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1. THE LEFSCHETZ FIXED POINT FORMULA

Suppose M is a Hausdorff manifold and f : M — M a smooth map
with isolated fixed points. Given a fixed point p of f, and a coordinate
neighbourhood of p in M, define the local Lefschetz Number L(f), of
f at p to be the sign of the determinant det(dfj, — I) where I is the
identity. Denote by H*(M, Q) the k-th cohomology group of M with
rational coefficients and by H*(f) the linear transformation induced
by the map f on H¥(M,Q). The total Lefschetz number of f is the
alternating sum of traces Zii:"éM(—l)ktrace(Hk(f)).

Theorem 1. (Lefschetz Fixed Point Formula) Let f be a smooth self
map of a manifold M. If the total Lefschetz number is nonzero, then f
has a fixed point.

If f has only isolated fized points, we have the identity

dimM
D (“Dftrace(H (f)) = >\ L(f),
k=0 p:f(p)=p

That is, the total Lefschetz number of f is the sum of all the local
Lefschetz numbers of f over all the (by assumption, isolated) fixed
points of the map f.

2. CoMPACT CONNECTED LIE GROUPS

2.1. The Weyl Group. G is a compact connected Lie group and T
is a maximal torus. Denote by N(T) the normaliser of T in G. The
quotient group N(T)/T is the Weyl Group of T.

Lemma 2. The group N(T)/T is finite.

Proof. The group N(T)/Z(T) is compact, but, on the other hand, is
a closed subgroup of the discrete group Aut(T) = Aut(Z') ~ GL)(Z)
where T = (S')! for some integer I > 1. Therefore, the group N(T)/Z(T)
is finite.

Since Z(T) is a compact Lie group, its connected component of iden-
tity Z(T)" is open (and closed) and hence has finite index in Z(T). Fix
X € z(T) the Lie algebra of Z(T). Then the closed subgroup generated
by T and the one-parameter group {exp(tX) : t € R} is a compact
connected abelian group and is therefore a torus. By the maximality of
T, this means that X € t, the Lie algebra of T. Therefore, z(T) =t and
Z(T)? = T. Consequently N(T)/T is finite. O
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Consider the adjoint action of T on the Lie algebra g of G. Consider
the complexification g ® C of g. Since, by the proof of Lemma 2, the
set of fixed points of T in g is the Lie algebra t of T, it follows that
we have a decomposition ¢ ® C = t 4o 84, Where @ is a finite set of
non-trivial characters of T and for each a € ®, g, is the subspace of
g ® C of vectors X with Ad(t)(X) = a(t)X. Note that since g ® C is
the complexification of the T-representation g, if @ € ® then ™! € @,
and is different from . We may write ® = ®* U (&*)~! for some subset
ot C ©.

Let T,y denote the subset of elements t € T such that a(t) # 1 for
any a € ®; elements of T, are referred to as regular elements of the
maximal torus T. Clearly, T,y is a dense open subset of T.

Lemma 3. The determinant of Ad(t) — 1 on the quotient space g/t is
strictly positive.

Proof. The determinant is the same as the determinant of Ad(t) —1 on
the complexification (g ® C)/t ® C. The latter is clearly

[ ey -D=]]®)-D@n?-1=]]@t-17

acd acdt acdt

and is therefore strictly positive. O

2.2. Maximal Tori.

Theorem 4. ( Conjugacy of Mazimal Tori) Every element of G may
be conjugated into a maximal torus.

All mazimal tori in G are conjugate in G. Hence the dimension of
a mazximal torus is an invariant of the group G, called the (absolute)
rank of the group G.

Proof. We use the Lefschetz Fixed Point Formula. Consider the action
by left translation, of an element g in G, on the quotient manifold G/T.
Since G is connected, this translation is homotopic to the translation
by identity namely, the identity transformation on G/T. Therefore,
the Lefschetz number of this transformation g is the same as the Euler
Characteristic of the manifold G/T.

