COMPACT LIE GROUPS

1. LiE GROUPS AND LIE ALGEBRAS

Till the last section, we had made no assumptions on the group G,
except that G was assumed to be a compact topological group. Later in
this section, we will deduce, as a consequence of the Peter-Weyl theo-
rem, that a compact Lie group is linear. In the first part of this section,
we will define Lie groups and Lie algebras and study the relationship
between them.

1.1. Manifolds.

Definition 1. A smooth manifold M of dimension n is a Hausdorff
topological space M, together with a collection of open sets (called an
atlas) Uy which cover M such that for each i, there is a homeomorphism
@i : Uy = V; where V; € R" is an open set, and such that for each i, j the
map (homeomorphism) ¢; o gbj_l 19 (UinUj) — ¢i(U; NU;) is a smooth
map of open sets in R". The open sets U; are called coordinate charts.

xamples: the vector space , open sets In , the unit sphere
E les: th t R" ts in R", the unit sphere S"
in R™1,

If f : M — N is a map between manifolds M, N it is said to be smooth
if the associated maps between coordinate charts U;, V; of M, N, contain-
ing m, f(m) of M, N respectively, the map ;o fo gbi_lgbi_l(Ui) — ¥ (V))
are smooth. (We may shrink the charts so that f(U;)) c V;). If M,N
are manifolds ( with cordinate charts Uj, V; respectively, then on the
product topological product space M X N | there is a natural structure
of a manifold, with U; X V; being the coordinate charts on M X N. The
coordinate projections are then smooth.

1.2. Lie Groups. Suppose G is a topological group. If the multipli-
cation map m : G X G — G and the inverse map i : G — G are smooth
maps of manifolds, we say that G is a Lie Group.
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The main example of a Lie group is GL,(R). It is clear that the
group maps are polynomial functions in the matrix entries of the rele-
vant matrices.

If G,G’ are Lie groups, then a morphism f : G — G’ is a homo-
morphism of groups which is also smooth. A morphism of Lie groups
f + H — G is said to be a Lie subgroup if f is injective as a map of
manifolds. If H C G is a closed subgroup of a Lie group, then H is a
Lie subgroup. We assume this non-trivial result from Lie theory .

If H is a closed subgroup of a Lie group G, then G/H has the natural
structure of a manifold so that the action map G X G/H — G/H given
by (g,xH) — gxH for g,x € G, is smooth. Moreover, G — G/H is a
locally trivial fibration.

1.3. Lie Algebras. The tangent space to the identity element e in G
is denoted g = Lie(G). It can be verified that g is naturally the dual to
the space m/m? where m is the maximal ideal of smooth functions on
G which vanish at e € G.

If G = GL,(R), then Lie(G) is the vector space M,(R) of n X n ma-
trices. Denote by [X,Y] the commutator of X and Y in M,(R). If
H c GL,(R) is a Lie subgroup, then ) = Lie(H) is closed under the
bracket [X,Y]. A real subspace g of M,(R) is called a (real) Lie alge-
bra, if for X,Y € g the bracket [X, Y] also lies in g.

1.4. The Exponential Map: linear case. Given X € M,(R), con-
sider the exponential exp(X) = X7, )]i—f It can easily be shown that
this series converges in M,(R) and defines an element in GL,(R) (with
positive determinant).

Suppose G € GL,(R) is a Lie subgroup. Given X € LieG, for all

t € R, we have exp(tX) € G. Further,
g={XeM(R):VteR, exp(tX)e G}.
We may replace GL,(R) by GL,(C) and replace M, (R) by M,(C); the
exponential map is then a holomorphic map from M,(C) into GL,(C).

M, (C) is then a "complex Lie algebra" under the bracket operation
(X,Y) — [X,Y]; this is a complex bilinear map.

1.5. The Exponential Map in general. Let G be a Lie group and
Xg an element in the Lie algebra. We then get a vector field X on G
by setting X, = [(X) for g € G. Then, from the theory of ordinary
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differential equations, we get, for small ¢ > 0 a unique differentiable
curve y : [0,e] — G such that y'(t) = l;(t) (X) and y(0) = 1.

The uniqueness immediately implies that y(s +t) = y(s)y(t) for small
s,t and by continuation, we get a group homomorphism y : R — G,
with y(0) =1, and y’(0) = X. We write exps(X) = y(1). This is called
the exponential of X. Thus exp : g — G.

The derivative of the exponential map at 0 € g is the identity map on
g. Then the inverse function theorem says that the map exp: g — G
is a diffeomorphism from a small neighbourhood of 0 € g into a small
neighbourhood of 1 € G.

