
COMPACT LIE GROUPS

1. Lie Groups and Lie Algebras

Till the last section, we had made no assumptions on the group � ,
except that � was assumed to be a compact topological group. Later in
this section, we will deduce, as a consequence of the Peter-Weyl theo-
rem, that a compact Lie group is linear. In the first part of this section,
we will define Lie groups and Lie algebras and study the relationship
between them.

1.1. Manifolds.

Definition 1. A smooth manifold " of dimension = is a Hausdorff
topological space ", together with a collection of open sets (called an
atlas) *� which cover " such that for each 8, there is a homeomorphism
q8 : *8 → +8 where +8 ⊂ ℝ= is an open set, and such that for each 8, 9 the
map (homeomorphism) q8 ◦q−19 : q 9 (*8 ∩* 9 ) → q8 (*8 ∩* 9 ) is a smooth
map of open sets in ℝ=. The open sets *8 are called coordinate charts.

Examples: the vector space ℝ=, open sets in ℝ=, the unit sphere (=
in ℝ=+1.

If 5 : " → # is a map between manifolds", # it is said to be smooth
if the associated maps between coordinate charts*8,+9 of", # , contain-
ing <, 5 (<) of ", # respectively, the map k 9 ◦ 5 ◦q−18 q−18 (*8) → k 9 (+9 )
are smooth. (We may shrink the charts so that 5 (*8) ⊂ +9). If ", #
are manifolds ( with cordinate charts *8,+9 respectively, then on the
product topological product space " ×# , there is a natural structure
of a manifold, with *8 ×+9 being the coordinate charts on " × # . The
coordinate projections are then smooth.

1.2. Lie Groups. Suppose � is a topological group. If the multipli-
cation map < : � ×� → � and the inverse map 8 : � → � are smooth
maps of manifolds, we say that � is a Lie Group.
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The main example of a Lie group is �!= (ℝ). It is clear that the
group maps are polynomial functions in the matrix entries of the rele-
vant matrices.

If �,�′ are Lie groups, then a morphism 5 : � → �′ is a homo-
morphism of groups which is also smooth. A morphism of Lie groups
5 : � → � is said to be a Lie subgroup if 5 is injective as a map of
manifolds. If � ⊂ � is a closed subgroup of a Lie group, then � is a
Lie subgroup. We assume this non-trivial result from Lie theory .

If � is a closed subgroup of a Lie group � , then �/� has the natural
structure of a manifold so that the action map � ×�/� → �/� given
by (6, G� ) ↦→ 6G� for 6, G ∈ � , is smooth. Moreover, � → �/� is a
locally trivial fibration.

1.3. Lie Algebras. The tangent space to the identity element 4 in �
is denoted g = !84 (�). It can be verified that g is naturally the dual to
the space m/m2 where m is the maximal ideal of smooth functions on
� which vanish at 4 ∈ � .

If � = �!= (ℝ), then !84 (�) is the vector space "= (ℝ) of = × = ma-
trices. Denote by [-,. ] the commutator of - and . in "= (ℝ). If
� ⊂ �!= (ℝ) is a Lie subgroup, then h = !84 (� ) is closed under the
bracket [-,. ]. A real subspace g of "= (ℝ) is called a (real) Lie alge-
bra, if for -,. ∈ g the bracket [-,. ] also lies in g.

1.4. The Exponential Map: linear case. Given - ∈ "= (ℝ), con-
sider the exponential 4G? (- ) = ∑∞

:=0
-:

:! . It can easily be shown that
this series converges in "= (ℝ) and defines an element in �!= (ℝ) (with
positive determinant).

Suppose � ⊂ �!= (ℝ) is a Lie subgroup. Given - ∈ !84� , for all
C ∈ ℝ, we have 4G? (C- ) ∈ � . Further,

g = {- ∈ "= (ℝ) : ∀C ∈ ℝ, 4G? (C- ) ∈ �}.
We may replace�!= (ℝ) by�!= (ℂ) and replace"= (ℝ) by"= (ℂ); the

exponential map is then a holomorphic map from "= (ℂ) into �!= (ℂ).
"= (ℂ) is then a "complex Lie algebra" under the bracket operation
(-,. ) ↦→ [-,. ]; this is a complex bilinear map.