The Lefschetz number of t € T, is positive, since the local Lef-
schetz number at each fixed point wT (for w € W) i.e. the determinant
of Adg/t(wtw_l) — 1, is positive (the second part of Theorem 1 and
Lemma 3). Since the Lefschetz number of any left translation is the
same, this implies that the Euler characteristic of G/T is positive and
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therefore, the Lefschetz number of the left translation L, by g is positive.

By the Lefschetz fixed point formula, the transformation g does have
a fixed point in G/T. That is, there exists x € G such that x!gx lies
in T. Thus every element of G may be conjugated into T.

Take now a maximal torus T” and fix a generating element t’ € T".
Then, t" may be conjugated into T by the foregoing paragraph, and
since t" generates T it follows that T’ is conjugate to T, proving the
theorem. O

Lemma 5. Let G be a compact connected Lie group and S C G a torus.
Then the centraliser of S in G is connected.

Proof. Let z € G centralise S. Consider H = Z(z)° the identity compo-
nent of the centraliser of the element z. Since S centralises z, it follows
that S C H.

By the theorem, z lies in a maximal torus T, and hence T C H as
well, and T being a maximal torus in G, is a maximal torus in H. Now S
has an element s which generates S (by the Kronecker density theorem
of the previous chapter), which, by the theorem, can be conjugated
into T by an element h of H. Hence S can be conjugated into T by h.
Now, z lies in hTh™! since z € T and h commutes with z. Hence both
z and S lie in hTh™! ¢ Z(S)? which shows that z € Z(S)?, the identity
component of Z(S). That is, Z(S) = Z(S)°. O

Define T, as the subset of elements t € T on which no nontrivial
character @ of T acting on the complexified Lie algebra g is trivial. Let
Greg be the set of elements of G which may be conjugated into Trey.

The map G/T X Trey — Greg given by (g7T,t) gtg~! is a surjection
whose fibers are in one one correspondence with elements of the Weyl
Group W.

2.3. The Set of Roots. Let T be a maximal torus of a compact con-
nected Lie group G. On the complexification gc of the Lie algebra g
of G, the group T operates by adjoint action and we may decompose
gc as a sum of tc and of subspaces g, where on each g,, T acts by
the character « : T — C*. We may write this character in the form
a(exp(X)) = e*X) where, for X € t = Lie(T), exp(X) € T, and by an
abuse of notation we denote by a(X) the associated linear form on the
Lie algebra t. This takes imaginary values (i.e. values in iR). The
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collection ® = ®(G, T) of these characters ( or linear forms) are called
the roots of g (with respect to T; since all maximal tori are conjugate,
we obtain that these roots are essentially the same, up to G conjugacy).
Moreover, if « is a root, then so is its inverse (in Lie algebra terms, its
negative).

If ty € T is a regular element, then a(t) # 1 for any a. Write
to = exp(iH) with H € it. Then a(H) is a nonzero real number.
We get a decomposition of the set & of roots as a disjoint union:
® = @ [[ —(P*), where ®* is the set of roots on which H is positive.
If @« € ®* we also write « > 0. We may even choose tog = exp(iHp) so
that all the values a(ty) are all distinct for distinct a € ®*. That is the
positive real numbers a(Hy) are all distinct.

Fix any regular element t = exp(iH) in T,y If t has a fixed point xT
in the quotient space G/T, then x 'tx € T i.e. t € xTx~! and the con-
nected group xTx~! is abelian. Hence the Lie algebra xLie(T)x~! is in
the trivial eigenspace of Ad(t); this is simply Lie(T). This proves that
xTx~! = T and hence that x € N(T), and xT = wT for some w € W.
The only fixed points of t in G/T are the translates wT by the Weyl
group elements of the trivial coset T.

Theorem 6. ( The Weyl Integral Formula ) The Haar measure dg of
G decomposes as

1
| W
where dt is the Haar measure on T, dg* is the Haar measure on G/T,

D(t) = [Tpear (Wa(t) — ﬁ) and W is the order of the Weyl group.