1.6. The Adjoint Representation. Let G be a Lie group and g its
Lie algebra. The conjugation action of G on itself preserves the iden-
tity element. Hence it yields, by differentiation, an action of G on its
tangent space at 1, namely g. This action is linear and is called the
adjoint representation: we have a representation Ad : G — GL(g). By
differentiation, we get a linear representation ad : § — End(g), also
called the adjoint representation of the Lie algebra g. By differentia-
tion with respect to y, of the equation Ad(xyx~!) = Ad(x)Ad(y)Ad(x~1)
, it is clear that ad(Ad(x)(Y)) = Ad(x)ad(Y)Ad(x!) as operators on g.
Denote, for X € g,Y € g, by [X,Y] = adX(Y). If G ¢ GL,(R), then
g C M,(R) and [X, Y] coincides with XY — YX in M,(R).

1.7. The Killing Form. The Killing form (X,Y) + trace(adXadY) =
k(X,Y) is easily seen to be invariant under the action of Ad(G), using
the observations of the preceding paragraph.

If G is a compact Lie group and g € G, then for any representation p
of G, the image p(g) is semi-simple (diagonalisable) and the eigenvalues
of g € G in any representation are of the form A with A of modulus 1.
Hence for X € g, p(X) is also diagonalisable and the eigenvalues of
X € g are purely imaginary and real. Consequently, x(X,X) is a sum
of squares of purely imaginary numbers and is hence negative or zero.
It is zero if and only if the semisimple operator adX is zero; that is, X
is in the centre of g and hence the connected component of identity of
the centre of G is non-trivial.

1.8. The Closed Subgroup Theorem. Suppose H C G is a sub-
manifold and is a subgroup. Then H is itself a Lie group and the
inclusion H € G is a morphism of Lie groups. One calls H a Lie



4 COMPACT LIE GROUPS

subgroup of G. The topology on H need not coincide with the topology
on H viewed as a subspace of G.

The map H — G yields, by differentiation, a morphism § — g of Lie
algebras. The following two fundamental theorems provide a converse.

Theorem 1. If ) c g s a Lie subalgebra, then there exists a Lie
subgroup H C G such that the Lie algebra of H is §.

This is a consequence of a theorem of Frobenius on involutive distri-
butions.

Theorem 2. Given a homomorphism p : ) — g of the Lie algebras b, g
of two connected Lie groups H and G, there exists a homomorphism
q : H* — G whose differential at the identity 1 € H* yields the map p
(where H* is the simply connected covering of the Lle group H).

Theorem 3. (E.Cartan) A closed subgroup of a Lie group is a Lie
subgroup.

If H c G is a closed subgroup of a Lie group G, equip the quotient
G/H with the quotient topology. Then G/H gets a natural structure of
a manifold with the action map GxXG/H — G/H being smooth. If H is
in addition, a normal subgroup, then the map G — G/H is a morphism
of Lie groups with kernel H.

Theorem 4. (Ado’s theorem) Every Lie algebra over R is linear.

In contrast, not every Lie group is linear. One can show that the
universal cover of SLo(R) is not linear. For n > 3, the group SL,(R)
admits a two sheeted connected covering group G* which is not linear.

Suppose g is a real Lie algebra; it is a sub-algebra of M, (R) and the
latter is the Lie algebra of GL,(R). It follows from the above theorems
that there exists a connected Lie group G ¢ GL,(R) with Lie algebra
g. Let G* denote the simply connected covering of G. It is immediate
that G* is a Lie group.

Now suppose p : ¢ — @’ is a homomorphism of Lie algebras, and
let G’ be a connected Lie group with Lie algebra g’ (such a G’ exists
by the observations of the preceding paragraph). Consider the graph
g — g®g of p, and denote by § the image of this diagonal map
X — (X,p(X). Then b is a Lie subalgebra of g @ ¢’ and hence there
exists (by the above theorem) a connected subgroup H ¢ G* x G’ with
Lie algebra §.



COMPACT LIE GROUPS 5

The first projection of H onto G is an isomorphism of Lie algebras
and hence the projection H — G* is a covering map of connected
spaces. Since G* is simply connected, it follows that H = G*. The
differential of the second projection G* = H — G’ is p. Therefore,
every representation p : @ — g’ "integrates" to a representation of G*

into G’.
2. ComMmrACT LIE GROUPS

We prove as a consequence of the Peter-Weyl Theorem :

Theorem 5. A compact Lie group is a closed subgroup of U(n) for
some n.

Proof. We argue by induction on the dimension of G. If dim(G) = 0,
then G is discrete. But G is compact and hence is finite. But then
the Cayley theorem says G C S, for some n, where S,, is the symmetric
group on n letters . Therefore, G ¢ S, ¢ GL,(C), where S, may be
thought of as the group of permutation matrices.

