Congruent Numbers II

Recall the definition of a congruent number.

Definition(Congruent number): A positive rational number n is called a <u>congruent number</u> if there is a rational right triangle with area n: there are rational a, b, c > 0 such that $a^2 + b^2 = c^2$ and (1/2)ab = n.

The congruent number problem makes its earliest appearance in an Arab manuscript traced to the tenth century and around 1000 years old.

1 Questions

Question 1.1 Show that a rational right triangle with area n produces a rational solution to the equation $E_N: y^2 = x^3 - n^2 x$.

(Hint! Question 2.2 from last time, a number n is congruent if and only if there exists a rational number a such that $a^2 + n$ and $a^2 - n$ are both squares of rational numbers.

Question 1.2 Let $x_0, y_0 \in \mathbb{Q}$, so that

$$y_0^2 = x_0^3 - n^2 x_0$$

Assume that x_0 satisfies:

- (1) x_0 is the square of a rational number
- (2) x_0 has even denominator
- (3) the numerator of x_0 is relatively prime to n

There exists a right triangle with rational sides and area n which corresponds to x_0 .

Question 1.3 Define sets A and B by

$$A = \{ (X, Y, Z) \in \mathbb{Q}^3 : \frac{1}{2}XY = n, X^2 + Y^2 = Z^2 \}$$
$$B = \{ (x, y) \in \mathbb{Q}^2 : y^2 = x^3 - n^2x, y \neq 0 \}$$

prove that there is a bijection between A and B given by maps

$$f(X,Y,Z) = \left(\frac{nY}{X+Z}, \frac{2n^2}{X+Z}\right)$$

and

$$g(x,y)=\left(\frac{N^2-x^2}{y},-\frac{2xn}{y},\frac{n^2+x^2}{y}\right)$$

Graph of $E_N: y^2 = x^3 - n^2 x$ intersecting with lines through P_0 and (0, 0), (n, 0), (-n, 0) and reflected points.

This geometric viewpoint is connected to a million-dollar problem (namely), Birch and Swinnerton–Dyer (BSD) conjecture. Assuming the conjecture, there is a tentative solution to the congruent number problem.

Theorem 1.4 (Tunell) Let n be a squarefree positive integer. Define

$$f(n) = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 8z^2 = n\}$$

$$g(n) = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2y^2 + 32z^2 = n\}$$

$$h(n) = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 4y^2 + 8z^2 = n/2\}$$

$$k(n) = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 4y^2 + 32z^2 = n/2\}$$

For odd n, if n is congruent then f(n) = 2g(n). For even n, if n is congruent then h(n) = 2k(n). Moreover, if BSD conjecture is true, then the converse of both implications are true: f(n) = 2g(n)implies n is congruent when n is odd and h(n) = 2k(n) implies n is congruent when n is even.

Remark 1.5 Tunnell's theorem provides an unconditional method of proving a squarefree positive integer n is not congruent (show $f(n) \neq 2g(n)$ or $h(n) \neq 2k(n)$, depending on the parity of n), and a conditional (BSD conjecture) method of proving n is congruent.

Example 1.6 As f(1) = g(1) = 2 and f(3) = g(3) = 4, we have $f(n) \neq 2g(n)$ for n = 1 and 3, so Tunell's criterion shows that 1 and 3 are not congruent.

Question 1.7 What about 2, 5, and 7?

Question 1.8 Conditionally (on BSD conjecture) show that any squarefree positive integer n satisfying $n \equiv 5, 6, 7 \pmod{8}$ is a congruent number.

Question 1.9 Can you determine whether 260124 is congruent? (Hint! $260124 = 2^2.3.53.409$)