THE PETER-WEYL THEOREM

1. The Peter-Weyl Theorem

1.1. Representation Functions.

Definition 1. If h is a continuous function on the group G, we say that h is a *representation function* if the right translates of h by elements of G lie in a finite dimensional vector space.

Suppose h is a representation function and let E be the span of right G translates of h. By assumption, E is finite dimensional, and hence has an orthonormal basis e_1, \dots, e_n with respect to the L^2 -inner product on G. Thus, for each $g \in G$, there exist scalars $\rho_{ij}(g)$ such that

$$e_i(xg) = \sum_j \rho_{ij}(g)e_j(x).$$

The orthonormality of the e_j shows that $\rho_{ij}(g) = \int_G dx e_i(xg)\overline{e_j(x)}$; hence $\rho_{ij}(g)$ is continuous and $\rho : G \to GL_n(\mathbb{C})$ is a representation. Moreover, by taking x = 1 we see that each $e_i(g)$ is a linear combination of the $\rho_{ij}(g)$.

Suppose $\rho : G \to GL_n(\mathbb{C}) = GL(V)$ is a representation; with respect to the standard basis $\varepsilon_1, \dots, \varepsilon_n$ of \mathbb{C}^n , and given $x \in G$, we have the functions $\rho_{ij}(x)$. We compute, for a fixed $g \in G$, the translated function $\rho_{ij}(xg)$. This is

$$\rho_{ij}(xg) = \sum_{k=1}^{n} \rho_{ik}(x) \rho_{kj}(g),$$

and hence is a linear combination of the finite set of functions ρ_{ik} for $1 \le k \le n$. Therefore, $x \mapsto \rho_{ij}(x)$ is a representation function.

The last two paragraphs show that the space of representation functions is the \mathbb{C} -span of the matrix coefficient functions ρ_{ij} as ρ varies over representations of G. The equation of the preceding paragraph also shows that the span E of the functions $\rho_{ij}(xg)$ as g varies over G, is a representation of G, and is isomorphic to ρ .

If $\rho, \tau : G \to GL_n(\mathbb{C})$ are two equivalent representations, then there exists $A \in GL_n(\mathbb{C})$ such that $\tau(x) = A\rho(x)A^{-1}$ for all $x \in G$. This shows

that the function $\tau_{ij}(x)$ is a linear combination of the functions $\rho_{kl}(x)$, and vice versa. Therefore the span $E_{\rho} = \sum_{1 \leq i,j \leq n} \mathbb{C} \rho_{ij}(x)$ depends only on the equivalence class of ρ .

In particular, if (ρ, V) is an irreducible representation of G, then the span of the matrix functions ρ_{ii} depends only on the equivalence class of ρ ; we may therefore assume that ρ is *unitary*. Then the orthogonality relations show that the representation E_{ρ} is n^2 dimensional, where n is the dimension of ρ . We now get a homomorphism $\Phi_V : V^* \otimes V \to E_\rho \text{ given by } \lambda \otimes v \mapsto f_{\lambda,v} \text{ where } f_{\lambda,v}(x) = \lambda(\rho(x)v).$ Let v_1, \dots, v_n be an orthonormal basis of V, and let $\lambda_1, \dots, \lambda_n$ be the dual basis of V^* . The image of the vector $\lambda_i \otimes v_j$ is the function $\lambda_i(\rho(x)v_j) = \lambda_i(\sum_{k=1}^n \rho_{kj}(x)v_j) = \rho_{ij}(x)$ which shows that $V^* \otimes V \to E_\rho$ is surjective. Since the dimensions of the two spaces are the same, it follows that this map is an isomorphism.

Therefore, if ρ is an irreducible representation, then the span of ρ_{ii} is isomorphic to $V^* \otimes V$ with G acting only on V. However, we may also view V^* as a representation of G which under the isomorphism

 Φ_V , converts the G action on V^* into left translations on R.

We then have : the space R of representation functions on G is a direct sum of the representations $V^* \otimes V$ where V runs through equivalence classes of irreducible representations of G, and we write

$$R = \oplus_V V^* \otimes V.$$

This is a decomposition of $G \times G$ modules.