As a corollary, we see that

/dtw(t) 2=l w .
T

dg=——dt | D(t) |’ dg",

Proof. We first compute the Jacobian of the map ¢ : G/TXT — G given
by (¢T,t) — gtg~' = x. We assume (Theorem ??) that G ¢ GL,(C) is
linear . Since GL,(C) is an open subset of the vector space M,(C), the
tangent space to the element x € G may be viewed as the subspace xg
where, for X € g ¢ M,(C), xX denotes the multiplication of the matrix
x with X, and xg denotes the real vector subspace of M, (C) consisting
of vectors xX with X € g. Suppose X € T.(G/T) = g/t.
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Then for s € R the curve (write 9(y) = gyg™')
s > Y(gexp(sX)T, t) = gexp(sX)texp(—sX)g™ =

= gtg ' g(t exp(sX)texp(—sX))g~ = x  (U(t exp(sX)texp(—sX))),
has the derivative

x(9(t7'Xt - X)) = xAd(g)(Ad(¢™") - id)(X) € xg = T:(9),

at s = 0.

Similarly, if Y € t then for s € R, the curve s > y(gtexp(sY)g™!) =
xgexp(sY)g~' has the derivative xAd(g)(Y) at s = 0. Consequently the
derivative dy at (gT,t) of of the map ¢ is given by

(9(X),Y) - x(Ad(g)((Ad(t™) — id)(X),Y)).

Since Ad(g) has determinant 1 the determinant of this derivative dy
becomes det(Ad(t™1) — id)q/t. We can replace g/t by the complexifica-
tion without changing the determinant. But gc/tc = @neg+ (8 ® §-4)-
Therefore, the determinant of Ad(t™') —id on g/t is the product

[1(@® - 1=~ 1) = DOD®.
aedt a(t)

The integral formula then follows since the pull back ¢/* (), under the
map ¢ of the top exterior form w (obtained by wedging left invariant
differential 1 forms on G and which gives volume 1 on G), is simply
the Jacobian of ¢ times the top exterior form " on G/T X T. Since
G/TXT — Gis a| W | fold covering on the open subset G,¢4 of regular
elements (and Gy has total measure 1), it follows that ¢*(w) has total
measure | W |. O

2.4. Consequences of the Weyl Integral Formula.

Lemma 7. If the Weyl group is trivial, then the connected group G 1is
a torus.

Proof. From the Weyl Integral formula, it follows that

1 - -
/Gdg_ 1= m/Tdt D(t)D(t) _/Tdt D(t)D(t),

where D(t) = [lgepr(@ = 1) = X, m(x)x is an integral linear com-
bination of distinct characters yof T . Here each y is a product of
positive roots a. Since each a(H) > 0 it follows that m(1) = =1 and
that 7 = [[,eqp+ @ is different from the trivial character if the set ®* is
non-empty. Moreover, r is different from every other character y with
m(y) # 0, because such a y is a partial product of the characters a
with @ > 0, and viewed as linear forms on iLie(T), n(H) > y(H) for
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any other y.

By orthogonality of characters on T, it follows that

1= /Tdt | A(t) |*= Zm()()Q,

X

and the trivial character 1 certainly occurs. Hence we get a contradic-
tory inequality : 1 > m(1)? + m(x)?, unless ®* is empty. Thus the set
of roots is empty and g =t . That is, G=T. O

Lemma 8. (A) If the Weyl group has order two, then dimT = 1+dim(Z)
where Z is the centre of G, and dim(G/Z) = 3. More precisely, G/Z =
SO(3) or SU(2).

(B) Suppose G is a connected compact Lie group of semi-simple rank
one, i.e. if Z is the connected component of identity of the centre of G
and T is a mazimal torus, suppose dim(T/Z) =1. Then G/Z is either
SO(3) or SU(2).

Proof. Let D(t) = [|geqr(a — 1) as before. From the Weyl integral
formula, it follows that

2:|W|:2/Gdg:/Tdt D(t)D(t).

Again, A(t) = X, m(y) x is an integral linear combination of characters
y of the torus T, and m(1) = =1, and m(x) = 1. Therefore, 2 >
m(1)? + m(x)? and therefore, there are no other characters y. Recall
that tg = exp(iHp) was chosen so that the non-zero real numbers f(Hp)
are all distinct for distinct roots f € ®. Let us order the distinct
numbers f(Hy) for f € ®* in increasing order:

0 <pir(H) < p2(H) < -+ < fu(H).

