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1. The Lefschetz Fixed Point Formula

Suppose " is a Hausdorff manifold and 5 : " → " a smooth map
with isolated fixed points. Given a fixed point ? of 5 , and a coordinate
neighbourhood of ? in ", define the local Lefschetz Number !(5 )? of
5 at ? to be the sign of the determinant 34C (3 5|? − � ) where � is the
identity. Denote by �: (",ℚ) the :-th cohomology group of " with
rational coefficients and by �: (5 ) the linear transformation induced
by the map 5 on �: (",ℚ). The total Lefschetz number of 5 is the
alternating sum of traces

∑38<"
:=0 (−1):CA024 (�: (5 )).

Theorem 1. (Lefschetz Fixed Point Formula) Let 5 be a smooth self
map of a manifold ". If the total Lefschetz number is nonzero, then 5

has a fixed point.

If 5 has only isolated fixed points, we have the identity
38<"∑
:=0

(−1):CA024 (�: (5 )) =
∑

?:5 (?)=?
!(5 )?

That is, the total Lefschetz number of 5 is the sum of all the local
Lefschetz numbers of 5 over all the (by assumption, isolated) fixed
points of the map 5 .

2. Compact Connected Lie Groups

2.1. The Weyl Group. � is a compact connected Lie group and )
is a maximal torus. Denote by # () ) the normaliser of ) in � . The
quotient group # () )/) is the Weyl Group of ) .

Lemma 2. The group # () )/) is finite.

Proof. The group # () )// () ) is compact, but, on the other hand, is
a closed subgroup of the discrete group �DC () ) = �DC (ℤ; ) ' �!; (ℤ)
where) = ((1); for some integer ; ≥ 1. Therefore, the group # () )// () )
is finite.

Since / () ) is a compact Lie group, its connected component of iden-
tity / () )0 is open (and closed) and hence has finite index in / () ). Fix
- ∈ I () ) the Lie algebra of / () ). Then the closed subgroup generated
by ) and the one-parameter group {4G? (C- ) : C ∈ ℝ} is a compact
connected abelian group and is therefore a torus. By the maximality of
) , this means that - ∈ t, the Lie algebra of ) . Therefore, I () ) = t and
/ () )0 = ) . Consequently # () )/) is finite. �
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Consider the adjoint action of ) on the Lie algebra g of � . Consider
the complexification g ⊗ ℂ of g. Since, by the proof of Lemma 2, the
set of fixed points of ) in g is the Lie algebra t of ) , it follows that
we have a decomposition g ⊗ ℂ = t ⊕U∈Φ gU , where Φ is a finite set of
non-trivial characters of ) and for each U ∈ Φ, gU is the subspace of
g ⊗ ℂ of vectors - with �3 (C) (- ) = U (C)- . Note that since g ⊗ ℂ is
the complexification of the ) -representation g, if U ∈ Φ then U−1 ∈ Φ,
and is different from U . We may write Φ = Φ+ ∪ (Φ+)−1 for some subset
Φ+ ⊂ Φ.

Let )A46 denote the subset of elements C ∈ ) such that U (C) ≠ 1 for
any U ∈ Φ; elements of )A46 are referred to as regular elements of the
maximal torus ) . Clearly, )A46 is a dense open subset of ) .

Lemma 3. The determinant of �3 (C) − 1 on the quotient space g/t is
strictly positive.

Proof. The determinant is the same as the determinant of �3 (C) − 1 on
the complexification (g ⊗ ℂ)/t ⊗ ℂ. The latter is clearly∏

U∈Φ
(U (C) − 1) =

∏
U∈Φ+
(U (C) − 1) (U (C)−1 − 1) =

∏
U∈Φ+
| (U (C) − 1) |2,

and is therefore strictly positive. �

2.2. Maximal Tori.

Theorem 4. ( Conjugacy of Maximal Tori) Every element of � may
be conjugated into a maximal torus.

All maximal tori in � are conjugate in �. Hence the dimension of
a maximal torus is an invariant of the group �, called the (absolute)
rank of the group �.