Lemma 1. Let \widehat{G} denote the set of equivalence classes of irreducible (unitary) representations of the compact group G, and pick a representative from each equivalence class. By an abuse of notation, we denote by \widehat{G} the set of these representatives. Then we have the decomposition

$$R = \bigoplus_{\rho \in \widehat{G}} \bigoplus_{i,j \le \dim(\rho)} \mathbb{C}\rho_{ij}.$$

Note that the representation functions form a subring of the ring of continuous functions on G.

Start with a compact group G with the Haar measure μ on G. We may form the space $L^2(G) = L^2(G, \mu)$. This is a Hilbert space, consisting of (equivalence classes of) measurable functions f on G such that the integral

$$\int_G d\mu(x) \mid f(x) \mid^2$$

is finite. Given $\phi, \psi \in L^2(G)$ the integral $\int_G d\mu(x)\phi(x)\overline{\psi(x)}$ makes sense (Cauchy-Schwarz inequality) and yields an inner product on $L^2(G)$. On the space $L^2(G)$ the group $G \times G$ operates by left and right translations and preserves the foregoing inner product.

Suppose V is a finite dimensional complex vector space on which G operates (we know from the preceding chapter that G preserves an inner product on V). The group G also operates on the dual V^* . Hence the group $G \times G$ operates on $V^* \otimes V$. If V is irreducible for G, then $V^* \otimes V$ is irreducible for $G \times G$.

The goal of the present chapter is to prove the following

Theorem 2. (The Peter-Weyl Theorem) Let G be a compact topological group.

(A) If V is an irreducible representation of G, then $V^* \otimes V$ embeds in $L^2(G)$. Moreover, the subspace $R = \bigoplus_V V^* \otimes V$ is a $G \times G$ -invariant **dense** subspace of $L^2(G)$ where V runs through equivalence classes of irreducible (finite dimensional) representations of the group G.

(B) The subspace R is dense in the space C(G) of continuous functions as well.

1.2. When G is linear. First observe that in an important special case, the Peter-Weyl Theorem is an easy consequence of the Weierstrass-Stone theorem. If $G \subset U(n)$ is a compact linear group, then take the embedding representation $\rho : G \to U(n) \subset GL_n(\mathbb{C})$. Clearly, the algebra R' generated by ρ_{ij} and their complex conjugates separate points and contains the constant function 1. By construction R' is closed under complex conjugation. Hence by the Weierstrass-Stone theorem, $R'(\subset R)$ is dense in the space of continuous functions on G (and hence in $L^2(G)$). Therefore so is R.

Corollary 1. Suppose $\rho : G \subset GL(V)$ is a faithful representation. Then every irreducible representation τ of G is a sub-representation of $W_{k,l} = V^{\otimes k} \otimes (V^*)^{\otimes l}$ for some integers $k, l \geq 0$. The algebra R is the algebra \mathbb{R}' .

Proof. Note that the matrix coefficients of the sum $\sum_{k,l} V^{\otimes k} \otimes (V^*)^{\otimes k}$ are $(k \times l)$ products of the matrix coefficients of the form $\rho_{ij}(x)$ and $\rho_{ij}^*(x)$. But since ρ may be assumed to be unitary, $\rho_{ij}^*(x)$ is the complex conjugate $\overline{\rho}_{ii}(x)$. Since the algebra R' generated by ρ_{ij} and $\overline{\rho_{ij}(x)}$

separates points (ρ is faithful), contains 1, and is closed under complex conjugation, it follows that this algebra is dense in the space of continuous functions on G. It follows that if a continuous function is orthogonal to R' in $L^2(G)$, then it is zero.

If an irreducible representation τ of G does not occur in any of the representations $W_{k,l}$, then, by the orthogonality relations, the matrix coefficients τ_{ij} are all orthogonal to those of $W_{k,l}$ for all k, l. This contradicts the conclusion of the preceding paragraph and hence τ occurs in $W_{k,l}$ for some k, l.

This implies that τ_{ij} is a matrix coefficient of $W_{k,l}$ and therefore, R = R'.

We prove the general theorem after recalling some preliminaries on compact operators.

1.3. Compact Operators. If H is a Hilbert space an $T : H \to H$ is a bounded operator, T is said to be a compact operator if T takes bounded sets *into* compact sets (equivalently, takes the unit ball in H into a compact set).

Example. If *T* has finite dimensional range, then *T* is compact.

Lemma 3. If T_n is a sequence of compact operators converging in the operator norm to an operator T, then T is also compact.

