 75%

SiPM in India: Future Setup

- Photo Detection Efficiency (PDE) measurement setup under preparation.
- New designs and ideas are under way as this work is in synergies with ALICE3 barrel pfRICH activities.

Possible SiPM characterization setup

Si PAD Array detector in India

- India is currently part of ALICE FoCAL ٠ upgrade and developing Si PAD Array detectors.
- Currently n type 8×9 Si pad arrays are fabricated in BEL, Bengaluru, India and has been tested in the lab and in Test Beam facility at CERN

- Wafers glued to PCB
- Used automated wire bonding (~250 wire bonds per detector)
- The jig was kept at 90 degree C while wire bonding

weight and keep it overnight

Si pad array detector readout printed circuit board fabricated by Micropack Private Limited, Bangalore, India

Test setup

DAQ board

Detector bias Power supply

Detector connected with HGCROCv2 PCB

Test setup: detector response to Sr90 source

Si PAD Array detector in India: Lab tests at NISER

Mechanical setup assembly for test beam at CERN

Mechanical setup assembly for test beam at CERN

@ NISER Si lab, made by Central workshop NISER

Alice FoCAL test beam at CERN PS T9

6 days beam time: (11.10.2023 to 18.10.2023)

- 5 GeV, 10 GeV and 15 GeV pion(-ve) runs to record MIP response
- Position Scan of each pad element of pad array and Bias voltage scan
- 1-5 GeV (step of 1) e- beam with Cherenkov trigger 6 to 1 tungsten plates to measure electron

25000

20000

10000

5000

Events 15000

<mark>5 GeV</mark>

40

20

AC – LGADs test setup preparation

- Interested to contribute mostly to test and characterization work of AC-LGADs and readout ASIC (EICROC)
- Plan to purchase test equipment such as,
 - Zynq evaluation board (ZC706), Picosecond laser, high-precision oscilloscope (e.g. LeCroy 9404M-MS 4 GHz, 40 GS/s)
- Earlier experience:
 - SAMPA readout chip for ALICE TPC
 - HGCROCv2 ASIC for ALICE FoCal

Computer Com

DAQ/DCS Slow Control contribution

Crucial input to the DAQ team: Background rates of each detector arising out of various sources.Used for: Calculating data volumes and corresponding bandwidths

CUK: Estimation of background rates due to synchrotron radiation

Ran simulation for two different setups (with gold and without gold coating) and analyzed the photon and electron counts for a specific beam current.

Results were used in ATHENA white paper to calculate maximum data

Adam, J., et al. Journal of Instrumentation 17, P10019 (2022)

Table 7: Maximum data volume by detector.

Detector	Channels	DAQ Input (Gbps)	DAQ Output (Gbps)
B0 Si	400M	<1	<1
B0 AC-LGAD	500k	<1	<1
RP+OMD+ZDC	700k	<1	<1
FB Cal	4k	80	1
ECal	34k	5	5
HCal	39k	5.5	5.5
Imaging bECal	619M	4	4
Si Tracking	60B	5	5
Micromegas Tracking	66k	2.6	.6
GEM Tracking	28k	2.4	.5
µRWELL Tracking	50k	2.4	.5
dRICH	300k	1830	14
pfRICH	225k	1380	12
DIRC	100k	11	11
TOF	332k	3	.8
Total		3334	62.9

Facilities at NISER

BHU: 302/234 VUV Monochromator – QE measurement:

Facility at IoP Bhubaneswar

Available Setup in IoP Bhubaneswar, India

Facilities at University of Jammu

Silicon detector testing facilities

- Two Detector laboratories (area ~100 sq m, ~ 100 sq m)– one with a clean room.
- Facilities for Silicon and Gas detector testing and characterizing
 - 1. Semi-automatic Probe Station
 - 2. LabView for interfacing different instruments
 - For Noise and I-V test: LV and HV Power supply, Kiethley source meter (mod 2410), LCR meter, Oscilloscopes
 - 4. For Efficiency and spectrum study: Lowrate radioactive sources (beta, gamma), Scintillator paddle detectors (2), HV module (1) (mod CAEN 470, 4 Ch), HV crate (SY2527), Pre-Amp (2), Amplifier, MCA, TAC, Discriminator, Delay module, NIM logic modules, NIM crates(2), ORTEC MASTERO DAQ, VME crates and modules

Suggestions from ePIC management

- Recently (last week), we received some suggestions from ePIC managements about possible participation topics:
 - Forward EM Calorimeter.
 - AC LGAD assembly and test facilities for Forward ToF.
 - dRICH studies.
 - Software for streaming DAQ studies.
- We are discussing within EIC India about the possible contributions.