Proof. We use the Lefschetz Fixed Point Formula. Consider the action
by left translation, of an element 6 in � , on the quotient manifold �/) .
Since � is connected, this translation is homotopic to the translation
by identity namely, the identity transformation on �/) . Therefore,
the Lefschetz number of this transformation 6 is the same as the Euler
Characteristic of the manifold �/) .

The Lefschetz number of C ∈ )A46 is positive, since the local Lef-
schetz number at each fixed point F) (for F ∈, ) i.e. the determinant
of �3g/t (FCF−1) − 1, is positive (the second part of Theorem 1 and
Lemma 3). Since the Lefschetz number of any left translation is the
same, this implies that the Euler characteristic of �/) is positive and
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therefore, the Lefschetz number of the left translation !6 by 6 is positive.

By the Lefschetz fixed point formula, the transformation 6 does have
a fixed point in �/) . That is, there exists G ∈ � such that G−16G lies
in ) . Thus every element of � may be conjugated into ) .

Take now a maximal torus ) ′ and fix a generating element C ′ ∈ ) ′.
Then, C ′ may be conjugated into ) by the foregoing paragraph, and
since C ′ generates ) ′ it follows that ) ′ is conjugate to ) , proving the
theorem. �

Lemma 5. Let � be a compact connected Lie group and ( ⊂ � a torus.
Then the centraliser of ( in � is connected.

Proof. Let I ∈ � centralise (. Consider � = / (I)0 the identity compo-
nent of the centraliser of the element I. Since ( centralises I, it follows
that ( ⊂ � .

By the theorem, I lies in a maximal torus ) , and hence ) ⊂ � as
well, and ) being a maximal torus in � , is a maximal torus in � . Now (

has an element B which generates ( (by the Kronecker density theorem
of the previous chapter), which, by the theorem, can be conjugated
into ) by an element ℎ of � . Hence ( can be conjugated into ) by ℎ.
Now, I lies in ℎ)ℎ−1 since I ∈ ) and ℎ commutes with I. Hence both
I and ( lie in ℎ)ℎ−1 ⊂ / (()0 which shows that I ∈ / (()0, the identity
component of / ((). That is, / (() = / (()0. �

Define )A46 as the subset of elements C ∈ ) on which no nontrivial
character U of ) acting on the complexified Lie algebra g is trivial. Let
�A46 be the set of elements of � which may be conjugated into )A46.

The map �/) ×)A46 → �A46 given by (6), C) ↦→ 6C6−1 is a surjection
whose fibers are in one one correspondence with elements of the Weyl
Group, .

2.3. The Set of Roots. Let ) be a maximal torus of a compact con-
nected Lie group � . On the complexification gℂ of the Lie algebra g

of � , the group ) operates by adjoint action and we may decompose
gℂ as a sum of tℂ and of subspaces gU where on each gU , ) acts by
the character U : ) → ℂ∗. We may write this character in the form
U (4G? (- )) = 4U (- ) where, for - ∈ t = !84 () ), 4G? (- ) ∈ ) , and by an
abuse of notation we denote by U (- ) the associated linear form on the
Lie algebra t. This takes imaginary values (i.e. values in 8ℝ). The
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collection Φ = Φ(�,) ) of these characters ( or linear forms) are called
the roots of g (with respect to ) ; since all maximal tori are conjugate,
we obtain that these roots are essentially the same, up to � conjugacy).
Moreover, if U is a root, then so is its inverse (in Lie algebra terms, its
negative).

If C0 ∈ ) is a regular element, then U (C) ≠ 1 for any U . Write
C0 = 4G? (8� ) with � ∈ 8t. Then U (� ) is a nonzero real number.
We get a decomposition of the set Φ of roots as a disjoint union:
Φ = Φ+

∐−(Φ+), where Φ+ is the set of roots on which � is positive.
If U ∈ Φ+ we also write U > 0. We may even choose C0 = 4G? (8�0) so
that all the values U (C0) are all distinct for distinct U ∈ Φ+. That is the
positive real numbers U (�0) are all distinct.