Suppose the theorem holds when G is connected. Then we prove that
it holds in general: suppose the connected component G° of identity is
linear (i.e. has a faithful finite dimensional linear representation p),
and G/GY is linear (via a faithful representation 7 say). Then pick a
representation p of G whose restriction to G° contains p" (Corollary
??7). Then the direct sum p @ 7 is a faithful representation of G.

We assume then that G is connected. By the Peter-Weyl theorem,
given x # 1 in G, there exists a representation p of G such that p(x) #
p(1) = 1 (since representation functions separate points). Since p is
non-trivial and G is non-trivial and connected, so is the image p(G).
Therefore, the kernel K of p has dimension strictly smaller than that
of G. By induction assumption, K has a faithful representation r, say.
Let 0 be a representation of G whose restriction to K contains 7 (such
a representation exists by Corollary ??). The representation 0 @ p is
then easily seen to be faithful on G. O

2.1. Properties of Tori.
Definition 2. A compact connected abelian Lie group is called a torus.

For example, S* x ---x S! is a torus. We will see that every torus is
of this form.

We now consider representations of S'xS'x- - - S'. Consider the I-fold
product T = (S1)! of the group S' with itself. Given integers my, -, m;
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and z = (z1,---,2;) € T we have the one dimensional representation i.e.
character ym(z) = z]"zy” - -zlm’ on T. The span R of these characters

xm as m varies through [-tuples of integers, is a subring of functions on
T which contains 1, closed under complex conjugation, and separates
points. Hence by the Weirstrass-Stone theorem, R is dense in the space
of continuous functions on T and hence also in L?(T). By the orthog-
onality relations, it follows that if p is an irreducible representation of
T then p is of the form y,, for some m. Thus the ring of representation
functions is the span of the characters y,,. This span is also called the
algebra of trigonometric polynomials on T. Thus the Peter-Weyl theo-
rem is equivalent to saying that the space of trigonometric polynomials
is dense in the space of continuous functions on the torus T.

Fix an [ tuple m of integers m; and consider the function y,, : T =
(SH! = St If R! = R!/Z! = T is the quotient map, then y,, lifts to
the linear map R! — R given by (x1,x9,---,x;) € R! — myxy+---mx;.
The pre-image of the kernel of the map y, : T — S' in R/ is the set
of points (x1,---,x;) € R! such that myx; + - - - + myx; is an integer k,
as k varies. Therefore, this pre-image is a countable union of the hy-
perplanes ), m;x; = k. Hence the pre-image of the complement of the
kernel of y,, is the complement of a countable number of hyperplanes
and is clearly a dense open subset of R’

The union of the kernels of all these y,, therefore has pre-image
which is a countable union (over m and k) of the hyperplanes Y, m;x; =
k. Therefore, the intersection of the complement of the kernels of
the characters y,, is a dense subset of T (e.g. by the Baire Category
theorem).

Proposition 6. (Kronecker’s theorem) Let T = (SY)! be a torus. The
set E of points t € T such that y,(t) # 1 for any [l-tuple of integers m
s dense in T. Consequently, the set of pointst € T such that the group
generated by the element t is dense in T, 1s a dense set.

Proof. Fix t € E. Now, as was already noted, E is dense in T by the
Baire category theorem. Let S be the closed subgroup of T generated by
t and consider the quotient T/S. This is a connected abelian group and
hence if T # S, T/S has a non-trivial character y which is a character
on T. But then y(t) =1 contradicting the choice of t; therefore, T = S
and hence every element of E generates a dense subgroup of T. O

Proposition 7. A compact connected abelian group T of dimension k
is (SHk.
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Proof. By the corollary to Peter-Weyl theorem, a torus T is linear i.e.
has a faithful (finite dimensional) unitary representation p. By com-
plete reducibility, p is a direct sum of irreducible representations of
T. Since T is abelian, these irreducible representations are one dimen-
sional. Hence T is a subgroup of the group D, of diagonals for some
unitary group U(n). By a result in the previous Chapter, every char-
acter on T extends to a character on D, i.e. res: D\n —Tis surjective
where T is the group of characters on T. Since the character group of
D, = (SY)" is Z" it follows that the character group of T is a finitely
generated abelian group.

Since T is connected, it follows that every non-trivial character T —
S! is surjective, which shows that T is torsion free (and finitely gener-
ated by the preceding paragraph). Thus (E: T ~ 7k whence, p : T —
(SH* induced by gg is an isomorphism. O

Corollary 1. (Kronecker’s Theorem) Given a torus T, the set of points
t € T such that y(t) # 1 for any nontrivial character y of T, is a dense
set (say D). If t € D, then the closed subgroup generated by t is all of
T.