Corollary 2. If $H = L^2(X)$ for a measure space (X, m) and $K(x, y) \in L^2(X \times X)$, one can form the operator $T(\phi) = \int_X \phi(y)K(x, y)dm(y)$ on H. The operator K is compact.

This K is called a kernel function.

Proof. If K is a finite linear combination of characteristic functions of measurable rectangles, then the operator is compact since it has finite dimensional range. Consequently, any K, being an $L^2(X \times X)$ limit of such simple functions, is also a compact operator.

Definition 2. If $T: H \to H$ is a continuous linear map from a Hilbert space H into itself, and $w \in H$, the map $v \mapsto (Tv, w)$ is a continuous linear function on H; hence there exists a vector w' such that (Tv, w) = (v, w') for some w'. The vector w' is uniquely defined and $S: w \mapsto w'$ is a linear map. We write w' = S(w). The operator S is called the *adjoint* of T, and denoted $S = T^* = {}^{t}T$.

An continuous linear operator $T : H \to H$ on a Hilbert space H is said to be *self adjoint* of for all $v, w \in H$ we have (Tv, w) = (v, Tw).

1.4. Compact Self Adjoint Operators. We now state a fundamental theorem on a compact self adjoint operator T. It says that the orthogonal complement of the kernel of T is a direct sum of finite dimensional non-zero eigen-spaces of T.

Theorem 4. If T is compact and self adjoint, then we have a direct sum decomposition $H = H_0 \bigoplus_{\lambda \neq 0} H_\lambda$ where H_λ is the λ eigen-space of the operator T, and each H_λ is finite dimensional for $\lambda \neq 0$.

Note also that the direct sum $H' = \bigoplus_{\lambda \neq 0} H_{\lambda}$ is dense in the image T(H) of T. This is because H' is stable under T and the image of H' is the same as T(H) since T = 0 on H_0 .

In the sequel, we assume this result on compact self adjoint operators. We will introduce some *convolution operators* which will be shown to be compact operators. Before establishing properties of convolutions, we will prove some preliminaries on continuous functions on compact groups.

1.5. continuous functions on compact groups.

Definition 3. A function $f : G \to \mathbb{C}$ is said to be *uniformly continuous* if, given $\varepsilon > 0$, there exists a neighbourhood $U = U_{\varepsilon}$ of identity in G such that

 $|f(ux) - f(x)| < \varepsilon \quad \forall u \in U, \quad \forall x \in G.$

Lemma 5. A continuous function $f : G \to \mathbb{C}$ is uniformly continuous.

Proof. Let $\varepsilon > 0$. Given $x \in G$, there exists an open set U_x of G containing the identity $1 \in G$ such that $|f(ux) - f(x)| < \varepsilon$. Since the multiplication map $m : G \times G \to G$ and the inverse map $i : G \to G$ are continuous, there exists a neighbourhood $V_x = V_x^{-1}$ of 1 such that $V_x \cdot V_x \subset U_x$ (and, automatically, $V_x \subset U_x$).

Then $G = \bigcup_{x \in G} V_x x$ is an open cover of G. Since G is compact, there is a finite subset $F \subset G$ such that $G = \bigcup_{y \in F} V_y y$. Write $V = \bigcap_{y \in F} V_y$; this is an open neighbourhood of 1, with $V = V^{-1}$.

Let $x \in G$. There exists $y \in F$ such that $x \in V_y y$. Then $Vx \subset VV_y y \subset U_y y$. We estimate, for $v \in V$, the difference f(vx) - f(x) as follows. f(vx) = f(uy) for some $u \in U_y$, and f(x) = f(u'y) for some $u' \in U_y$. Therefore,

$$|f(vx) - f(x)| \le |f(uy) - f(y)| + |f(y) - f(u'y)| < \varepsilon + \varepsilon.$$

This proves the uniform continuity of f.

Given a neighbourhood U of identity in G, there exists (by Urisohn's lemma), a continuous function $f \ge 0$ on G whose support is contained in U. We may assume, by replacing f by a positive scalar multiple, that $\int_G dgf(g) = 1$. Let $\{U_n\}_n$ be a decreasing sequence of open neighbourhoods of 1 decreasing to 1. Fix a continuous function $f_n \ge 0$ whose support is contained in U_n , such that $\int f_n(x)dx = 1$. We will call the sequence $\{f_n\}_{n\ge 1}$ an approximate identity.

