THE FUNDAMENTAL GROUP AND THE WEIGHT LATTICE

1. Root Systems

Definition 1. Let V be a real vector space and $R \subset V$ a finite subset. Then R is a called a (reduced) root system in V, if R satisfies the following conditions:
(1) Vectors in R are non-zero.
(2) If $\alpha \in R, \beta \in R$ are such that β is a multiple of α, then $\beta= \pm \alpha$.
(3) Given $\alpha \in R$, there exists an automorphism s_{α} of the vector space V such that $s_{\alpha}(\alpha)=-\alpha$ and for $v \in V, s_{\alpha}(v)-v$ is a real multiple of α.
(4) For every $\alpha \in R, s_{\alpha}(R) \subset R$, and if $\beta \in R$, then $s_{\alpha}(\beta)-\beta$ is an integral multiple of α.

Theorem 1. Let G be a compact connected semi-simple Lie group and T a maximal torus. Let $\mathfrak{g}_{\mathbb{C}}$ be the complexified Lie algebra of G and decompose $\mathfrak{g}_{\mathbb{C}}$ as a direct sum

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} \oplus_{\alpha \in \Phi(G, T)} \mathfrak{g}_{\alpha},
$$

where on \mathfrak{g}_{α} the adjoint action of the group T is by a one dimensional character $\alpha: T \rightarrow S^{1}$ which we write additively as $t \mapsto t^{\alpha}$. Thus the characters α are viewed in the character group $X^{*}(T)$ written additively. Let $V=X^{*}(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

Then the set $\Phi(G, T)$ is a root system in V.
Proof. Write $R=\Phi(G, T)$. We will check properties (1) through (4).
Let $R(\alpha)$ be the (finite) collection of roots β of (G, T) which are rational multiples of $\alpha: \beta=\frac{p}{q} \alpha$. The \mathbb{Z}-span of the roots $\beta \in R(\alpha)$ lies in the subgroup $\frac{1}{N} \mathbb{Z} \alpha \simeq \mathbb{Z}$ for some common denominator N of the all the numbers p / q. Therefore, the \mathbb{Z} span of β is of the form $\mathbb{Z} \gamma$ for some character γ (not necessarily a root) of T (each β is an integral power of γ and hence γ is an m-th root of α). Let S be the kernel of the
character γ. On the Lie algebra of $Z(S)$, the group $Z(S) / S$ operates and T / S is a one dimensional maximal torus in $Z(S) / S$ with $\gamma: T / S \rightarrow S^{1}$ an isomorphism. By Lemma ??, the group $Z(S) / S$ is connected and is either $S O(3)$ or $S U(2)$ and is three dimensional. Thus, the only rational multiples of α in R are $\pm \alpha$. This proves (2) (and part (1) is trivial).

In addition, $\gamma= \pm \alpha$ and we have an isomorphism $\alpha: T / S \rightarrow S^{1}$. Moreover, all the characters on T / S (written additively) are integral multiples of α.

Since T acts by the non-trivial character α on $\mathfrak{g}_{\alpha} \subset \operatorname{Lie}(Z(S)) \otimes \mathbb{C}$, it follows that $Z(S) / S$ contains an element w which normalises the one dimensional torus T / S and acts by $t \mapsto t^{-1}$ on T / S. Let s_{α} be an element of $Z(S)$ mapping onto w. Then, s_{α} acts trivially on S (since it lies in the centraliser of S) and normalises T. Consider the homomorphism $\phi(t)=t \mapsto t s_{\alpha} t^{-1} s_{\alpha}^{-1}$ from T into itself. This is trivial on S and hence $\phi: T / S \rightarrow T$. Since the characters of $T / S=S^{1}$ are just integral multiples of α, it follows that for any character λ of T, there exists an integer m such that $\lambda\left(t s_{\alpha} t^{-1} s_{\alpha}^{-1}\right)=\alpha(t)^{m}$. Written additively, this means that for any $\lambda \in X^{*}(T)$ we have $\lambda-s_{\alpha}(\lambda)=m \alpha$ for some $m \in \mathbb{Z}$.

In particular, for any $\beta \in R, s_{\alpha}(\beta)-\beta$ is an integral multiple of α. This proves the second part of (4). Since s_{α} lies in the Weyl group, and the entire Weyl group acts on the set of roots, we have $s_{\alpha}(R)=R$. This proves (4).

