Congruent Numbers II

Recall the definition of a Magic square.
Definition (Magic square): A Magic square is a $n \times n$ grid of numbers such that the sum of each row, the sum of each column and the sum of the diagonal are the same.

$$
\left[\begin{array}{lll}
4 & 9 & 2 \\
3 & 5 & 7 \\
8 & 1 & 6
\end{array}\right]
$$

There has been some recent interest in whether there can exist a three-by-three magic square whose nine entries are all perfect squares. The answer is of course YES, for example,

$$
\left[\begin{array}{ccc}
5^{2} & 1^{2} & 7^{2} \\
7^{2} & 5^{2} & 1^{2} \\
1^{2} & 7^{2} & 5^{2}
\end{array}\right]
$$

which is a particular case of the parametrized square

$$
\left[\begin{array}{ccc}
\left(m^{2}+n^{2}\right)^{2} & \left(m^{2}-2 m n-n^{2}\right)^{2} & \left(m^{2}+2 m n-n^{2}\right)^{2} \\
\left(m^{2}+2 m n-n^{2}\right)^{2} & \left(m^{2}+n^{2}\right)^{2} & \left(m^{2}-2 m n-n^{2}\right)^{2} \\
\left(m^{2}-2 m n-n^{2}\right)^{2} & \left(m^{2}+2 m n-n^{2}\right)^{2} & \left(m^{2}+n^{2}\right)^{2}
\end{array}\right] .
$$

Martin Gardner has offered $\$ 100$ for an example of a three-by-three magic squares of squares in which the nine entries are distinct or for a proof of the non-existence of such a square.

One of the major open problems is:
Conjecture 1. Prove or disprove the existence of a three-by-three magic square whose nine entries are distinct perfect square.

1 Questions

Question 1.1 Any three-by-three magic square of integers is of the form

$$
\left[\begin{array}{ccc}
a-b & a+b+c & a-c \\
a+b-c & a & a-b+c \\
a+c & a-b-c & a+b
\end{array}\right]
$$

with $a, b, c \in \mathbb{Z}$. The square has repeated entries precisely when

$$
\begin{equation*}
b c\left(b^{2}-c^{2}\right)\left(b^{2}-4 c^{2}\right)\left(4 b^{2}-c^{2}\right)=0 \tag{1}
\end{equation*}
$$

Question 1.2 Show that Conjecture 1 is equivalent to proving or disproving the existence of three arithmetic progressions of length 3 having the same common difference, each terms are perfect squares such that their middle terms themselves form an arithmetical progression.

Question 1.3 Two arithmetical progressions of squares of length 3 have the same common difference of terms if and only if the corresponding Pythagorean right-angled triangles have the same area.

Question 1.4 Show that Question 1.2 is equivalent to proving or disproving that there are three right-angled triangles with the same area such that squares of the hypotenuses are in arithmetical progression i.e. that there exists one congruent number n such that n is the area of three different right angled triangles whose sides X_{i}, Y_{i}, Z_{i} for $i=1,2,3$ and the squares of the hypotenuses are in arithmetical progression.

We are interested in a special type of graph of the curve $E_{N}: y^{2}=x^{3}-n^{2} x$ where n is an congruent number.

Question 1.5 Prove that Question 1.4 is equivalent to proving or disproving the existence of three integral points satisfying E_{N} such that their x-coordinates are in arithmetical progression.