Lemma 6. The map $G \times L^2(G) \to L^2(G)$ given by $(g, \phi) \mapsto g\phi(x) = \phi(g^{-1}x)$ is continuous.

Proof. Suppose that $\psi \in C(G)$. Given $\varepsilon > 0$ there exists a neighbourhood $U = U_{\varepsilon}$ of 1 in G such that for $u \in U$, we have $|\psi(g^{-1}x) - \psi(x)| < \varepsilon$ for all $g \in U$, by Lemma ??. Then it follows that $||g\psi - \psi||_2 < \varepsilon$ for all $g \in U$.

Suppose now that $\phi \in L^2(G)$ and fix $\varepsilon > 0$. We find a continuous function ψ such that $|| \phi - \psi ||_2 < \varepsilon$. Then, we find a neighbourhood $U = U_{\varepsilon}$ as in the preceding paragraph, such that $|| g\psi - \psi ||_2 < \varepsilon$. It then follows that for all $g \in U$ and all , we have $|| g\phi - \phi ||_2 < 3\varepsilon$, proving the lemma.

1.6. Convolution Operators.

Definition 4. Fix a continuous function $f \in C(G)$. Define the operator

$$\phi \mapsto \phi * f, \quad \phi * f(x) = \int_G dg \phi(g^{-1}x) f(g),$$

for $\phi \in L^2(G)$. The operator T is called a *convolution by* f, and $T(\phi)$ is called *the convolution of* ϕ *and* f.

We verify that $T(\phi)$ is defined and that T maps $L^2(G)$ into $L^2(G)$: let M denote the supremum of the continuous function |f| on the compact group G. Write $g' = g^{-1}x$. Then, $\phi * f(x) = \int_G dg' \phi(g') f(xg'^{-1})$ is bounded by $M \int_G dg | \phi(g) |$ which in turn is bounded by $M \int_G dg | \phi(g) |^2$ and the latter is finite since $\phi \in L^2(G)$.

Using the uniform continuity of f (Lemma ??) we will show that $\phi * f$ is uniformly continuous: let $\varepsilon > 0$. We can find a neighbourhood $U = U_{\varepsilon}$ such that $|f(uy) - f(y)| < \varepsilon$, $\forall y \in G$ and $\forall u \in U$. Now, $\phi * f(ux) - \phi * f(x) = \int_{G} dg' \phi(g') (f(uxg'^{-1} - f(xg'^{-1})))$. Therefore, we get, for all $u \in U$, the estimate

$$|\phi * f(ux) - \phi * f(x)| \le \varepsilon \int_G dg' |\phi(g')| \le \varepsilon ||\phi||_2.$$

 $\mathbf{6}$

This proves the uniform continuity of $\phi * f$.

Lemma 7. The convolution map $\phi \rightarrow \phi * f$ is (1) a continuous linear map from $L^2(G)$ into itself, and (2) a continuous linear map from $L^2(G)$ into C(G).

Proof. We first prove (1). By Cauchy-Schwarz,

$$|\phi * f(x)|^2 \le (\int_G dg' |\phi(g')|^2) (\int_G dg' |f(xg'^{-1}|^2).$$

The last integral is bounded by M^2 , where M is the supremum of |f| on G, and hence we see that $\int_G dx \mid (\phi * f)(x) \mid^2 \leq M^2 \int_G dg' \mid \phi(g') \mid^2$. This shows $|| \phi * f) \mid_2 \leq M \mid |\phi \mid|_2$, proving the continuity of the convolution operator $*f : L^2(G) \to L^2(G)$. This is part (1).

The same estimate shows that $|| \phi * f ||_{sup} \leq M || \phi ||_2$, proving the continuity of the convolution operator from $L^2(G)$ into C(G); this is part (2).

Lemma 8. The adjoint of $\phi \mapsto \phi * f$ is a convolution operator of the form of the form $\psi \mapsto \psi * f^*$ where $f^*(x) = \overline{f(x^{-1})}$.