This also proves that for any $\lambda \in X^{*}(T) \otimes_{\mathbb{Z}} \mathbb{R}$, the vector $\lambda-s_{\alpha}(\lambda)$ is a real multiple of α, proving (3) as well.

Notation 1. Given a root system $R \subset V$, for every $\alpha \in R$ and $\lambda \in V$, the difference $s_{\alpha}(\lambda)-\lambda$ is a real multiple of α; that is, there exists a linear form H_{α} on V, such that $s_{\alpha}(\lambda)-\lambda=\lambda\left(H_{\alpha}\right) \alpha$ for all λ. In the case when $V=X^{*}(T) \otimes \mathbb{R}$ and R is the set of roots for a compact semi-simple connected Lie group G and a maximal torus T, as above, V is the dual of the space $L T=i \operatorname{Lie}(T)$ and hence $V^{*}=L T$. The element H_{α} lies in $L T$.
(We put a \mathbb{Q}-valued metric on $X^{*}(T) \otimes \mathbb{Q}$ and extend it to a metric on $V=X^{*}(T) \otimes \mathbb{R}$. We average this metric with respect to the Weyl group W (a finite group) and may assume the metric in W-invariant. This gives an identification of V with its dual V^{*}. Hence for $\lambda \in V$, the reflection s_{α} takes the form $s_{\alpha}(\lambda)=\lambda-2 \frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha$ and thus under the identification of V^{*} with V, we see that H_{α} corresponds to $\left.2 \frac{\alpha}{(\alpha, \alpha)}\right)$.

We have seen previously that $R=R^{+} \amalg R^{-}$where the positive roots are defined by $R^{+}=\{\alpha \in R: \alpha(H)>0\}$ for a fixed $H \in V^{*}$. Given $\alpha \in R^{+}$let us call it decomposable if $\alpha=\beta+\gamma$ for some positive roots β, γ. If α is not decomposable, then we call it a simple root. Thus every element of R^{+}is a non-negative integral linear combination of simple roots. Let Δ denote the set of simple roots.

Lemma 2. if $\alpha, \beta \in \Delta$ are distinct simple roots, then $\beta-s_{\alpha}(\beta)$ is a non-positive multiple of the root α.

Proof. We first put a \mathbb{Q}-valued metric on the character group $V=$ $X^{*}(T) \otimes \mathbb{Q}$ and average this metric with respect to the action of the Weyl group. We get \mathbb{Q}-valued metric on V invariant under all the s_{α}. If $W=\alpha^{\perp} \subset V$ is the hyperplane orthogonal to α with respect to this metric, then on W, the action of s_{α} is trivial, since W is invariant as a subspace under s_{α} and $\left(1-s_{\alpha}\right)(W) \subset W \cap \mathbb{Q} \alpha=\{0\}$.

Hence we have for all $v \in V$,

$$
v-s_{\alpha}(v)=\frac{2(\alpha, v)}{(\alpha, \alpha)} \alpha .
$$

We have seen that R is a root system and hence for $\beta \in R$, we see that $\frac{2(\beta, \alpha)}{(\alpha, \alpha)}=n_{\alpha, \beta}$ is an integer. Similarly, $\frac{2(\alpha, \beta)}{(\beta, \beta)}=n_{\beta, \alpha}$ is also an integer.

The product $n_{\alpha, \beta} n_{\beta, \alpha}=\frac{4(\alpha, \beta)^{2}}{(\alpha, \alpha)(\beta, \beta)}$ is ≤ 4 (by the Cauchy Schwarz inequality) with equality if and only if β, α are proportional. Hence, if $\beta \neq \pm \alpha$, then $n_{\alpha, \beta} n_{\beta, \alpha}$ is a non-negative integer and <4. Suppose to the contrary, that $n_{\alpha, \beta}>0$. Then so is $n_{\beta, \alpha}$.

Consequently, one of these two integers, say $n_{\alpha, \beta}$, is one, and hence $s_{\alpha}(\beta)=\beta-\alpha$ is a root. Then either $\alpha-\beta$ is a positive root and hence $\alpha=(\alpha-\beta)+\beta$ is decomposable, or else $\beta-\alpha$ is a positive root and β is decomposable, a contradiction since α, β are simple. This proves the lemma.

Lemma 3. The set Δ of simple roots in Φ^{+}is linearly independent. Thus, they form a basis for the \mathbb{Q}-span of the roots in Φ. Consequently, for $\alpha \in \Delta$, the elements H_{α} form a basis of V^{*}.

