
THE FUNDAMENTAL GROUP AND THE WEIGHT
LATTICE

1. Root Systems

Definition 1. Let + be a real vector space and ' ⊂ + a finite subset.
Then ' is a called a (reduced) root system in + , if ' satisfies the fol-
lowing conditions:

(1) Vectors in ' are non-zero.

(2) If U ∈ ', V ∈ ' are such that V is a multiple of U , then V = ±U .

(3) Given U ∈ ', there exists an automorphism BU of the vector space
+ such that BU (U) = −U and for E ∈ + , BU (E) − E is a real multiple of U .

(4) For every U ∈ ', BU (') ⊂ ', and if V ∈ ', then BU (V) − V is an
integral multiple of U .

Theorem 1. Let � be a compact connected semi-simple Lie group and
) a maximal torus. Let gℂ be the complexified Lie algebra of � and
decompose gℂ as a direct sum

gℂ = tℂ ⊕U∈Φ(�,) ) gU ,
where on gU the adjoint action of the group ) is by a one dimensional
character U : ) → (1 which we write additively as C ↦→ CU . Thus the
characters U are viewed in the character group - ∗() ) written additively.
Let + = - ∗() ) ⊗ℤ ℝ.

Then the set Φ(�,) ) is a root system in + .

Proof. Write ' = Φ(�,) ). We will check properties (1) through (4).

Let '(U) be the (finite ) collection of roots V of (�,) ) which are
rational multiples of U : V =

?

@
U . The ℤ-span of the roots V ∈ '(U)

lies in the subgroup 1
#
ℤU ' ℤ for some common denominator # of the

all the numbers ?/@. Therefore, the ℤ span of V is of the form ℤW for
some character W ( not necessarily a root) of ) (each V is an integral
power of W and hence W is an<-th root of U). Let ( be the kernel of the
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character W . On the Lie algebra of / ((), the group / (()/( operates and
) /( is a one dimensional maximal torus in / (()/( with W : ) /( → (1

an isomorphism. By Lemma ??, the group / (()/( is connected and is
either ($ (3) or (* (2) and is three dimensional. Thus, the only rational
multiples of U in ' are ±U . This proves (2) (and part (1) is trivial).

In addition, W = ±U and we have an isomorphism U : ) /( → (1.
Moreover, all the characters on ) /( (written additively) are integral
multiples of U .

Since ) acts by the non-trivial character U on gU ⊂ !84 (/ (()) ⊗ ℂ,
it follows that / (()/( contains an element F which normalises the one
dimensional torus ) /( and acts by C ↦→ C−1 on ) /(. Let BU be an ele-
ment of / (() mapping onto F . Then, BU acts trivially on ( (since it lies
in the centraliser of () and normalises ) . Consider the homomorphism
q (C) = C ↦→ CBUC

−1B−1U from ) into itself. This is trivial on ( and hence
q : ) /( → ) . Since the characters of ) /( = (1 are just integral multi-
ples of U , it follows that for any character _ of ) , there exists an integer
< such that _(CBUC−1B−1U ) = U (C)<. Written additively, this means that
for any _ ∈ - ∗() ) we have _ − BU (_) =<U for some < ∈ ℤ.

In particular, for any V ∈ ', BU (V) − V is an integral multiple of U .
This proves the second part of (4). Since BU lies in the Weyl group, and
the entire Weyl group acts on the set of roots, we have BU (') = '. This
proves (4).

This also proves that for any _ ∈ - ∗() ) ⊗ℤ ℝ, the vector _ − BU (_) is
a real multiple of U , proving (3) as well. �

Notation 1. Given a root system ' ⊂ + , for every U ∈ ' and _ ∈ + ,
the difference BU (_) − _ is a real multiple of U ; that is, there exists a
linear form �U on + , such that BU (_) −_ = _(�U )U for all _. In the case
when + = - ∗() ) ⊗ℝ and ' is the set of roots for a compact semi-simple
connected Lie group � and a maximal torus ) , as above, + is the dual
of the space !) = 8!84 () ) and hence+ ∗ = !) . The element �U lies in !) .