Fix any regular element C = 4G? (8� ) in )A46. If C has a fixed point G)
in the quotient space �/) , then G−1CG ∈ ) i.e. C ∈ G)G−1 and the con-
nected group G)G−1 is abelian. Hence the Lie algebra G!84 () )G−1 is in
the trivial eigenspace of �3 (C); this is simply !84 () ). This proves that
G)G−1 = ) and hence that G ∈ # () ), and G) = F) for some F ∈ , .
The only fixed points of C in �/) are the translates F) by the Weyl
group elements of the trivial coset ) .

Theorem 6. ( The Weyl Integral Formula ) The Haar measure 36 of
� decomposes as

36 =
1

|, |3C | � (C) |
2 36∗,

where 3C is the Haar measure on ) , 36∗ is the Haar measure on �/) ,
� (C) = ∏

U∈Φ+ (
√
U (C) − 1√

U (C) ) and , is the order of the Weyl group.

As a corollary, we see that∫
)

3C | � (C) |2=|, | .

Proof. We first compute the Jacobian of the mapk : �/)×) → � given
by (6), C) ↦→ 6C6−1 = G . We assume (Theorem ??) that � ⊂ �!= (ℂ) is
linear . Since �!= (ℂ) is an open subset of the vector space "= (ℂ), the
tangent space to the element G ∈ � may be viewed as the subspace Gg
where, for - ∈ g ⊂ "= (ℂ), G- denotes the multiplication of the matrix
G with - , and Gg denotes the real vector subspace of "= (ℂ) consisting
of vectors G- with - ∈ g. Suppose - ∈ )4 (�/) ) = g/t.
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Then for B ∈ ℝ the curve (write 6 (~) = 6~6−1)
B ↦→ k (64G? (B- )), C) = 64G? (B- )C4G? (−B- )6−1 =

= 6C6−16(C−14G? (B- )C4G? (−B- ))6−1 = G (6 (C−14G? (B- )C4G? (−B- ))),
has the derivative

G (6 (C−1-C − - )) = G�3 (6) (�3 (C−1) − 83) (- ) ∈ Gg = )G (g),
at B = 0.

Similarly, if . ∈ t then for B ∈ ℝ, the curve B ↦→ k (6C4G? (B. )6−1) =
G64G? (B. )6−1 has the derivative G�3 (6) (. ) at B = 0. Consequently the
derivative 3k at (6), C) of of the map k is given by

(6(- ), . ) ↦→ G (�3 (6) ((�3 (C−1) − 83) (- ), . )) .
Since �3 (6) has determinant 1 the determinant of this derivative 3k
becomes 34C (�3 (C−1) − 83)g/t. We can replace g/t by the complexifica-
tion without changing the determinant. But gℂ/tℂ = ⊕U∈q+ (gU ⊕ g−U ).
Therefore, the determinant of �3 (C−1) − 83 on g/t is the product∏

U∈Φ+
(U (C) − 1) ( 1

U (C) − 1) = � (C)� (C).

The integral formula then follows since the pull backk ∗(l), under the
map k of the top exterior form l (obtained by wedging left invariant
differential 1 forms on � and which gives volume 1 on �), is simply
the Jacobian of k times the top exterior form l′ on �/) × ) . Since
�/) ×) → � is a |, | fold covering on the open subset �A46 of regular
elements (and �A46 has total measure 1), it follows that k ∗(l) has total
measure |, |. �

2.4. Consequences of the Weyl Integral Formula.

Lemma 7. If the Weyl group is trivial, then the connected group � is
a torus.