Proof. Suppose a linear combination $\sum_{\alpha \in \Delta} a_{\alpha} \alpha=0$ for some rational numbers a_{α}. Write A for the subset of Δ of α with a_{α} is non negative, and B for the subset of α with a_{α} is negative. Then,

$$
\lambda=\sum_{\alpha \in A} a_{\alpha} \alpha=\sum_{\beta \in B}\left(-a_{\beta}\right) \beta .
$$

Now, by Lemma 2 , if $\alpha \in A$ and $\beta \in B$, then $(\alpha, \beta) \leq 0$. Hence

$$
(\lambda, \lambda)=\left(\sum_{\alpha \in A} n_{\alpha} \alpha, \sum_{\beta \in B}\left(-n_{\beta}\right) \beta\right) \leq 0 .
$$

Since (,) is a positive definite form on V, it follows that $\lambda=0$. But $\lambda(H)=\sum_{\alpha \in A} a_{\alpha} \alpha(H)$ is strictly positive unless all the numbers a_{α} are zero for $\alpha \in A$. Similarly, $a_{\beta}=0$ for $\beta \in B$, and hence all the coefficients of the linear combination are zero, and Δ consists of linearly independent vectors.

Since the dual element H_{α} may be identified with $2 \frac{\alpha}{(\alpha, \alpha)}$, it follows that the H_{α} for $\alpha \in \Delta$, form a basis of $V^{*}=L T$.

Definition 2. Let $w \in W$ and $R=\Phi(G, T)$, with a positive system Φ^{+}. The number of roots β in Φ^{+}such that $w(\beta)<0$ is called the length of the element w.

If α is a simple root, the element s_{α} of the Weyl group is called a simple reflection.
Lemma 4. If $\alpha \in \Delta$ is a simple root, then s_{α} has length one.
Proof. Since $s_{\alpha}(\alpha)=-\alpha$, the length of s_{α} is at least one.
Since Δ is a base, every root in Φ^{+}is a non-negative integral linear combination of elements of Δ. Suppose $\beta \in \Phi^{+}$with $\beta \neq \alpha$. Then $\beta=\sum a_{\theta} \theta$ where θ runs through all the simple roots, and for some simple root $\gamma \neq \alpha$, the coefficient a_{γ} is non-zero (and strictly positive). Consequently, for some integer m,

$$
s_{\alpha}(\beta)=\beta+\left(s_{\alpha}(\beta)-\beta\right)=\sum a_{\theta} \theta+m \alpha .
$$

This shows that the coefficient of γ (in the expression for $s_{\alpha}(\beta)$ as a linear combination of simple roots), is the same as that of β, namely a_{γ}, and is strictly positive. This shows that $s_{\alpha}(\beta)>0$. Therefore, s_{α} takes $\Phi^{+} \backslash\{\alpha\}$ into itself and hence the length of s_{α} is at most one.

The last two paragraphs imply that s_{α} has length one.
Lemma 5. Every Weyl group element is a product of simple reflections.
Proof. Let $W^{\prime} \subset W$ be the subgroup generated by simple reflections. If possible, let $w_{0} \in W \backslash W^{\prime}$. Let $w \in W$ be an element with the property that the length of w is minimal among the elements of the left coset $W^{\prime} w_{0}$ in the left coset space $W^{\prime} \backslash W$. Write $\Phi^{+}=A \amalg B$ where $w(A) \subset \Phi^{+}$
and $w(B) \subset \Phi^{-}$. Then, $\Phi^{+}=w(A) \amalg-w(B)$ as well.
Suppose $\alpha \in-w(B)$ and let $\beta \in B$ such that $w(\beta)=-\alpha$. Write $s_{\alpha} w=w^{\prime}$. If $\gamma \in A$, then $w(\gamma)$ is not α but is positive and hence $w^{\prime}(\gamma)=s_{\alpha} w(\gamma)$ is positive, and $w^{\prime}(A) \subset \Phi^{+}: w^{\prime}(A)>0$.

Suppose $\gamma \in B$. Then $w(\gamma)$ is negative. If $w(\gamma) \neq-\alpha$, then $s_{\alpha}(-w(\gamma))$ is still positive. Hence $w^{\prime}(\gamma)=s_{\alpha} w(\gamma)<0$. Thus, $w^{\prime}\left(B \backslash\left\{w^{-1}(-\alpha)\right\}\right)$ consists of negative roots.