(We put a ℚ-valued metric on - ∗() ) ⊗ ℚ and extend it to a metric
on + = - ∗() ) ⊗ ℝ. We average this metric with respect to the Weyl
group, (a finite group) and may assume the metric in, -invariant.
This gives an identification of + with its dual + ∗. Hence for _ ∈ + ,
the reflection BU takes the form BU (_) = _ − 2 (_,U)(U,U)U and thus under the
identification of + ∗ with + , we see that �U corresponds to 2 U

(U,U) ).
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We have seen previously that ' = '+
∐
'− where the positive roots

are defined by '+ = {U ∈ ' : U (� ) > 0} for a fixed � ∈ + ∗. Given
U ∈ '+ let us call it decomposable if U = V + W for some positive roots
V,W . If U is not decomposable, then we call it a simple root. Thus every
element of '+ is a non-negative integral linear combination of simple
roots. Let Δ denote the set of simple roots.

Lemma 2. if U, V ∈ Δ are distinct simple roots, then V − BU (V) is a
non-positive multiple of the root U.

Proof. We first put a ℚ-valued metric on the character group + =

- ∗() ) ⊗ ℚ and average this metric with respect to the action of the
Weyl group. We get ℚ-valued metric on + invariant under all the BU .
If , = U⊥ ⊂ + is the hyperplane orthogonal to U with respect to this
metric, then on, , the action of BU is trivial, since, is invariant as a
subspace under BU and (1 − BU ) (, ) ⊂, ∩ℚU = {0}.

Hence we have for all E ∈ + ,

E − BU (E) =
2(U, E)
(U, U) U.

We have seen that ' is a root system and hence for V ∈ ', we see that
2(V,U)
(U,U) = =U,V is an integer. Similarly, 2(U,V)

(V,V) = =V,U is also an integer.

The product =U,V=V,U =
4(U,V)2
(U,U) (V,V) is ≤ 4 (by the Cauchy Schwarz in-

equality ) with equality if and only if V, U are proportional. Hence, if
V ≠ ±U , then =U,V=V,U is a non-negative integer and < 4. Suppose to the
contrary, that =U,V > 0. Then so is =V,U .

Consequently, one of these two integers, say =U,V , is one, and hence
BU (V) = V − U is a root. Then either U − V is a positive root and hence
U = (U − V) + V is decomposable, or else V − U is a positive root and V
is decomposable, a contradiction since U, V are simple. This proves the
lemma. �

Lemma 3. The set Δ of simple roots in Φ+ is linearly independent.
Thus, they form a basis for the ℚ-span of the roots in Φ. Consequently,
for U ∈ Δ, the elements �U form a basis of + ∗.

Proof. Suppose a linear combination
∑
U∈Δ 0UU = 0 for some rational

numbers 0U . Write � for the subset of Δ of U with 0U is non negative,
and � for the subset of U with 0U is negative. Then,

_ =
∑
U∈�

0UU =
∑
V∈�
(−0V)V.
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Now, by Lemma 2, if U ∈ � and V ∈ �, then (U, V) ≤ 0. Hence

(_, _) =
(∑
U∈�

=UU,
∑
V∈�
(−=V)V

)
≤ 0.

Since ( , ) is a positive definite form on + , it follows that _ = 0. But
_(� ) = ∑

U∈� 0UU (� ) is strictly positive unless all the numbers 0U are
zero for U ∈ �. Similarly, 0V = 0 for V ∈ �, and hence all the coefficients
of the linear combination are zero, and Δ consists of linearly indepen-
dent vectors.

Since the dual element �U may be identified with 2 U
(U,U) , it follows

that the �U for U ∈ Δ, form a basis of + ∗ = !) . �

Definition 2. Let F ∈, and ' = Φ(�,) ), with a positive system Φ+.
The number of roots V in Φ+ such that F (V) < 0 is called the length of
the element F .

If U is a simple root, the element BU of the Weyl group is called a
simple reflection.

Lemma 4. If U ∈ Δ is a simple root, then BU has length one.

Proof. Since BU (U) = −U , the length of BU is at least one.

Since Δ is a base, every root in Φ+ is a non-negative integral linear
combination of elements of Δ. Suppose V ∈ Φ+ with V ≠ U . Then
V =

∑
0\\ where \ runs through all the simple roots, and for some

simple root W ≠ U , the coefficient 0W is non-zero (and strictly positive).
Consequently, for some integer <,

BU (V) = V + (BU (V) − V) =
∑

0\\ +<U.