Proof. From the Weyl Integral formula, it follows that∫
�

36 = 1 =
1

|, |

∫
)

3C � (C)� (C) =
∫
)

3C � (C)� (C),

where � (C) =
∏
U∈Φ+ (U − 1) =

∑
j<(j)j is an integral linear com-

bination of distinct characters jof ) . Here each j is a product of
positive roots U . Since each U (� ) > 0 it follows that <(1) = ±1 and
that c =

∏
U∈Φ+ U is different from the trivial character if the set Φ+ is

non-empty. Moreover, c is different from every other character j with
<(j) ≠ 0, because such a j is a partial product of the characters U
with U > 0, and viewed as linear forms on 8!84 () ), c (� ) > j (� ) for
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any other j .

By orthogonality of characters on ) , it follows that

1 =

∫
)

3C | Δ(C) |2=
∑
j

<(j)2,

and the trivial character 1 certainly occurs. Hence we get a contradic-
tory inequality : 1 ≥ <(1)2 +<(c)2, unless Φ+ is empty. Thus the set
of roots is empty and g = t . That is, � = ) . �

Lemma 8. (A) If the Weyl group has order two, then 38<) = 1+38<(/ )
where / is the centre of �, and 38<(�// ) = 3. More precisely, �// =

($ (3) or (* (2).
(B) Suppose � is a connected compact Lie group of semi-simple rank
one, i.e. if / is the connected component of identity of the centre of �
and ) is a maximal torus, suppose 38<() // ) = 1. Then �// is either
($ (3) or (* (2).
Proof. Let � (C) = ∏

U∈Φ+ (U − 1) as before. From the Weyl integral
formula, it follows that

2 =|, |= 2

∫
�

36 =

∫
)

3C � (C)� (C).

Again, Δ(C) = ∑
j<(j)j is an integral linear combination of characters

j of the torus ) , and <(1) = ±1, and <(c) = 1. Therefore, 2 ≥
<(1)2 +<(c)2 and therefore, there are no other characters j . Recall
that C0 = 4G? (8�0) was chosen so that the non-zero real numbers V (�0)
are all distinct for distinct roots V ∈ Φ. Let us order the distinct
numbers V (�0) for V ∈ Φ+ in increasing order:

0 < V1(� ) < V2(� ) < · · · < V< (� ).
The equation Δ(C) = ∏

U∈Φ+ (U −1) shows that the signed multiplicity
<(V1) is nonzero. But, by the previous paragraph,<(c) = 1 and hence
c = V1 and there are no other characters. Moreover, the multiplicity
<(V1) = 1. That is Φ+ = {V1 = V} is a singleton and 38<(gV) = 1.
Further, clearly, / = :4A (V) and therefore has co-dimension one in ) .
Then,

38<ℝ (�// ) = 38<ℂ(g/z) = 38<(gV) ⊕38<(g−V) ⊕38<(t/z) = 1+1+1 = 3.

Now, the adjoint representation �3 of the semi-simple group �//
has finite kernel and preserves the killing form which is a negative
definite quadratic form in three variables; hence �3 (�// ) ⊂ ($ (3).
Since the dimensions of �// and ($ (3) are both 3, it follows that
�3 (�// ) = ($ (3). Hence �// is (* (2) or ($ (3). This proves part
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(A).

Since ) ≠ / , � cannot be a torus; then �// cannot be a torus either,
since in that case, ) // = �// . Therefore, the Weyl group, has order
at least two. Since, acts non-trivially on ) // = (1, the group, can
only act by C ↦→ C−1 on ) // . Hence , has order exactly two and by
part (A), �// is ($ (3) or (* (2). This proves part (B).

�

Lemma 9. If F ∈ # () ) and F (Φ+) = Φ+ then F ∈ ) .

Proof. (This is essentially the Chevalley normaliser theorem and the
proof is essentially Chevalley’s proof). We argue by induction on the
semi-simple rank (dimension ) // ) of � .

Let < be the dimension of n = ⊕U∈Φ+gU and let 3 be the dimension
of n. Consider the 3-th exterior power of g. Then ∧3 (n) is a line in
the �// representation ∧3g fixed by F and by the torus ) // . Let E
be a non-zero vector in ∧3n. Then the group ) // and by the assump-
tion onF , the elementF , both take the vector E into a multiple of itself.