The equation A(t) = [ eq+ (@ — 1) shows that the signed multiplicity
m(f1) is nonzero. But, by the previous paragraph, m(x) = 1 and hence
m = f1 and there are no other characters. Moreover, the multiplicity
m(p1) = 1. That is ®* = {f; = B} is a singleton and dim(gp) = 1.
Further, clearly, Z = ker(f) and therefore has co-dimension one in T.
Then,

dimgr (G/Z) = dimc(g/3) = dim(gp) ®dim(g_p) ®dim(t/3) = 1+1+1 = 3.

Now, the adjoint representation Ad of the semi-simple group G/Z
has finite kernel and preserves the killing form which is a negative
definite quadratic form in three variables; hence Ad(G/Z) c SO(3).
Since the dimensions of G/Z and SO(3) are both 3, it follows that
Ad(G/Z) = SO(3). Hence G/Z is SU(2) or SO(3). This proves part
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(A).

Since T # Z, G cannot be a torus; then G/Z cannot be a torus either,
since in that case, T/Z = G/Z. Therefore, the Weyl group W has order
at least two. Since W acts non-trivially on T/Z = S, the group W can
only act by t — t! on T/Z. Hence W has order exactly two and by
part (A), G/Z is SO(3) or SU(2). This proves part (B).

O

Lemma 9. If w € N(T) and w(®*) = ®* then we T.

Proof. (This is essentially the Chevalley normaliser theorem and the
proof is essentially Chevalley’s proof). We argue by induction on the
semi-simple rank (dimension T/Z) of G.

Let m be the dimension of 1 = ®,ce+g, and let d be the dimension
of n. Consider the d-th exterior power of g. Then A%(n) is a line in
the G/Z representation A%g fixed by w and by the torus T/Z. Let v
be a non-zero vector in A%n. Then the group T/Z and by the assump-
tion on w, the element w, both take the vector v into a multiple of itself.

Hence the commutator wtw™'t~! acts trivially on v for t € T/Z. If
T/Z is the commutator, then T/Z fixes the vector v. But the char-
acter by which T/Z acts on v is the character 7 = [] -0« (which,
viewed additively on the complex Lie algebra t¢ is strictly positive on
the element H and hence cannot be trivial on T/Z). Therefore, the
commutator map ¢ — wiw 1t7! is a character on T/Z with positive
dimensional kernel with non-trivial identity component S/Z, say for a
torus S € T containing Z. Then S is strictly bigger than Z and by
definition, w centralises S.

Hence w € Z(S) and Z(S) is connected (by Lemma 5). The centre of
Z(S) contains the torus S # Z. Hence the semi-simple rank of Z(S) is
dim(T/S) < dim(T/Z). By induction, w € T. O

Consequently, given w € W with w # 1, the set of positive roots
which get taken into negative roots is non-empty. Let A C ®* be the
subset with w(A) ¢ ®* and B ¢ ®* with w(B) ¢ —®* = (&)1, so that
A]]B =" Then w(A) [ w(B)~! = &* as well. We compute the effect
of w on the function D(t) = [Tpso(@—1) = [Tgewa)(@=1) [Tpe—wp) (@ —
1). Then

w(D() = [ [(w(@) - 1) [ [w(@) - 1) = D) ()] [ w(a).

a€cA a€B a€B
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We now introduce a character p not necessarily on T but on a
covering T* of T such that p?> = 7 = [[,oga. Then we see that

w(p)/p = [1sep w(@). Consequently,

w(D(1)/p) = (=)’ D(t)/p = sgn(w)D(t)/p,
where the latter equation defines sgn(w). Since D(t)/p is the product
[Mys0(Va — %), it follows that the latter product is alternating.

Lemma 10. Ift € T,y and w € W such that wtw =1 then w=1.

Proof. Write t = exp(iH) for H € iLie(T). For any root a, then a(H)
is either positive or negative, and hence we get ® = & [[ -®*. The
element w takes ®* into itself since it takes H into itself. By lemma 9,
w=1.