This shows that the coefficient of W (in the expression for BU (V) as a
linear combination of simple roots), is the same as that of V, namely
0W , and is strictly positive. This shows that BU (V) > 0. Therefore, BU
takes Φ+ \ {U} into itself and hence the length of BU is at most one.

The last two paragraphs imply that BU has length one. �

Lemma 5. Every Weyl group element is a product of simple reflections.

Proof. Let, ′ ⊂, be the subgroup generated by simple reflections. If
possible, let F0 ∈, \, ′. Let F ∈, be an element with the property
that the length of F is minimal among the elements of the left coset
, ′F0 in the left coset space, ′\, . Write Φ+ = �

∐
� whereF (�) ⊂ Φ+
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and F (�) ⊂ Φ−. Then, Φ+ = F (�)∐−F (�) as well.
Suppose U ∈ −F (�) and let V ∈ � such that F (V) = −U . Write

BUF = F ′. If W ∈ �, then F (W) is not U but is positive and hence
F ′(W) = BUF (W) is positive, and F ′(�) ⊂ Φ+: F ′(�) > 0.

Suppose W ∈ �. Then F (W) is negative. If F (W) ≠ −U , then BU (−F (W))
is still positive. Hence F ′(W) = BUF (W) < 0. Thus, F ′(� \ {F−1(−U)})
consists of negative roots.

If F (W) = −U , then −F (W) = U and BU (−F (W)) = −U and hence
BUF (W) > 0. That is F ′(F−1(−U)) is positive. Therefore, The number
of roots in Φ+ which are taken into their negatives under the element
F ′ is one less than that for F . This is impossible by the minimality of
the length of the coset representative F . Therefore, F cannot take any
positive root into a negative root. By the Chevalley normaliser Lemma
(lemma ??), F = 1 and hence, ′ =, . �

1.1. Integral Forms.

Notation 2. Denote by !B2 =
∑
U∈Δℤ�U , the lattice in !) obtained as

the ℤ span of the (linearly independent) vectors �U as U varies in Δ.
Denote by ΛB2 the lattice of integral forms, namely the integral dual of
the lattice !B2 . It is the ℤ span of the basis (_U )U∈Δ of + = - ∗() ) ⊗ ℝ

dual to the basis (�U )U∈Δ so that _V (�U ) = XU,V , the Kronecker delta
symbol. The integral forms _U for U ∈ Δ are called fundamental weights.

The element d = 1
2 (

∑
U∈Φ+ U) will be seen to be an integral form which

is equal to
∑
U∈Δ _U .

A corollary to the preceding lemma is that for F in the Weyl group
, , the difference −F (d) + d is a sum of positive roots U such that
F−1(U) < 0.

Definition 3. Let _ ∈ - ∗() ). We call _ a dominant integral weight
(with respect to the positive system Φ+) if _ − BU (_) is a non-negative
integral linear combination of simple roots.

If + is an irreducible representation with the highest weight _ , then
_ is a dominant integral weight. This has been observed before.

1.2. Stiefel Diagram. Consider � a connected semi-simple group of
adjoint type, and let !) denote the set of real elements of the complex-
ified Lie algebra tℂ on which the roots take real values. We denote the
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exponential map by - ↦→ 4G? (2c8- ) ∈ ) from !) onto ) .

The kernel !03 of this map is precisely the set of vectors - ∈ !)
with the property: for each root U , U (- ) ∈ ℤ. The roots are viewed as
elements of the dual of !) and the simple roots Δ = {U : U B8<?;4}
form a basis of !) . Let {EU : U ∈ Δ} denote the dual basis in !) to the
basis Δ of simple roots. Then the kernel !03 is the integral linear span
of {EU : U ∈ Δ}. That is, !03 =

∑
U∈ΔℤEU . This is called the adjoint

lattice. Since it is the kernel to the exponential map, !03 is stable under
the action of the Weyl group:

∑
U∈ΔℤU is, stable.

Denote by !B2 the ℤ-span of the vectors EU − BU (EU ) as U varies over
Δ. Then !B2 ⊂ !03 . It follows from definitions that �U = EU − BU (EU ).