1.5. The Exponential Map in general. Let � be a Lie group and
-g an element in the Lie algebra. We then get a vector field - on �
by setting -6 = ;∗6 (- ) for 6 ∈ � . Then, from the theory of ordinary
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differential equations, we get, for small Y > 0 a unique differentiable
curve W : [0, Y] → � such that W ′(C) = ;∗

W (C) (- ) and W (0) = 1.
The uniqueness immediately implies that W (B + C) = W (B)W (C) for small
B, C and by continuation, we get a group homomorphism W : ℝ → � ,
with W (0) = 1, and W ′(0) = - . We write 4G?� (- ) = W (1). This is called
the exponential of - . Thus 4G? : g→ � .

The derivative of the exponential map at 0 ∈ g is the identity map on
g. Then the inverse function theorem says that the map 4G? : g → �

is a diffeomorphism from a small neighbourhood of 0 ∈ g into a small
neighbourhood of 1 ∈ � .

1.6. The Adjoint Representation. Let � be a Lie group and g its
Lie algebra. The conjugation action of � on itself preserves the iden-
tity element. Hence it yields, by differentiation, an action of � on its
tangent space at 1, namely g. This action is linear and is called the
adjoint representation: we have a representation �3 : � → �!(g). By
differentiation, we get a linear representation 03 : g → �=3 (g), also
called the adjoint representation of the Lie algebra g. By differentia-
tion with respect to ~, of the equation �3 (G~G−1) = �3 (G)�3 (~)�3 (G−1)
, it is clear that 03 (�3 (G) (. )) = �3 (G)03 (. )�3 (G−1) as operators on g.
Denote, for - ∈ g, . ∈ g , by [-,. ] = 03- (. ). If � ⊂ �!= (ℝ), then
g ⊂ "= (ℝ) and [-,. ] coincides with -. − .- in "= (ℝ).

1.7. The Killing Form. The Killing form (-,. ) ↦→ CA024 (03-03. ) =
^ (-,. ) is easily seen to be invariant under the action of �3 (�), using
the observations of the preceding paragraph.

If � is a compact Lie group and 6 ∈ � , then for any representation d
of� , the image d (6) is semi-simple (diagonalisable) and the eigenvalues
of 6 ∈ � in any representation are of the form _ with _ of modulus 1.
Hence for - ∈ g, d (- ) is also diagonalisable and the eigenvalues of
- ∈ g are purely imaginary and real. Consequently, ^ (-,- ) is a sum
of squares of purely imaginary numbers and is hence negative or zero.
It is zero if and only if the semisimple operator 03- is zero; that is, -
is in the centre of g and hence the connected component of identity of
the centre of � is non-trivial.

1.8. The Closed Subgroup Theorem. Suppose � ⊂ � is a sub-
manifold and is a subgroup. Then � is itself a Lie group and the
inclusion � ⊂ � is a morphism of Lie groups. One calls � a Lie



4 COMPACT LIE GROUPS

subgroup of � . The topology on � need not coincide with the topology
on � viewed as a subspace of � .

The map � → � yields, by differentiation, a morphism h→ g of Lie
algebras. The following two fundamental theorems provide a converse.

Theorem 1. If h ⊂ g is a Lie subalgebra, then there exists a Lie
subgroup � ⊂ � such that the Lie algebra of � is h.

This is a consequence of a theorem of Frobenius on involutive distri-
butions.

Theorem 2. Given a homomorphism ? : h→ g of the Lie algebras h, g
of two connected Lie groups � and �, there exists a homomorphism
@ : � ∗ → � whose differential at the identity 1 ∈ � ∗ yields the map ?
(where � ∗ is the simply connected covering of the LIe group �).

Theorem 3. (E.Cartan) A closed subgroup of a Lie group is a Lie
subgroup.

If � ⊂ � is a closed subgroup of a Lie group � , equip the quotient
�/� with the quotient topology. Then �/� gets a natural structure of
a manifold with the action map � ×�/� → �/� being smooth. If � is
in addition, a normal subgroup, then the map � → �/� is a morphism
of Lie groups with kernel � .