O

2.5. The alternating sum. Given a character A of T such that , define
the alternating sum A(A) = Y, sgn(w)t”P . Let us say that two
characters A and p are equivalent if there exists an element w of W
with w(d) = p. If A,y are inequivalent, then, by the orthogonality of
distinct characters on the torus T, the integral

/T dE(AGYA() = 0.

The same observation holds true if A, p are two characters on a fixed
finite covering T* of T, such that A — w(u) is a (non-trivial) character
on T (not only on T%) for all elements w of the Weyl group W: since, in
that case, the sum A(A1)A(y) is still a function ( a finite linear combi-
nation of characters on T) on T although A(y) and A(A) are functions
on T*.

Compute ﬁdet (A(p)sz)): since w(®*) = ®* if and only if
w = 1, it follows that w(p) = p if and only if w = 1. Therefore,
A(p) = X ew sgn(w)t¥P) is a linear combination of distinct characters
w(p) as w varies in W. By the orthogonality relations for T, we then
get

1 -
o [ ARG =1

The function D(t) is alternating and is a sum (with coefficients +1)
of characters of the form p/y where y is a product of positive roots
a. Consequently, D(t) is a sum - with integral coefficients m(u)- of the
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alternating sums A(p) where p runs through a set of inequivalent (reg-
ular) characters of T*. The coefficient of A(p) is clearly positive. How-
ever, we have, by the last formula of the preceding subsection and the
orthogonality of the A(y) , that 1 =3 ) m(p)2|—vlv| Jrdt  A(wA(p) +
m(p). Therefore, we have proved that m(y) = 0 if g # p and that
m(p) = 1. That is

1
(Va-—)=D®)/p=A(p) = ) sgn(w)t"?).

2.6. The Weyl Character Formula. Suppose V is an irreducible
representation of the compact connected group G. We have, by or-
thogonality of characters and the Weyl integral formula, that

1
1=/d9|)(v |2:—/dt|xV<t>D<t> 2.
G | W | Jr

The function yy(t)D(t) is alternating and is a sum of characters on T*
with integral coefficients. Therefore, there exist finitely many inequiv-
alent characters p of T* and integers m(y) corresponding to them such
that yy(t)D(t) is a sum of the basic alternating sums A(u): yv(t)D(t) =

3 m(u)A(p).

Using now the orthogonality of A(u) we see that 1=}, m(p)? which
shows that only one of the m(y)? is 1, and the rest are zero. Conse-
quently,

xv(OD(t) = £A(p) == D" sgn(w)r*®.
weWw

Let us now introduce a partial order on the characters A,v on T by
writing A > v if the character Av™! is a product of positive roots. The
trace function yy(t) is a sum of characters of T, and among these pick
out one -call it A- which is maximal with respect to this order (“a
highest weight” of V). Suppose it occurs with multiplicity e > 1. Then
xv(t)D(t) is alternating and is a sum of eA(A+ p) and other sums A(v);
but the Weyl integral formula and the maximality of A then ensures
that no other character of the form w(v) can be equal to A + p and
hence e = 1 and the other terms are zero. Thus, we have

Swew sgn(w)” )
Ywew sgn(w)twe) -

We have thus proved the following theorem.

xv(t) =

Theorem 11. ( The Weyl Character Formula)
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Given an irreducible representation V of a compact connected group
G, and a character A of V with respect to T, such that A is mazimal with
respect to the partial order above (such a A is called a highest weight of
V), the dimension of the A eigenspace is one; the representation V has
a unique highest weight. We write V.=V (A).

There is a vector v with T -eigenvalue A and v is unique up to scalar
multiples and is called the highest weight vector of V.

The trace yv(g) of V.=V(A) is uniquely determined by its restriction
to the maximal torus T and on t € T, the trace is given by the “Weyl
Character Formula”

Swew sgn(w) )

Ywew sgn(w)tv(p) .

Corollary 1. The representation V has a unique highest weight, namely
A. In particular, every weight p of V is < A in the partial order.

xv(t) =

Proof. For, otherwise, suppose p is another highest weight. The by
comparing the Weyl character formula, we see that A(A+p) = A(u+p).
This means that for some w € W, we have A + p = w(u) + w(p); that
is w(u) = A+ p —w(p). Now, since u is a weight of V, so is w(u).
Moreover, p — w(p) is a sum of positive roots, and hence w(u) > A in
the partial order. This means that w(y) = A and w(p) = p. But, by
Lemma 9, w(p) = p is and only if w =1 in the Weyl group, and hence
A=p.

