Congruent Numbers II

Recall the definition of a congruent number.
Definition(Congruent number): A positive rational number n is called a congruent number if there is a rational right triangle with area n : there are rational $a, b, c>0$ such that $a^{2}+b^{2}=c^{2}$ and $(1 / 2) a b=n$.

The congruent number problem makes its earliest appearance in an Arab manuscript traced to the tenth century and around 1000 years old.

1 Questions

Question 1.1 Show that a rational right triangle with area n produces a rational solution to the equation $E_{N}: y^{2}=x^{3}-n^{2} x$.
(Hint! Question 2.2 from last time, a number n is congruent if and only if there exists a rational number a such that $a^{2}+n$ and $a^{2}-n$ are both squares of rational numbers.

Question 1.2 Let $x_{0}, y_{0} \in \mathbb{Q}$, so that

$$
y_{0}^{2}=x_{0}^{3}-n^{2} x_{0}
$$

Assume that x_{0} satisfies:
(1) x_{0} is the square of a rational number
(2) x_{0} has even denominator
(3) the numerator of x_{0} is relatively prime to n

There exists a right triangle with rational sides and area n which corresponds to x_{0}.
Question 1.3 Define sets A and B by

$$
\begin{gathered}
A=\left\{(X, Y, Z) \in \mathbb{Q}^{3}: \frac{1}{2} X Y=n, X^{2}+Y^{2}=Z^{2}\right\} \\
B=\left\{(x, y) \in \mathbb{Q}^{2}: y^{2}=x^{3}-n^{2} x, y \neq 0\right\}
\end{gathered}
$$

prove that there is a bijection between A and B given by maps

$$
f(X, Y, Z)=\left(\frac{n Y}{X+Z}, \frac{2 n^{2}}{X+Z}\right)
$$

and

$$
g(x, y)=\left(\frac{N^{2}-x^{2}}{y},-\frac{2 x n}{y}, \frac{n^{2}+x^{2}}{y}\right)
$$

Graph of $E_{N}: y^{2}=x^{3}-n^{2} x$ intersecting with lines through P_{0} and $(0,0),(n, 0),(-n, 0)$ and reflected points.

This geometric viewpoint is connected to a million-dollar problem (namely), Birch and Swinner-ton-Dyer (BSD) conjecture. Assuming the conjecture, there is a tentative solution to the congruent number problem.

Theorem 1.4 (Tunell) Let n be a squarefree positive integer. Define

$$
\begin{gathered}
f(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+8 z^{2}=n\right\} \\
g(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 y^{2}+32 z^{2}=n\right\} \\
h(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+4 y^{2}+8 z^{2}=n / 2\right\} \\
k(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+4 y^{2}+32 z^{2}=n / 2\right\}
\end{gathered}
$$

For odd n, if n is congruent then $f(n)=2 g(n)$. For even n, if n is congruent then $h(n)=2 k(n)$. Moreover, if BSD conjecture is true, then the converse of both implications are true: $f(n)=2 g(n)$ implies n is congruent when n is odd and $h(n)=2 k(n)$ implies n is congruent when n is even.

Remark 1.5 Tunnell's theorem provides an unconditional method of proving a squarefree positive integer n is not congruent (show $f(n) \neq 2 g(n)$ or $h(n) \neq 2 k(n)$, depending on the parity of n), and a conditional (BSD conjecture) method of proving n is congruent.

Example 1.6 As $f(1)=g(1)=2$ and $f(3)=g(3)=4$, we have $f(n) \neq 2 g(n)$ for $n=1$ and 3 , so Tunell's criterion shows that 1 and 3 are not congruent.

Question 1.7 What about 2, 5, and 7?
Question 1.8 Conditionally (on BSD conjecture) show that any squarefree positive integer n satisfying $n \equiv 5,6,7(\bmod 8)$ is a congruent number.
Question 1.9 Can you determine whether 260124 is congruent? (Hint! $260124=2^{2} .3 .53 .409$)