The inverse image in !) under the exponential map !) → ) of
the set )A46 of regular elements of the torus ) , will be referred to as
strongly regular elements !)BA46. This is precisely the set of elements
- ∈ !) where no U (- ) can be integral for any root U . For an integer
: and a root U , denote by ,U,: the set of elements - ∈ !) such that
U (- ) = :. This is a hyperplane in !) (if U is simple, then the hy-
perplane,U,: passes through the point :EU ; thus,U,: = :EU + :4A (U)).
Denote by ,U the union over all integers : of the ,U,: . Then for a
simple root U , ,U ⊃ ℤEU +  4A (U) ⊃ ℤE0 +

∑
V∈Δ,V≠U ℤEV = !03 . Since

every root U is of the form F (V) for simple root V, it follows that
,U = F (,V) ⊃ F (!03) = !03 . Hence for each root U , the union of
hyperplanes ,U is stable under translation by elements of !03 . Con-
sequently, the union over all ,U as U varies over all roots, is also ,
stable and !03 stable. Therefore, the strongly regular elements !)BA46
of !) are stable under the action of !03 o, .

The set of strongly regular elements of !)BA46 is called the Stiefel dia-
gram of �03 . The set !)BA46 has countably many connected components
and each connected component is an alcove of the form W + % where
W is an element of the integral lattice !B2 , and % is the "fundamental
alcove" consisting of elements ? of the form ? =

∑
CUEU with 0 < CU < 1

and U (?) < 1 for all positive roots U (this is equivalent to saying that
0 < V (?) for simple roots V and U (?) < 1 where U is the highest root).
Moreover, the Weyl group, also acts on !)BA46 since F ∈, takes each
,U,: into,F (U),: .



THE FUNDAMENTAL GROUP AND THE WEIGHT LATTICE 7

We can describe the reflection BU,: about the translated hyperplane
,U,: as the map E ↦→ E − (U (E) − :)�U . Then a computation shows
that BU,1BU,0 is the translation by the element �U on !) . The group
generated by the reflections BU,: for U ∈ ' and : ∈ ℤ is the semi-direct
product of the lattice !B2 =

∑
ℤ�U and the Weyl group, .

The extended Weyl group ,4 = !B2 o , acts on all of !)A46 =

!) − ⋃
U∈',:∈/,U,: and permutes the connected components. There-

fore, if f ∈,4 and f (%) ∩ % is non-empty, then f (%) = % .

We first consider the seemingly smaller group , ′ generated by the
reflections BU where U is a simple root and by the reflection BU ,1 about
the wall U (G) = 1. We will refer to these reflections as the simple
reflections of the extended Weyl group,4 . Thus,, ′ ⊂, .

Lemma 6. Every alcove may be translated into the fundamental alcove
by an element of the smaller group , ′.

Proof. The action of,4 and therefore of, ′ is properly discontinuous
on the Lie algebra !) . Furthermore, we have an inner product (, )
on !) invariant under the Weyl group by averaging any inner product
under the action of the finite group, . Given vectors G,~ ∈ !) , denote
by 3 (G,~) =

√
(G − ~, G − ~) =| G − ~ | the distance of ~ from G . This

defines a metric which is invariant under translations by elements of !)
and under the action of , ; therefore, it is invariant under ,4 . Given
an element G in the fundamental alcove % and I ∈ !)BA46 a strongly
regular element, consider the function on !)BA46 defined by

5 (I) = 8=5W∈, ′3 (WI, G).
That is, take all possible translates of I under the smaller group , ′,
and take the infimum of the distances of these translates of I from G .
The proper discontinuity of the action of, ′ ensures that this minimum
is attained by ~ = W0I for some W0 ∈, ′. We then get 3 (~, G) ≤ 3 (W~, G)
for all W ∈, ′.

We will show that ~ must necessarily lie in the fundamental alcove
% . This will prove the lemma since I being an element of !)BA46 may
be translated into ~ ∈ % by the element W of, ′; but any strongly reg-
ular element I of !) lies in an alcove & and ~ = WI ∈ W (&) ∩ % . But
if two alcoves intersect nontrivially, then they coincide since they are
connected components. Hence W& = % .
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Let U be a simple root. Suppose U (~) < 0. Consider a point @ ∈ !)
on the line joining G and ~; it is of the form @ = C~ + (1 − C)G . Then
C =

U (G)−U (@)
U (G)−U (~) . If we choose C = U (G)

U (G)−U (~) then its denominator is greater
than U (G) > 0 since U (G) > 0 and U (~) < 0; hence 0 < C < 1 and
the formula for C shows that U (@) = 0. Hence BU (@) = @. Then by the
triangle inequality,

3 (BU (~), G) < 3 (BU~, @) + 3 (@, G) =

= 3 (BU~, BU@) + 3 (@, G) = 3 (~, @) + 3 (@, G) = 3 (~, G),
and the last equality holds because @ is on the line joining G and ~
between G and ~. This contradicts the choice of ~ and hence U (~) < 0
cannot hold: 0(~) > 0 for all simple roots U .