Hence the commutator FCF−1C−1 acts trivially on E for C ∈ ) // . If
) // is the commutator, then ) // fixes the vector E . But the char-
acter by which ) // acts on E is the character c =

∏
U>0 U (which,

viewed additively on the complex Lie algebra tℂ is strictly positive on
the element � and hence cannot be trivial on ) // ). Therefore, the
commutator map C ↦→ FCF−1C−1 is a character on ) // with positive
dimensional kernel with non-trivial identity component (// , say for a
torus ( ⊂ ) containing / . Then ( is strictly bigger than / and by
definition, F centralises (.

Hence F ∈ / (() and / (() is connected (by Lemma 5). The centre of
/ (() contains the torus ( ≠ / . Hence the semi-simple rank of / (() is
38<() /() < 38<() // ). By induction, F ∈ ) . �

Consequently, given F ∈ , with F ≠ 1, the set of positive roots
which get taken into negative roots is non-empty. Let � ⊂ Φ+ be the
subset with F (�) ⊂ Φ+ and � ⊂ Φ+ with F (�) ⊂ −Φ+ = (Φ+)−1, so that
�
∐
� = Φ+. Then F (�)∐F (�)−1 = Φ+ as well. We compute the effect

of F on the function � (C) = ∏
U>0(U −1) =

∏
U∈F (�) (U −1)

∏
U∈−F (�) (U −

1). Then

F (� (C)) =
∏
U∈�
(F (U) − 1)

∏
U∈�
(F (U) − 1) = � (C) (−1)�0A3�

∏
U∈�

F (U) .
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We now introduce a character d not necessarily on ) but on a
covering ) ∗ of ) such that d2 = c =

∏
U>0 U . Then we see that

F (d)/d =
∏
0∈�F (U). Consequently,

F (� (C)/d) = (−1)�0A3�� (C)/d = B6=(F)� (C)/d,
where the latter equation defines B6=(F). Since � (C)/d is the product∏
U>0(
√
U − 1√

U
), it follows that the latter product is alternating.

Lemma 10. If C ∈ )A46 and F ∈, such that FCF−1 = 1 then F = 1.

Proof. Write C = 4G? (8� ) for � ∈ 8!84 () ). For any root U , then U (� )
is either positive or negative, and hence we get Φ = Φ+

∐−Φ+. The
element F takes Φ+ into itself since it takes � into itself. By lemma 9,
F = 1.

�

2.5. The alternating sum. Given a character _ of) such that , define
the alternating sum �(_) = ∑

F∈, B6=(F)CF (_). Let us say that two
characters _ and ` are equivalent if there exists an element F of ,
with F (_) = `. If _, ` are inequivalent, then, by the orthogonality of
distinct characters on the torus ) , the integral∫

)

3C (�(_)�(`)) = 0.

The same observation holds true if _, ` are two characters on a fixed
finite covering ) ∗ of ) , such that _ −F (`) is a (non-trivial) character
on ) (not only on ) ∗) for all elements F of the Weyl group, : since, in
that case, the sum �(_)�(`) is still a function ( a finite linear combi-
nation of characters on ) ) on ) although �(`) and �(_) are functions
on ) ∗.

Compute 1
|, |

∫
)
3C (�(d)�(d)): since F (Φ+) = Φ+ if and only if

F = 1, it follows that F (d) = d if and only if F = 1. Therefore,
�(d) = ∑

F∈, B6=(F)CF (d) is a linear combination of distinct characters
F (d) as F varies in , . By the orthogonality relations for ) , we then
get

1

|, |

∫
)

3C �(d)�(d) = 1.