The first part is simply a consequence of the Proposition and Propo-
sition 6. If H is the closed subgroup generated by an element t in the
dense set D, then consider a character y on the connected abelian Lie
group T/H. Then y is a character on T and y(t) = 1. Since t € D, this
means that y is trivial. That is, H = T. (One says T is topologically
generated by every t € D).

2.2. Compact Semi-simple Groups. A compact connected Lie group
with finite centre is called a compact semi-simple Lie group.

This means that the centre of the Lie algebra g of G is {0}. Let k
be the Killing form on g. Since g consists of skew symmetric matrices,
it follows that k is negative semi-definite. Moreover, on some Z € g,
k(Z,Z) = 0 if and only if the skew symmetric matrix adZ = 0 ; that
is, Z lies in the centre of g.Therefore, Z = 0 and hence k is negative
definite.

Lemma 8. (Bourbaki) Let G* be a locally compact topological group
with Z a central discrete subgroup of G* such that the quotient G = G*|/Z
is compact. Then any homomorphism y of Z into the multiplicative
group R~q of positive real numbers extends to a continuous homomor-
phism of G* into Rg.
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Proof. Let F be a compact subset of G* mapping onto the compact
quotient G = G*/Z. Let f* be a positive compactly supported function
on G* which is strictly positive on F. Consider the " Mellin transform"
of f along Z, given, for x € G* by

flx) = /Z dhf* Geh) x (k).

Then f is strictly positive everywhere on G*. Moreover, f is equivari-
ant: f(xh) = f(x)y(h) for h € Z and x € G*.

If x,y € G* the function f(xy)f(x)~1f(y)~! is strictly positive and is
therefore of the form e®®¥ for some real valued function on G* x G*.
By the equivariance of f, it follows that Q descends to G X G i.e. is
actually a function on G X G.

Since f(xy)f(x)"'f(y)~! is a coboundary on G* with values on Rs
it follows that Q(x,y) is a cocycle on G X G. That is, for x,y,z € G we
have the equation

Q(x,y) + Q(xy, z) = Q(y, z) + Q(x, yz).

Since G is compact, we can integrate with respect to z. We then find
that, for all x,y € G,

Q(x,y) + 9 (xy) = ¢(x) + $(y),
where ¢(x) = deg(z)Q(x, z). Put g(x) = e for x € G. Then for
x,y € G* we have

FOpf) fy) ™! = e = g(xy)g(x)'g(y) 7,
showing that the function 6(x) = f(x)g(x)~! is a homomorphism of G*
into R5g. The equivariance of f and the invariance of g then show that
0 coincides with y on the subgroup H = Z. This proves the lemma.
O

Theorem 9. (H.Weyl) The fundamental group of a compact semi-
simple Lie group G s finite.

Proof. Since G is a compact manifold, its fundamental group is a finitely
generated abelian group. If it is infinite, then by the structure theorem
for finitely generated abelian groups, the fundamental group of G has
Z as a quotient. Let G* be the connected covering of G corresponding
to this quotient Z. By lemma 8, G* has a nontrivial map into R;
since G* is connected, the image of G* is open and hence is all of R.g.
Therefore, the Lie algebra g of G has an abelian quotient, and hence
by complete reducibility of G action on g, the centre of g is non-zero.
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Therefore, the centre of G has positive dimension and hence G cannot
be semi-simple. O

Theorem 10. Every compact connected Lie group G may be written
in the form ZK where Z is the connected component of identity of the
centre of G and K is a compact connected semi-simple subgroup of G.
In fact K is the commutator subgroup of G.

Proof. The group Z is closed and hence Q = G/Z is a compact con-
nected quotient of G. If q = LieQ has non-zero centre, then q has G
invariants. The complete reducibility of the representation g of the
compact group G shows that g = 3 ® q as G modules and hence as g
modules. It follows that q cannot have G invariants.

Therefore, Q is semi-simple. By Weyl’s theorem (Theorem 9) , Q
has finite fundamental group. But since q is an ideal in G, and hence a
subalgebra, there exists a connected subgroup K of G with Lie algebra
q. Therefore, K is a covering of Q and is hence compact by Hermann
Weyl’s theorem.

Since K contains the commutator subgroup [K,K] = [G, G] and the
latter is open in K, it follows that [G,G] = K. O

Corollary 2. The classification of irreducible representations of a com-
pact connected Lie group follows from the classification of the irre-
ducible representations of a compact connected simply connected group.

Theorem 11. (H.Weyl) The representations of a complex semi-simple
Lie algebra gc are completely reducible.

Proof. A representation of g¢ is a complex representation of g. Let
G be a simply connected semi-simple group whose Lie algebra is g.
Then representations g are equivalent to those of G. By Hermann
Weyl’s theorem (Theorem 9), G is compact. Hence G representations
are completely reducible. The theorem follows.

O
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