If there exist weights p of V not comparable to A, then pick one , call
it p, which is highest with respect to this partial order, among those
which are not comparable to A. Such a p is necessarily a highest weight
of V, and that is not possible by the preceding paragraph. This means
that every other weight of the representation of V is comparable to A
and hence, is less than A. O

2.7. dominant integral weights. Suppose A is a weight of T (i.e. a
character of T, which is sometimes, written additively as a linear form
A on the Lie algebra t of T). The Weyl group acts on T and hence on
its characters. We will say that A is a dominant integral weight if for
any w € W, A —w(A) is a sum of positive roots (or, is zero).

We can then form the following function on Tey:

Swew sgn(w) )
Ywew sgn(w)twe) -

() =
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Note that this is a function on T,y which is invariant under the conju-
gation action of W on T,y Hence it extends to a conjugate invariant
function ¢; on Gyey also, and G,ey has full measure in G. Let V(u) be
an arbitrary irreducible representation of G with highest weight . We
then get, by the Weyl integral formula,

1
[ation0 = i [ deatie s po

Suppose A is not the highest weight of any irreducible representation
of G. Then A(A+p) is orthogonal to A(u+p) for all p which are highest
weights of irreducible representations of G. Hence the class function ¢,
is orthogonal to all the y, for all irreducible representations of G. This
contradicts the Peter-Weyl theorem and hence A is indeed the highest
weight of an irreducible representation of G.

We will now show how to realise the representation V(A) with high-
est weight A for every character A of T which is dominant. This is
the Borel-Weil Theorem. Write b = tc & n where n = ®,-08,. Since
[8688] C 8asp, and (a + B)(H) > a(H) it follows that b is a solvable
subalgebra of g. Let B be the connected complexr analytic subgroup
of G(C) with Lie algebra b. Then B is a connected solvable analytic
subgroup of G(C). Furthermore, BN G = T and the real dimension of
G/T is 2d where d is the complex dimension of N. Therefore, G/T is an
open (and compact) submanifold of G(C)/B and since G(C)/B is con-
nected, G/T = G(C)/B. Thus, G(C)/B is a compact complex manifold.
Further, G(C) = GT(C)N which shows that up to homotopy, G(C) and
G are the same. Thus G(C) is simply connected as well.

For technical reasons, we replace B(C) with B~ (C) where B~(C) =
T(C)N~ where N~ is the analytic subgroup of G(C) with Lie algebra
@®uea+G-¢ (N~ is the "opposite" of N). Thus, B"\G(C) = T\G.

Consider a holomorphic homomorphism A : B"(C) — C*. We can
then form a line bundle &, on the compact complex manifold B~\G(C).
The space of holomorphic sections of this line bundle on B~\G(C) is
finite dimensional (Montel’s theorem) and one can show that this rep-
resentation is irreducible. The space of sections may be identified with
holomorphic (algebraic) functions f on G(C) which satisfy

f(bg) = A(b)f(g). Vg€ G(C),beB (C).

Every irreducible representation of G arises this way and these are all
the irreducible representations of G. This completes the classification
of irreducible representations of G.
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Theorem 12. (Borel-Weil Theorem) Let A be a dominant integral
weight on T, which may then be extended to an algebraic homomorphism
from T(C) into C*, and an algebraic character on A : B~(C) — C*, by
setting A to be trivial on N=. We can then form a holomorphic line
bundle &£, on the compact complex manifold B-(C)\G(C). The space
of holomorphic sections of this line bundle is a representation V(A) of G
under the right action of G € G(C) on B~ (C)\G(C), and is irreducible
of highest weight A.

This space of holomorphic sections is the space of algebraic functions
f on G(C) satisfying
f(ntx) =A(t)f(x) for all ne N (C),t e T(C),x € G(C).
This realises the representation V(A) explicitly.