If $w(\gamma)=-\alpha$, then $-w(\gamma)=\alpha$ and $s_{\alpha}(-w(\gamma))=-\alpha$ and hence $s_{\alpha} w(\gamma)>0$. That is $w^{\prime}\left(w^{-1}(-\alpha)\right)$ is positive. Therefore, The number of roots in Φ^{+}which are taken into their negatives under the element w^{\prime} is one less than that for w. This is impossible by the minimality of the length of the coset representative w. Therefore, w cannot take any positive root into a negative root. By the Chevalley normaliser Lemma (lemma ??), $w=1$ and hence $W^{\prime}=W$.

1.1. Integral Forms.

Notation 2. Denote by $L_{s c}=\sum_{\alpha \in \Delta} \mathbb{Z} H_{\alpha}$, the lattice in $L T$ obtained as the \mathbb{Z} span of the (linearly independent) vectors H_{α} as α varies in Δ. Denote by $\Lambda_{s c}$ the lattice of integral forms, namely the integral dual of the lattice $L_{s c}$. It is the \mathbb{Z} span of the basis $\left(\lambda_{\alpha}\right)_{\alpha \in \Delta}$ of $V=X^{*}(T) \otimes \mathbb{R}$ dual to the basis $\left(H_{\alpha}\right)_{\alpha \in \Delta}$ so that $\lambda_{\beta}\left(H_{\alpha}\right)=\delta_{\alpha, \beta}$, the Kronecker delta symbol. The integral forms λ_{α} for $\alpha \in \Delta$ are called fundamental weights.

The element $\rho=\frac{1}{2}\left(\sum_{\alpha \in \Phi^{+}} \alpha\right)$ will be seen to be an integral form which is equal to $\sum_{\alpha \in \Delta} \lambda_{\alpha}$.

A corollary to the preceding lemma is that for w in the Weyl group W, the difference $-w(\rho)+\rho$ is a sum of positive roots α such that $w^{-1}(\alpha)<0$.

Definition 3. Let $\lambda \in X^{*}(T)$. We call λ a dominant integral weight (with respect to the positive system Φ^{+}) if $\lambda-s_{\alpha}(\lambda)$ is a non-negative integral linear combination of simple roots.

If V is an irreducible representation with the highest weight λ, then λ is a dominant integral weight. This has been observed before.
1.2. Stiefel Diagram. Consider G a connected semi-simple group of adjoint type, and let $L T$ denote the set of real elements of the complexified Lie algebra $t_{\mathbb{C}}$ on which the roots take real values. We denote the
exponential map by $X \mapsto \exp (2 \pi i X) \in T$ from $L T$ onto T.
The kernel $L_{a d}$ of this map is precisely the set of vectors $X \in L T$ with the property: for each root $\alpha, \alpha(X) \in \mathbb{Z}$. The roots are viewed as elements of the dual of $L T$ and the simple roots $\Delta=\{\alpha: \alpha$ simple $\}$ form a basis of $L T$. Let $\left\{v_{\alpha}: \alpha \in \Delta\right\}$ denote the dual basis in $L T$ to the basis Δ of simple roots. Then the kernel $L_{a d}$ is the integral linear span of $\left\{v_{\alpha}: \alpha \in \Delta\right\}$. That is, $L_{a d}=\sum_{\alpha \in \Delta} \mathbb{Z} v_{\alpha}$. This is called the adjoint lattice. Since it is the kernel to the exponential map, $L_{a d}$ is stable under the action of the Weyl group: $\sum_{\alpha \in \Delta} \mathbb{Z} \alpha$ is W stable.

Denote by $L_{s c}$ the \mathbb{Z}-span of the vectors $v_{\alpha}-s_{\alpha}\left(v_{\alpha}\right)$ as α varies over Δ. Then $L_{s c} \subset L_{a d}$. It follows from definitions that $H_{\alpha}=v_{\alpha}-s_{\alpha}\left(v_{\alpha}\right)$.