Summary

- Thanks to DAE, DST, and the EIC community for their support.
- EIC India group interests in hardware is being defined.
- The funding proposal is in progress.
- The interests are
 - dRICH aerogel characterization
 - SiPM studies for dRICH and Forward EM Calorimeter
 - DAQ/DCS
 - Software and Simulation studies

THANK YOU

BACK UP

SiPM Specifications

Parameters	Value (dRICH)	Value (SCL)
Device Type	SiPM array	SiPM
Number of Channels	64	1
Active Area	$3 \times 3 mm^2$	$3 \times 3 mm^2$
Device Area	$< 28 \times 28 mm^2$	$\sim 3.5 \times 3.5 \ mm^2$
Pixel Size	$40 - 80 \mu m$	50 μm
Package Type	Surface mount	LCC* 16, 20 pin
Operating Voltage	< 64 V	Break Down Voltage $V_{BD} = 22 V$
Peak Sensitivity	400 - 450 nm	500 nm
PDE	> 35%	
Gain	$> 1.5 \times 10^{6}$	$2 \times 10^6 @ V_{BD} + 1V$
DCR	< 1.5 <i>MHz</i>	~ 500 kHz @ V_{BD} + 2.0 V and 0.5 p.e. thr
Temperature coefficient of V _{OP}	$< 60 \ mV/^{\circ}C$	$V_{BD} < 20.0 \ mV/^{\circ}C$
Direct crosstalk probability	< 10%	< 5%@V _{BD} + 2.0 V
Terminal Capacity	< 600 <i>pF</i>	1000 <i>pF</i>
Packaging granularity		
V _{OP} variation within a tray	< 300 mV	
Recharge Time	< 100 ns	
Fill Factor	> 70%	75%
Protective Layer	Silicon resin ($n = 1.5 - 1.6$)	
DCR at low temperature	< 10 kHz	Dark current $< 5 nA/cm^2$
DCR increase with radiation damage	< 1 MHz/10 ⁹ neq	
Residual DCR after annealing	< 25 kHz/10 ⁹ neq	
Single photon time resolution $07 = 02 = 24$	< 200 ps FWHM	

FW ToF Assembly Flow

FW ToF layout proposal

(illustration only, thickness not exactly to scale)

talks @ AC-LGADs Workfest@ePIC collab meeting, Jan. 9-10, 2024: Ref.: Wei Li (Rice University) <u>wl33@rice.edu</u> ~ 2000 modules 3.8 M readout channels

8 cm

x-y view:

(2) Production Line for the "Forward EMCal"

Forward E-Cal

High granularity W/SciFi EMCal Longitudinally separated HCAL with high-η insert Steel/Sc & W/Sc sandwich

China (Fudan, Shandong, Tsinghua) is responsible for 2/3 WScFi block production.

- On Pb/Sc Shashlyk EMCal, both Tsinghua and Shandong University have lot of R&D experiences based on the Jlab-SOLID project, and several prototypes already.
- On W powder/ScFi EMCal, Fudan/PKU/CIAE responsible for sPHENIX high-eta (0.8-1.1) EMCal Blocks.
- the infrastructure for the construction of such W-powder/ScFi ECal blocks, including block production and testing

Comments/points to work on

After meeting on 28/01/2024 at NISER

(1) Name and Address of Companies:

a) Tungsten powder company: INNOMET ADVANCED MATERIALS LTD B-31, BHEL Ancillary Estate, Ramachandrapuram, Hyderabad – 502 032 Email: sales@innomet.net https://www.innomet.net/tungstenheavy-alloys.html

->Two companies who make powder in India [Surat (GJ) and Ahmadnagar (MH)], sent email to inquire about required specs.

b) Scintillating Fiber Contact:(Fibers are made in USA) Luxium Solutions India Pvt Ltd (formerly Saint-Gobain India Pvt Ltd - Crystals) email: <u>Shanthi.Shanmugam@luxiumsolutions.com</u>

-> They can import and supply us!

Swasteek Chemicals and Rare Metals Pvt Ltd

Office Address - Shrirampur Industrial area, MIDC Plot No. C-44, Shrirampur 413 709. Dist. Ahmednagar (MS)