Suppose U (~) > 1. By using the element BU,1 instead of BU in the
preceding paragraph, we get a contradiction as in the preceding para-
graph. We therefore see that U (~) < 1. Hence the element ~ lies in
the fundamental alcove % . This proves the lemma. �

Lemma 7. The extended Weyl group ,4 is the group , ′ generated by
the simple reflections.

Proof. The group,4 is generated by the reflections BU,: for all positive
roots U and all integers :. The reflection BU,: leaves the wall ,U,:

pointwise stable and the wall,U,: is a boundary of some alcove &. By
the preceding lemma, there exists an element W of , ′ which moves &
into the fundamental alcove % ; hence it moves,U,: into some wall of % .
But the only walls which meet the boundary of % are of the form,U ,1

or,V for some simple root V. Hence BU,: = W−1AW where A is the simple
reflection about a wall � of the fundamental alcove % , and hence A lies
in the "smaller" group, ′. Therefore, BU,: = W−1AW also lies in, ′, since
W and A both are in, ′. �

Given f ∈, , we may write f = B1B2 · · · B: where B8 are simple reflec-
tions as in the lemma. The smallest such : is called the length of the
element f. For example, the length of a simple reflection is 1.

We will say that two alcoves & and &′ are on opposite sides of a wall
�, if � is set � = {G ∈ !) : _(G) = :} for some linear form _ and some
number :, and for all G ∈ & and all G′ ∈ &′, either _(G) < : < _(G′)
or the other way around: _(G) > : > _(G′). We will also say that the
wall � separates the alcoves & and &′. If B is a simple reflection about
a wall � of the fundamental alcove % , then the alcoves % and B (%) are
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on opposite sides of the wall �. Moreover, if �′ is any wall such that %
and B (%) are on opposite sides of �′, then �′ = �.
Lemma 8. Let f = B1B2 · · · B: be an element of,4 of length : and with
B8 simple reflections. Suppose B1 is a reflection about the wall �. Then
% and f (%) are on opposite sides of the wall �.
Proof. We prove this by induction on the length of f. If : = 1, then f
is a simple reflection B1 about a wall �, and we have already observed
that % and B1(%) are on opposite sides of �.

Suppose that the lemma is false for a smallest such : (then : ≥ 2)
and for some f of length :, the alcoves f (%) and % are on the same
side of the wall �. Let D = B1B2 · · · B:−1. Then D has length : − 1 and by
induction assumption, D (%) and % are on opposite sides of the wall �.
Hence D (%) and f (%) are on the opposite sides of �.

Now, compare the alcoves f (%) = DB: (%) and D (%); the alcoves %
and B: (%) are on opposite sides of the wall �: (and B: is the reflec-
tion about the wall �:)). Moreover, �: is the only wall separating %
and B: (%). Consequently, the alcoves D (%) and DB: (%) = f (%) are on
opposite sides of the wall D (�:) and D (�:) is the only wall separating
D (%) and f (%). By the preceding paragraph, � = D (�:), and hence the
reflection B1 = DB:D

−1. Since f = DB: , we get : f = B1D = B2 · · · B:−1 has
length : − 2, contradicting our assumption that f has length :.

This proves the lemma. �

Proposition 9. The extended Weyl group acts simply transitively on
the set of alcoves.
Proof. We have already seen that , ′ acts transitively on the set of
alcoves. We need only show that if f (%) = % then f = 1. Suppose
f ∈ ,4 stabilises % and has length :. Write f = B1B2 · · · B: . Suppose
: ≥ 1 and let B1 be a reflection about the wall �. By the lemma, f (%)
and % are on the opposite sides of �, but f (%) = % . This contradiction
proves that : = 0 and f = 1. �

Corollary 1. The quotient of the strongly singular elements in !) by
the action of the extended Weyl group is simply connected.
Proof. Since the group ,4 acts transitively on the connected compo-
nents of !)BA46, it follows that !)BA46/,4 = %/BC01 (%); by the propo-
sition, the action on the set of alcoves has no isotropy and hence
!)BA46 → !)BA46/,4 = % is a (disconnected) covering, and the quotient
is the alcove % which is simply connected. �
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The Weyl group , is a quotient of the extended Weyl group ,4 =

(∑U∈Δℤ�U ) o, = !B2 o, . The group, acts by right multiplication
on the quotient �/) where � is a compact connected LIe group of ad-
joint type and by conjugation on )A46. Hence it acts diagonally on the
product �/) ×)A46 and the conjugation map (6), C) → 6C6−1 is an iso-
morphism from �/) × )A46/3806(, ) onto �A46. Since )A46 = !)BA46/!03 ,
we see that �/) × !)BA46/!B2 is a covering of �/) ×)A46. Going modulo
the diagonal action of the Weyl group , on both, we get a covering
from �/) × % onto �A46, with deck transformation group isomorphic to
!03 o, /!B2 o, and the latter is isomorphic to !03/!B2 .

We recall that �/) × % is simply connected. Therefore, we arrive at
the conclusion that the fundamental group of �A46 is (isomorphic to)
the finite quotient !03/!B2 .

Its dual group (!03/!B2)∗ may be identified with the quotient of the
"weight lattice" (the lattice �><(∑ℤ�U ,ℤ) of integral forms which is
also the integral span of the fundamental weights) of the Lie algebra g

modulo the root lattice:

(!03/!B2)∗ = �><
(∑

ℤ�U ,ℤ
)
/�><

(∑
ℤEU ,ℤ

)
= (

∑
ℤ_U )/(

∑
ℤU).

If _ ∈ - ∗()B2) is a dominant integral weight of the inverse image )B2
of ) in �B2 ()B2 is then a maximal torus), then _ is the highest weight
of an irreducible representation + (_) of �B2 . Suppose now that _ is a
dominant integral weight of the Lie algebra g of � .

Theorem 10. (Existence Theorem) Conversely, given a dominant in-
tegral weight of the Lie algebra g, there exists an irreducible represen-
tation with highest weight _.

Proof. Let � be a compact semi-simple group of adjoint type. Consider
the open set �A46 = (�/) ×)A46)/�806(, ). Let + = !) be 8 times the
Lie algebra t of ) .We note that the character group of ) is the root
lattice and hence the torus ) = !) /∑U∈ΔℤEU , where EU is the basis of
!) dual to the basis consisting of the simple roots U . Thus, V (EU ) = XU,V
where X is the Kronecker delta symbol. Consequently, for any root U ,
its evaluation on the ℤ span !03 of all the EV is an integer, and �U lies in
!03 . The ℤ span !B2 of �U also lies in !03 (that is, !B2 =

∑
U∈' ℤ�U ⊂ !03).

Therefore, we have a covering !) /!B2 → !) /!03 . Thus the order of the
Deck transformation group of the universal covering of �A46 is the order
of !03/!B2 .

The inclusion �A46 → � induces an isomorphism of fundamental
groups. Hence the universal cover of � has the same number of sheets
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over � as that of �A46. In other words, the fundamental group of �
has order equal to the order of the quotient !03/!B2 by the preceding
paragraph. But, if �B2 denotes the simply connected cover of � , then
the Deck transformation group of �B2 → � may be identified with the
centre of �B2 , and the dual of the centre may be identified Λ/∑U ℤU ,
where Λ = - ∗()B2) is the weight lattice of )B2 , a maximal torus of �B2
mapping onto ) under the covering map �B2 → � (by weights of a
torus, we mean the group of characters on the torus). By the preced-
ing paragraph, Λ must be the lattice of integral forms.

As a consequence, given a dominant integral weight _ of the Lie
algebra g (i.e.a dominant integral form), there exists an irreducible
representation + (_) of the simply connected group �B2 with highest
weight _ (by differentiating, we get an irreducible (finite dimensional)
representation of the Lie algebra g as well).This proves the theorem.

�



12 THE FUNDAMENTAL GROUP AND THE WEIGHT LATTICE

We have therefore classified all the irreducible representations of a
semi-simple Lie algebra g, in terms of a dominant integral weight. We
can also classify all the compact (simply connected) semi-simple Lie
groups � in terms of the root system. The root systems may in turn
be classified in terms of the Dynkin diagram.
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