Theorem 4. (Ado’s theorem) Every Lie algebra over ℝ is linear.

In contrast, not every Lie group is linear. One can show that the
universal cover of (!2(ℝ) is not linear. For = ≥ 3, the group (!= (ℝ)
admits a two sheeted connected covering group �∗ which is not linear.

Suppose g is a real Lie algebra; it is a sub-algebra of "= (ℝ) and the
latter is the Lie algebra of �!= (ℝ). It follows from the above theorems
that there exists a connected Lie group � ⊂ �!= (ℝ) with Lie algebra
g. Let �∗ denote the simply connected covering of � . It is immediate
that �∗ is a Lie group.

Now suppose d : g → g′ is a homomorphism of Lie algebras, and
let �′ be a connected Lie group with Lie algebra g′ (such a �′ exists
by the observations of the preceding paragraph). Consider the graph
g → g ⊕ g′ of d, and denote by h the image of this diagonal map
- ↦→ (-, d (- ). Then h is a Lie subalgebra of g ⊕ g′ and hence there
exists (by the above theorem) a connected subgroup � ⊂ �∗ ×�′ with
Lie algebra h.
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The first projection of � onto � is an isomorphism of Lie algebras
and hence the projection � → �∗ is a covering map of connected
spaces. Since �∗ is simply connected, it follows that � = �∗. The
differential of the second projection �∗ = � → �′ is d. Therefore,
every representation d : g → g′ "integrates" to a representation of �∗
into �′.

2. Compact Lie Groups

We prove as a consequence of the Peter-Weyl Theorem :

Theorem 5. A compact Lie group is a closed subgroup of * (=) for
some =.

Proof. We argue by induction on the dimension of � . If 38<(�) = 0,
then � is discrete. But � is compact and hence is finite. But then
the Cayley theorem says � ⊂ (= for some =, where (= is the symmetric
group on = letters . Therefore, � ⊂ (= ⊂ �!= (ℂ), where (= may be
thought of as the group of permutation matrices.

Suppose the theorem holds when� is connected. Then we prove that
it holds in general: suppose the connected component �0 of identity is
linear (i.e. has a faithful finite dimensional linear representation d0),
and �/�0 is linear (via a faithful representation g say). Then pick a
representation d of � whose restriction to �0 contains d0 (Corollary
??). Then the direct sum d ⊕ g is a faithful representation of � .

We assume then that � is connected. By the Peter-Weyl theorem,
given G ≠ 1 in � , there exists a representation d of � such that d (G) ≠
d (1) = 1 (since representation functions separate points). Since d is
non-trivial and � is non-trivial and connected, so is the image d (�).
Therefore, the kernel  of d has dimension strictly smaller than that
of � . By induction assumption,  has a faithful representation g , say.
Let \ be a representation of � whose restriction to  contains g (such
a representation exists by Corollary ??). The representation \ ⊕ d is
then easily seen to be faithful on � . �

2.1. Properties of Tori.

Definition 2. A compact connected abelian Lie group is called a torus.

For example, (1 × · · · × (1 is a torus. We will see that every torus is
of this form.

We now consider representations of (1×(1×· · · (1. Consider the ;-fold
product ) = ((1); of the group (1 with itself. Given integers<1, · · · ,<;
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and I = (I1, · · · , I; ) ∈ ) we have the one dimensional representation i.e.
character j< (I) = I<1

1 I
<2
2 · · · I

<;

;
on ) . The span ' of these characters

j< as< varies through ;-tuples of integers, is a subring of functions on
) which contains 1, closed under complex conjugation, and separates
points. Hence by the Weirstrass-Stone theorem, ' is dense in the space
of continuous functions on ) and hence also in !2() ). By the orthog-
onality relations, it follows that if d is an irreducible representation of
) then d is of the form j< for some <. Thus the ring of representation
functions is the span of the characters j<. This span is also called the
algebra of trigonometric polynomials on ) . Thus the Peter-Weyl theo-
rem is equivalent to saying that the space of trigonometric polynomials
is dense in the space of continuous functions on the torus ) .