The inverse image in $L T$ under the exponential map $L T \rightarrow T$ of the set $T_{\text {reg }}$ of regular elements of the torus T, will be referred to as strongly regular elements $L T_{\text {sreg }}$. This is precisely the set of elements $X \in L T$ where no $\alpha(X)$ can be integral for any root α. For an integer k and a root α, denote by $W_{\alpha, k}$ the set of elements $X \in L T$ such that $\alpha(X)=k$. This is a hyperplane in $L T$ (if α is simple, then the hyperplane $W_{\alpha, k}$ passes through the point $k v_{\alpha}$; thus $\left.W_{\alpha, k}=k v_{\alpha}+k e r(\alpha)\right)$. Denote by W_{α} the union over all integers k of the $W_{\alpha, k}$. Then for a simple root $\alpha, W_{\alpha} \supset \mathbb{Z} v_{\alpha}+\operatorname{Ker}(\alpha) \supset \mathbb{Z} v_{a}+\sum_{\beta \in \Delta, \beta \neq \alpha} \mathbb{Z} v_{\beta}=L_{a d}$. Since every root α is of the form $w(\beta)$ for simple root β, it follows that $W_{\alpha}=w\left(W_{\beta}\right) \supset w\left(L_{a d}\right)=L_{a d}$. Hence for each root α, the union of hyperplanes W_{α} is stable under translation by elements of $L_{a d}$. Consequently, the union over all W_{α} as α varies over all roots, is also W stable and $L_{a d}$ stable. Therefore, the strongly regular elements $L T_{\text {sreg }}$ of $L T$ are stable under the action of $L_{a d} \rtimes W$.

The set of strongly regular elements of $L T_{\text {sreg }}$ is called the Stiefel diagram of $G_{a d}$. The set $L T_{\text {sreg }}$ has countably many connected components and each connected component is an alcove of the form $\gamma+P$ where γ is an element of the integral lattice $L_{s c}$, and P is the "fundamental alcove" consisting of elements p of the form $p=\sum t_{\alpha} v_{\alpha}$ with $0<t_{\alpha}<1$ and $\alpha(p)<1$ for all positive roots α (this is equivalent to saying that $0<\beta(p)$ for simple roots β and $\alpha(p)<1$ where α is the highest root). Moreover, the Weyl group W also acts on $L T_{\text {sreg }}$ since $w \in W$ takes each $W_{\alpha, k}$ into $W_{w(\alpha), k}$.

We can describe the reflection $s_{\alpha, k}$ about the translated hyperplane $W_{\alpha, k}$ as the map $v \mapsto v-(\alpha(v)-k) H_{\alpha}$. Then a computation shows that $s_{\alpha, 1} s_{\alpha, 0}$ is the translation by the element H_{α} on $L T$. The group generated by the reflections $s_{\alpha, k}$ for $\alpha \in R$ and $k \in \mathbb{Z}$ is the semi-direct product of the lattice $L_{s c}=\sum \mathbb{Z} H_{\alpha}$ and the Weyl group W.

The extended Weyl group $W_{e}=L_{s c} \rtimes W$ acts on all of $L T_{\text {reg }}=$ $L T-\bigcup_{\alpha \in R, k \in Z} W_{\alpha, k}$ and permutes the connected components. Therefore, if $\sigma \in W_{e}$ and $\sigma(P) \cap P$ is non-empty, then $\sigma(P)=P$.

We first consider the seemingly smaller group W^{\prime} generated by the reflections s_{α} where α is a simple root and by the reflection $s_{\alpha, 1}$ about the wall $\alpha(x)=1$. We will refer to these reflections as the simple reflections of the extended Weyl group W_{e}. Thus, $W^{\prime} \subset W$.

Lemma 6. Every alcove may be translated into the fundamental alcove by an element of the smaller group W^{\prime}.

Proof. The action of W_{e} and therefore of W^{\prime} is properly discontinuous on the Lie algebra $L T$. Furthermore, we have an inner product (,) on $L T$ invariant under the Weyl group by averaging any inner product under the action of the finite group W. Given vectors $x, y \in L T$, denote by $d(x, y)=\sqrt{(x-y, x-y)}=|x-y|$ the distance of y from x. This defines a metric which is invariant under translations by elements of $L T$ and under the action of W; therefore, it is invariant under W_{e}. Given an element x in the fundamental alcove P and $z \in L T_{\text {sreg }}$ a strongly regular element, consider the function on $L T_{\text {sreg }}$ defined by

$$
f(z)=\operatorname{in} f_{\gamma \in W^{\prime}} d(\gamma z, x) .
$$

That is, take all possible translates of z under the smaller group W^{\prime}, and take the infimum of the distances of these translates of z from x. The proper discontinuity of the action of W^{\prime} ensures that this minimum is attained by $y=\gamma_{0} z$ for some $\gamma_{0} \in W^{\prime}$. We then get $d(y, x) \leq d(\gamma y, x)$ for all $\gamma \in W^{\prime}$.