The function � (C) is alternating and is a sum (with coefficients ±1)
of characters of the form d/j where j is a product of positive roots
U . Consequently, � (C) is a sum - with integral coefficients <(`)- of the
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alternating sums �(`) where ` runs through a set of inequivalent (reg-
ular) characters of ) ∗. The coefficient of �(d) is clearly positive. How-
ever, we have, by the last formula of the preceding subsection and the
orthogonality of the �(`) , that 1 =

∑
`.d<(`)2 1

|, |
∫
)
3C �(`)�(`) +

<(d). Therefore, we have proved that <(`) = 0 if ` . d and that
<(d) = 1. That is∏

U>0

(
√
U − 1
√
U
) = � (C)/d = �(d) =

∑
F∈,

B6=(F)CF (d) .

2.6. The Weyl Character Formula. Suppose + is an irreducible
representation of the compact connected group � . We have, by or-
thogonality of characters and the Weyl integral formula, that

1 =

∫
�

36 | j+ |2=
1

|, |

∫
)

3C | j+ (C)� (C) |2 .

The function j+ (C)� (C) is alternating and is a sum of characters on ) ∗
with integral coefficients. Therefore, there exist finitely many inequiv-
alent characters ` of ) ∗ and integers <(`) corresponding to them such
that j+ (C)� (C) is a sum of the basic alternating sums �(`): j+ (C)� (C) =∑
<(`)�(`).

Using now the orthogonality of �(`) we see that 1 =
∑
`<(`)2 which

shows that only one of the <(`)2 is 1, and the rest are zero. Conse-
quently,

j+ (C)� (C) = ±�(`) = ±
∑
F∈,

B6=(F)CF (`) .

Let us now introduce a partial order on the characters _, a on ) by
writing _ > a if the character _a−1 is a product of positive roots. The
trace function j+ (C) is a sum of characters of ) , and among these pick
out one -call it _- which is maximal with respect to this order (“a
highest weight” of + ). Suppose it occurs with multiplicity 4 ≥ 1. Then
j+ (C)� (C) is alternating and is a sum of 4�(_+d) and other sums �(a);
but the Weyl integral formula and the maximality of _ then ensures
that no other character of the form F (a) can be equal to _ + d and
hence 4 = 1 and the other terms are zero. Thus, we have

j+ (C) =
∑
F∈, B6=(F)CF (_+d)∑
F∈, B6=(F)CF (d)

.

We have thus proved the following theorem.

Theorem 11. ( The Weyl Character Formula)
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Given an irreducible representation + of a compact connected group
�, and a character _ of + with respect to ) , such that _ is maximal with
respect to the partial order above (such a _ is called a highest weight of
+ ), the dimension of the _ eigenspace is one; the representation + has
a unique highest weight. We write + = + (_).

There is a vector E with ) -eigenvalue _ and E is unique up to scalar
multiples and is called the highest weight vector of + .

The trace j+ (6) of + = + (_) is uniquely determined by its restriction
to the maximal torus ) and on C ∈ ) , the trace is given by the “Weyl
Character Formula”

j+ (C) =
∑
F∈, B6=(F)CF (_+d)∑
F∈, B6=(F)CF (d)

.

Corollary 1. The representation + has a unique highest weight, namely
_. In particular, every weight ` of + is ≤ _ in the partial order.
Proof. For, otherwise, suppose ` is another highest weight. The by
comparing the Weyl character formula, we see that �(_+d) = �(` +d).
This means that for some F ∈ , , we have _ + d = F (`) +F (d); that
is F (`) = _ + d − F (d). Now, since ` is a weight of + , so is F (`).
Moreover, d −F (d) is a sum of positive roots, and hence F (`) ≥ _ in
the partial order. This means that F (`) = _ and F (d) = d. But, by
Lemma 9, F (d) = d is and only if F = 1 in the Weyl group, and hence
_ = `.

If there exist weights ` of + not comparable to _, then pick one , call
it `, which is highest with respect to this partial order, among those
which are not comparable to _. Such a ` is necessarily a highest weight
of + , and that is not possible by the preceding paragraph. This means
that every other weight of the representation of + is comparable to _
and hence, is less than _. �

2.7. dominant integral weights. Suppose _ is a weight of ) (i.e. a
character of ) , which is sometimes, written additively as a linear form
_ on the Lie algebra t of ) ). The Weyl group acts on ) and hence on
its characters. We will say that _ is a dominant integral weight if for
any F ∈, , _ −F (_) is a sum of positive roots (or, is zero).