Fix an ; tuple < of integers <8 and consider the function j< : ) =

((1); → (1. If ℝ; → ℝ;/ℤ; = ) is the quotient map, then j< lifts to
the linear map ℝ; → ℝ given by (G1, G2, · · · , G; ) ∈ ℝ; ↦→<1G1 + · · ·<;G; .
The pre-image of the kernel of the map j< : ) → (1 in ℝ; is the set
of points (G1, · · · , G; ) ∈ ℝ; such that <1G1 + · · · +<;G; is an integer :,
as : varies. Therefore, this pre-image is a countable union of the hy-
perplanes

∑
<8G8 = :. Hence the pre-image of the complement of the

kernel of j< is the complement of a countable number of hyperplanes
and is clearly a dense open subset of ℝ; .

The union of the kernels of all these j< therefore has pre-image
which is a countable union (over < and :) of the hyperplanes

∑
<8G8 =

:. Therefore, the intersection of the complement of the kernels of
the characters j< is a dense subset of ) (e.g. by the Baire Category
theorem).

Proposition 6. (Kronecker’s theorem) Let ) = ((1); be a torus. The
set � of points C ∈ ) such that j< (C) ≠ 1 for any ;-tuple of integers <
is dense in ) . Consequently, the set of points C ∈ ) such that the group
generated by the element C is dense in ) , is a dense set.

Proof. Fix C ∈ �. Now, as was already noted, � is dense in ) by the
Baire category theorem. Let ( be the closed subgroup of) generated by
C and consider the quotient ) /(. This is a connected abelian group and
hence if ) ≠ (, ) /( has a non-trivial character j which is a character
on ) . But then j (C) = 1 contradicting the choice of C ; therefore, ) = (

and hence every element of � generates a dense subgroup of ) . �

Proposition 7. A compact connected abelian group ) of dimension :
is ((1): .
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Proof. By the corollary to Peter-Weyl theorem, a torus ) is linear i.e.
has a faithful (finite dimensional) unitary representation d. By com-
plete reducibility, d is a direct sum of irreducible representations of
) . Since ) is abelian, these irreducible representations are one dimen-
sional. Hence ) is a subgroup of the group �= of diagonals for some
unitary group * (=). By a result in the previous Chapter, every char-
acter on ) extends to a character on �= i.e. A4B : �̂= → )̂ is surjective
where )̂ is the group of characters on ) . Since the character group of
�= = ((1)= is ℤ= it follows that the character group of ) is a finitely
generated abelian group.

Since ) is connected, it follows that every non-trivial character ) →
(1 is surjective, which shows that )̂ is torsion free (and finitely gener-
ated by the preceding paragraph). Thus q̂ : )̂ ' ℤ: whence, ? : ) →
((1): induced by q̂ is an isomorphism. �

Corollary 1. (Kronecker’s Theorem) Given a torus ) , the set of points
C ∈ ) such that j (C) ≠ 1 for any nontrivial character j of ) , is a dense
set (say �). If C ∈ �, then the closed subgroup generated by C is all of
) .

The first part is simply a consequence of the Proposition and Propo-
sition 6. If � is the closed subgroup generated by an element C in the
dense set �, then consider a character j on the connected abelian Lie
group ) /� . Then j is a character on ) and j (C) = 1. Since C ∈ �, this
means that j is trivial. That is, � = ) . (One says ) is topologically
generated by every C ∈ �).

2.2. Compact Semi-simple Groups. A compact connected Lie group
with finite centre is called a compact semi-simple Lie group.

This means that the centre of the Lie algebra g of � is {0}. Let ^
be the Killing form on g. Since g consists of skew symmetric matrices,
it follows that ^ is negative semi-definite. Moreover, on some / ∈ g,
^ (/, / ) = 0 if and only if the skew symmetric matrix 03/ = 0 ; that
is, / lies in the centre of g.Therefore, / = 0 and hence ^ is negative
definite.