We will show that y must necessarily lie in the fundamental alcove P. This will prove the lemma since z being an element of $L T_{\text {sreg }}$ may be translated into $y \in P$ by the element γ of W^{\prime}; but any strongly regular element z of $L T$ lies in an alcove Q and $y=\gamma z \in \gamma(Q) \cap P$. But if two alcoves intersect nontrivially, then they coincide since they are connected components. Hence $\gamma Q=P$.

Let α be a simple root. Suppose $\alpha(y)<0$. Consider a point $q \in L T$ on the line joining x and y; it is of the form $q=t y+(1-t) x$. Then $t=\frac{\alpha(x)-\alpha(q)}{\alpha(x)-\alpha(y)}$. If we choose $t=\frac{\alpha(x)}{\alpha(x)-\alpha(y)}$ then its denominator is greater than $\alpha(x)>0$ since $\alpha(x)>0$ and $\alpha(y)<0$; hence $0<t<1$ and the formula for t shows that $\alpha(q)=0$. Hence $s_{\alpha}(q)=q$. Then by the triangle inequality,

$$
\begin{gathered}
d\left(s_{\alpha}(y), x\right)<d\left(s_{\alpha} y, q\right)+d(q, x)= \\
=d\left(s_{\alpha} y, s_{\alpha} q\right)+d(q, x)=d(y, q)+d(q, x)=d(y, x),
\end{gathered}
$$

and the last equality holds because q is on the line joining x and y between x and y. This contradicts the choice of y and hence $\alpha(y)<0$ cannot hold: $a(y)>0$ for all simple roots α.

Suppose $\alpha(y)>1$. By using the element $s_{\alpha, 1}$ instead of s_{α} in the preceding paragraph, we get a contradiction as in the preceding paragraph. We therefore see that $\alpha(y)<1$. Hence the element y lies in the fundamental alcove P. This proves the lemma.

Lemma 7. The extended Weyl group W_{e} is the group W^{\prime} generated by the simple reflections.

Proof. The group W_{e} is generated by the reflections $s_{\alpha, k}$ for all positive roots α and all integers k. The reflection $s_{\alpha, k}$ leaves the wall $W_{\alpha, k}$ pointwise stable and the wall $W_{\alpha, k}$ is a boundary of some alcove Q. By the preceding lemma, there exists an element γ of W^{\prime} which moves Q into the fundamental alcove P; hence it moves $W_{\alpha, k}$ into some wall of P. But the only walls which meet the boundary of P are of the form $W_{\alpha, 1}$ or W_{β} for some simple root β. Hence $s_{\alpha, k}=\gamma^{-1} r \gamma$ where r is the simple reflection about a wall E of the fundamental alcove P, and hence r lies in the "smaller" group W^{\prime}. Therefore, $s_{\alpha, k}=\gamma^{-1} r \gamma$ also lies in W^{\prime}, since γ and r both are in W^{\prime}.

Given $\sigma \in W$, we may write $\sigma=s_{1} s_{2} \cdots s_{k}$ where s_{i} are simple reflections as in the lemma. The smallest such k is called the length of the element σ. For example, the length of a simple reflection is 1 .

We will say that two alcoves Q and Q^{\prime} are on opposite sides of a wall E, if E is set $E=\{x \in L T: \lambda(x)=k\}$ for some linear form λ and some number k, and for all $x \in Q$ and all $x^{\prime} \in Q^{\prime}$, either $\lambda(x)<k<\lambda\left(x^{\prime}\right)$ or the other way around: $\lambda(x)>k>\lambda\left(x^{\prime}\right)$. We will also say that the wall E separates the alcoves Q and Q^{\prime}. If s is a simple reflection about a wall E of the fundamental alcove P, then the alcoves P and $s(P)$ are
on opposite sides of the wall E. Moreover, if E^{\prime} is any wall such that P and $s(P)$ are on opposite sides of E^{\prime}, then $E^{\prime}=E$.
Lemma 8. Let $\sigma=s_{1} s_{2} \cdots s_{k}$ be an element of W_{e} of length k and with s_{i} simple reflections. Suppose s_{1} is a reflection about the wall E. Then P and $\sigma(P)$ are on opposite sides of the wall E.
Proof. We prove this by induction on the length of σ. If $k=1$, then σ is a simple reflection s_{1} about a wall E, and we have already observed that P and $s_{1}(P)$ are on opposite sides of E.