We can then form the following function on )A46:

j_ (C) =
∑
F∈, B6=(F)CF (_+d)∑
F∈, B6=(F)CF (d)

.
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Note that this is a function on )A46 which is invariant under the conju-
gation action of , on )A46. Hence it extends to a conjugate invariant
function q_ on �A46 also, and �A46 has full measure in � . Let + (`) be
an arbitrary irreducible representation of � with highest weight `. We
then get, by the Weyl integral formula,∫

�

3Gq_ (G)j` (G) =
1

|, |

∫
)

3C�(_ + d) (C)�(` + d) (C).

Suppose _ is not the highest weight of any irreducible representation
of � . Then �(_+d) is orthogonal to �(`+d) for all ` which are highest
weights of irreducible representations of � . Hence the class function q_
is orthogonal to all the j` for all irreducible representations of � . This
contradicts the Peter-Weyl theorem and hence _ is indeed the highest
weight of an irreducible representation of � .

We will now show how to realise the representation + (_) with high-
est weight _ for every character _ of ) which is dominant. This is
the Borel-Weil Theorem. Write b = tℂ ⊕ n where n = ⊕U>0gU . Since
[gU , gV] ⊂ gU+V , and (U + V) (� ) > U (� ) it follows that b is a solvable
subalgebra of g. Let � be the connected complex analytic subgroup
of � (ℂ) with Lie algebra b. Then � is a connected solvable analytic
subgroup of � (ℂ). Furthermore, � ∩� = ) and the real dimension of
�/) is 23 where 3 is the complex dimension of # . Therefore, �/) is an
open (and compact) submanifold of � (ℂ)/� and since � (ℂ)/� is con-
nected, �/) = � (ℂ)/�. Thus, � (ℂ)/� is a compact complex manifold.
Further, � (ℂ) = �) (ℂ)# which shows that up to homotopy, � (ℂ) and
� are the same. Thus � (ℂ) is simply connected as well.

For technical reasons, we replace �(ℂ) with �−(ℂ) where �−(ℂ) =
) (ℂ)# − where # − is the analytic subgroup of � (ℂ) with Lie algebra
⊕U∈Φ+g−U (# − is the "opposite" of # ). Thus, �−\� (ℂ) = ) \� .

Consider a holomorphic homomorphism _ : �−(ℂ) → ℂ∗. We can
then form a line bundle L_ on the compact complex manifold �−\� (ℂ).
The space of holomorphic sections of this line bundle on �−\� (ℂ) is
finite dimensional (Montel’s theorem) and one can show that this rep-
resentation is irreducible. The space of sections may be identified with
holomorphic (algebraic) functions 5 on � (ℂ) which satisfy

5 (16) = _(1) 5 (6), ∀6 ∈ � (ℂ), 1 ∈ �−(ℂ).

Every irreducible representation of � arises this way and these are all
the irreducible representations of � . This completes the classification
of irreducible representations of � .
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Theorem 12. (Borel-Weil Theorem) Let _ be a dominant integral
weight on ) , which may then be extended to an algebraic homomorphism
from ) (ℂ) into ℂ∗, and an algebraic character on _ : �−(ℂ) → ℂ∗, by
setting _ to be trivial on # −. We can then form a holomorphic line
bundle L_ on the compact complex manifold �−(ℂ)\� (ℂ). The space
of holomorphic sections of this line bundle is a representation + (_) of �
under the right action of � ⊂ � (ℂ) on �−(ℂ)\� (ℂ), and is irreducible
of highest weight _.

This space of holomorphic sections is the space of algebraic functions
5 on � (ℂ) satisfying

5 (=CG) = _(C) 5 (G) 5 >A 0;; = ∈ # −(ℂ), C ∈ ) (ℂ), G ∈ � (ℂ).
This realises the representation + (_) explicitly.