Lemma 8. (Bourbaki) Let �∗ be a locally compact topological group
with ℤ a central discrete subgroup of �∗ such that the quotient � = �∗/ℤ
is compact. Then any homomorphism j of ℤ into the multiplicative
group ℝ>0 of positive real numbers extends to a continuous homomor-
phism of �∗ into ℝ>0.
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Proof. Let � be a compact subset of �∗ mapping onto the compact
quotient � = �∗/ℤ. Let 5 ∗ be a positive compactly supported function
on �∗ which is strictly positive on � . Consider the " Mellin transform"
of 5 along ℤ, given, for G ∈ �∗ by

5 (G) =
∫
ℤ

3ℎ5 ∗(Gℎ)j (ℎ)−1.

Then 5 is strictly positive everywhere on �∗. Moreover, 5 is equivari-
ant: 5 (Gℎ) = 5 (G)j (ℎ) for ℎ ∈ ℤ and G ∈ �∗.

If G,~ ∈ �∗ the function 5 (G~) 5 (G)−15 (~)−1 is strictly positive and is
therefore of the form 4Ω(G,~) for some real valued function on �∗ ×�∗.
By the equivariance of 5 , it follows that Ω descends to � × � i.e. is
actually a function on � ×� .

Since 5 (G~) 5 (G)−15 (~)−1 is a coboundary on �∗ with values on '>0
it follows that Ω(G,~) is a cocycle on � ×� . That is, for G,~, I ∈ � we
have the equation

Ω(G,~) + Ω(G~, I) = Ω(~, I) + Ω(G,~I).
Since � is compact, we can integrate with respect to I. We then find
that, for all G,~ ∈ � ,

Ω(G,~) + q (G~) = q (G) + q (~),
where q (G) =

∫
�
36(I)Ω(G, I). Put 6(G) = 4−q (G) for G ∈ � . Then for

G,~ ∈ �∗ we have

5 (G~) 5 (G)−15 (~)−1 = 4Ω(G,~) = 6(G~)6(G)−16(~)−1,
showing that the function \ (G) = 5 (G)6(G)−1 is a homomorphism of �∗
into ℝ>0. The equivariance of 5 and the invariance of 6 then show that
\ coincides with j on the subgroup � = ℤ. This proves the lemma.

�

Theorem 9. (H.Weyl) The fundamental group of a compact semi-
simple Lie group � is finite.

Proof. Since� is a compact manifold, its fundamental group is a finitely
generated abelian group. If it is infinite, then by the structure theorem
for finitely generated abelian groups, the fundamental group of � has
ℤ as a quotient. Let �∗ be the connected covering of � corresponding
to this quotient ℤ. By lemma 8, �∗ has a nontrivial map into ℝ>0;
since �∗ is connected, the image of �∗ is open and hence is all of '>0.
Therefore, the Lie algebra g of � has an abelian quotient, and hence
by complete reducibility of � action on g, the centre of g is non-zero.
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Therefore, the centre of � has positive dimension and hence � cannot
be semi-simple. �

Theorem 10. Every compact connected Lie group � may be written
in the form / where / is the connected component of identity of the
centre of � and  is a compact connected semi-simple subgroup of �.
In fact  is the commutator subgroup of �.

Proof. The group / is closed and hence & = �// is a compact con-
nected quotient of � . If q = !84& has non-zero centre, then q has �
invariants. The complete reducibility of the representation g of the
compact group � shows that g = z ⊕ q as � modules and hence as g

modules. It follows that q cannot have � invariants.

Therefore, & is semi-simple. By Weyl’s theorem (Theorem 9) , &
has finite fundamental group. But since q is an ideal in � , and hence a
subalgebra, there exists a connected subgroup  of � with Lie algebra
q. Therefore,  is a covering of & and is hence compact by Hermann
Weyl’s theorem.

Since  contains the commutator subgroup [ , ] = [�,�] and the
latter is open in  , it follows that [�,�] =  . �

Corollary 2. The classification of irreducible representations of a com-
pact connected Lie group follows from the classification of the irre-
ducible representations of a compact connected simply connected group.

Theorem 11. (H.Weyl) The representations of a complex semi-simple
Lie algebra gℂ are completely reducible.

Proof. A representation of gℂ is a complex representation of g. Let
� be a simply connected semi-simple group whose Lie algebra is g.
Then representations g are equivalent to those of � . By Hermann
Weyl’s theorem (Theorem 9), � is compact. Hence � representations
are completely reducible. The theorem follows.

�
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