Suppose that the lemma is false for a smallest such k (then $k \geq 2$) and for some σ of length k, the alcoves $\sigma(P)$ and P are on the same side of the wall E. Let $u=s_{1} s_{2} \cdots s_{k-1}$. Then u has length $k-1$ and by induction assumption, $u(P)$ and P are on opposite sides of the wall E. Hence $u(P)$ and $\sigma(P)$ are on the opposite sides of E.

Now, compare the alcoves $\sigma(P)=u s_{k}(P)$ and $u(P)$; the alcoves P and $s_{k}(P)$ are on opposite sides of the wall E_{k} (and s_{k} is the reflection about the wall $\left.E_{k}\right)$). Moreover, E_{k} is the only wall separating P and $s_{k}(P)$. Consequently, the alcoves $u(P)$ and $u s_{k}(P)=\sigma(P)$ are on opposite sides of the wall $u\left(E_{k}\right)$ and $u\left(E_{k}\right)$ is the only wall separating $u(P)$ and $\sigma(P)$. By the preceding paragraph, $E=u\left(E_{k}\right)$, and hence the reflection $s_{1}=u s_{k} u^{-1}$. Since $\sigma=u s_{k}$, we get : $\sigma=s_{1} u=s_{2} \cdots s_{k-1}$ has length $k-2$, contradicting our assumption that σ has length k.

This proves the lemma.
Proposition 9. The extended Weyl group acts simply transitively on the set of alcoves.

Proof. We have already seen that W^{\prime} acts transitively on the set of alcoves. We need only show that if $\sigma(P)=P$ then $\sigma=1$. Suppose $\sigma \in W_{e}$ stabilises P and has length k. Write $\sigma=s_{1} s_{2} \cdots s_{k}$. Suppose $k \geq 1$ and let s_{1} be a reflection about the wall E. By the lemma, $\sigma(P)$ and P are on the opposite sides of E, but $\sigma(P)=P$. This contradiction proves that $k=0$ and $\sigma=1$.
Corollary 1. The quotient of the strongly singular elements in LT by the action of the extended Weyl group is simply connected.
Proof. Since the group W_{e} acts transitively on the connected components of $L T_{\text {sreg }}$, it follows that $L T_{\text {sreg }} / W_{e}=P / \operatorname{stab}(P)$; by the proposition, the action on the set of alcoves has no isotropy and hence $L T_{\text {sreg }} \rightarrow L T_{\text {sreg }} / W_{e}=P$ is a (disconnected) covering, and the quotient is the alcove P which is simply connected.

The Weyl group W is a quotient of the extended Weyl group $W_{e}=$ $\left(\sum_{\alpha \in \Delta} \mathbb{Z} H_{\alpha}\right) \rtimes W=L_{s c} \rtimes W$. The group W acts by right multiplication on the quotient G / T where G is a compact connected LIe group of adjoint type and by conjugation on $T_{\text {reg }}$. Hence it acts diagonally on the product $G / T \times T_{\text {reg }}$ and the conjugation map $(g T, t) \rightarrow g t g^{-1}$ is an isomorphism from $G / T \times T_{\text {reg }} / \operatorname{diag}(W)$ onto $G_{\text {reg }}$. Since $T_{\text {reg }}=L T_{\text {sreg }} / L_{a d}$, we see that $G / T \times L T_{\text {sreg }} / L_{s c}$ is a covering of $G / T \times T_{\text {reg }}$. Going modulo the diagonal action of the Weyl group W on both, we get a covering from $G / T \times P$ onto $G_{r e g}$, with deck transformation group isomorphic to $L_{a d} \rtimes W / L_{s c} \rtimes W$ and the latter is isomorphic to $L_{a d} / L_{s c}$.

We recall that $G / T \times P$ is simply connected. Therefore, we arrive at the conclusion that the fundamental group of $G_{\text {reg }}$ is (isomorphic to) the finite quotient $L_{a d} / L_{s c}$.

Its dual group $\left(L_{a d} / L_{s c}\right)^{*}$ may be identified with the quotient of the "weight lattice" (the lattice $\operatorname{Hom}\left(\sum \mathbb{Z} H_{\alpha}, \mathbb{Z}\right)$ of integral forms which is also the integral span of the fundamental weights) of the Lie algebra \mathfrak{g} modulo the root lattice:

$$
\left(L_{a d} / L_{s c}\right)^{*}=\operatorname{Hom}\left(\sum \mathbb{Z} H_{\alpha}, \mathbb{Z}\right) / \operatorname{Hom}\left(\sum \mathbb{Z} v_{\alpha}, \mathbb{Z}\right)=\left(\sum \mathbb{Z} \lambda_{\alpha}\right) /\left(\sum \mathbb{Z} \alpha\right)
$$

If $\lambda \in X^{*}\left(T_{s c}\right)$ is a dominant integral weight of the inverse image $T_{s c}$ of T in $G_{s c}\left(T_{s c}\right.$ is then a maximal torus), then λ is the highest weight of an irreducible representation $V(\lambda)$ of $G_{s c}$. Suppose now that λ is a dominant integral weight of the Lie algebra \mathfrak{g} of G.
Theorem 10. (Existence Theorem) Conversely, given a dominant integral weight of the Lie algebra \mathfrak{g}, there exists an irreducible representation with highest weight λ.

Proof. Let G be a compact semi-simple group of adjoint type. Consider the open set $G_{r e g}=\left(G / T \times T_{r e g}\right) / \operatorname{Diag}(W)$. Let $V=L T$ be i times the Lie algebra t of T. We note that the character group of T is the root lattice and hence the torus $T=L T / \sum_{\alpha \in \Delta} \mathbb{Z} v_{\alpha}$, where v_{α} is the basis of $L T$ dual to the basis consisting of the simple roots α. Thus, $\beta\left(v_{\alpha}\right)=\delta_{\alpha, \beta}$ where δ is the Kronecker delta symbol. Consequently, for any root α, its evaluation on the \mathbb{Z} span $L_{a d}$ of all the v_{β} is an integer, and H_{α} lies in $L_{a d}$. The \mathbb{Z} span $L_{s c}$ of H_{α} also lies in $L_{a d}$ (that is, $\left.L_{s c}=\sum_{\alpha \in R} \mathbb{Z} H_{\alpha} \subset L_{a d}\right)$. Therefore, we have a covering $L T / L_{s c} \rightarrow L T / L_{a d}$. Thus the order of the Deck transformation group of the universal covering of $G_{\text {reg }}$ is the order of $L_{a d} / L_{s c}$.

The inclusion $G_{\text {reg }} \rightarrow G$ induces an isomorphism of fundamental groups. Hence the universal cover of G has the same number of sheets
over G as that of $G_{\text {reg }}$. In other words, the fundamental group of G has order equal to the order of the quotient $L_{a d} / L_{s c}$ by the preceding paragraph. But, if $G_{s c}$ denotes the simply connected cover of G, then the Deck transformation group of $G_{s c} \rightarrow G$ may be identified with the centre of $G_{s c}$, and the dual of the centre may be identified $\Lambda / \sum_{\alpha} \mathbb{Z} \alpha$, where $\Lambda=X^{*}\left(T_{s c}\right)$ is the weight lattice of $T_{s c}$, a maximal torus of $G_{s c}$ mapping onto T under the covering map $G_{s c} \rightarrow G$ (by weights of a torus, we mean the group of characters on the torus). By the preceding paragraph, Λ must be the lattice of integral forms.

As a consequence, given a dominant integral weight λ of the Lie algebra \mathfrak{g} (i.e.a dominant integral form), there exists an irreducible representation $V(\lambda)$ of the simply connected group $G_{s c}$ with highest weight λ (by differentiating, we get an irreducible (finite dimensional) representation of the Lie algebra \mathfrak{g} as well). This proves the theorem.

We have therefore classified all the irreducible representations of a semi-simple Lie algebra \mathfrak{g}, in terms of a dominant integral weight. We can also classify all the compact (simply connected) semi-simple Lie groups G in terms of the root system. The root systems may in turn be classified in terms of the Dynkin diagram.

References
[A] J. F. Adams, Lectures on Compact Lie groups,
[BD] Brocker and Dieck, Compact Lie groups.
[Bou] Bourbaki, Lie Groups and Lie Algebras