The operators $\phi\mapsto \phi*f=H(f)(\phi)$ where $f\in C(G)$ is continuous, has the property that

$$\phi * f(x) = \int \phi(g^{-1}x)f(g)d\mu(g) = \int \phi(g)f(xg^{-1})d\mu(g),$$

is just integrating ϕ against the "kernel function " $K(x,g) = f(xg^{-1})$ for $\phi \in L^2(G)$. Consequently it is a compact operator. We may choose the function f so that the kernel function becomes a self adjoint operator: we replace the arbitrary function $x \mapsto f(x)$ with the function $x \mapsto f(x) + \overline{f(x^{-1})}$. Moreover, since the right action commutes with the convolution operators, the eigenspaces $H(f)_{\lambda}$ are all G-stable.

Lemma 9. For any f, the convolution R * f is contained in R.

Proof. Let ρ_{ij} be a matrix coefficient of $\rho : G \to GL_n(\mathbb{C})$. Then $\rho_{ij} * f(x) = \int_G \rho_{ij}(g^{-1}x)f(g)dg = \sum_k \rho_{kj}(x) \int_G dg \rho_{ik}(g^{-1})f(g)$, and is therefore a finite linear combination of the matrix coefficient functions $x \mapsto \rho_{kj}(x)$. This proves the lemma.

Lemma 10. Suppose $\phi \in L^2(G)$ and $\{f_n\}$ is an approximate identity. Then the sequence $\phi * f_n$ tends to ϕ in $L^2(G)$. *Proof.* Fix $x \in G$. Then $\phi * f_n(x) - \phi(x) = \int_G (\phi(g^{-1}x) - \phi(x)) f_n(g) dg$. We can use Cauchy Schwarz for the measure $f_n(g) dg$ on G to conclude that $|\phi * f_n - \phi(x)|^2 \leq \int_G |\phi(g^{-1}x) - \phi(x)|^2 f_n(g) dg$. Integrating with respect to x, we get

$$|| \phi * f_n - \phi ||_2^2 \le \int_G f_n(g) dg \int_G dx | \phi(g^{-1}x) - \phi(x) |^2 = \int_G f_n(g) dg || g\phi - \phi ||_2^2$$

Fix $\varepsilon > 0$. Then for large n, $|| g\phi - \phi ||_2 < \varepsilon$ by Lemma ??, for all $g \in U_n$. But since the support of f_n lies in U_n , we may assume, in the above integral over g, that $g \in U_n$. Therefore, we get $|| \phi * f_n - \phi ||_2^2 \le \int_{U_n} f_n(g) dg\varepsilon^2 = \varepsilon^2$. This proves the lemma.

1.7. Proof of the Peter-Weyl Theorem.

Proof. By choosing $\{f\}$ to be an approximate identity, we can ensure that every ϕ is approximated by $\phi * f$. It follows that the *intersec*tion of all the $H_0(f)$ as f varies is zero and hence H is the sum of the nonzero eigen-spaces $H(f)_{\lambda}$ as λ varies through non-zero eigenvalues of the convolution operator *f and f varies through all the continuous functions in G. Moreover, all these $H_{\lambda}(f)$ are G stable and hence H is a sum of finite dimensional G stable subspaces of H. This proves that representation functions are dense in $L^2(G)$. This proves part (A) of the Peter-Weyl Theorem.

Let $\phi \in C(G)$ and let $\varepsilon > 0$. By choosing an approximate identity $\{f_k\}_k$ in C(G), we can find $K = K(\varepsilon)$ large so that for $k \ge K$,

$$|| \phi - \phi * f_k || = \sup_{x \in G} | \phi(x) - \phi * f_k(x) | < \varepsilon.$$

Fix $k \ge K$. Let ϕ_n be a sequence of representation functions tending to ϕ in $L^2(G)$. Such a sequence exists by part (A) of the theorem. Then for large n, $|| \phi_n * f_k - \phi * f_k || < \varepsilon$, since $\phi \mapsto \phi * f_k$ is a continuous linear map from $L^2(G)$ into C(G). Hence $|| \phi_n * f_k - \phi || < 2\varepsilon$. Thus $\sum_{k\ge 1} R * f_k$ is dense in C(G). But $\sum_k R * f_k \subset R$ by the above lemma; therefore, R is dense in C(G) as well. This proves part (B).

This completes the proof of the Peter-Weyl Theorem.

Some consequences: In the regular representation, each irreducible representation ρ of G occurs $dim(\rho)$ times. The matrix coefficients of inequivalent irreducible representations are orthogonal to each other. The representation functions on G are dense in $L^2(G)$.

Corollary 3. Let $H \subset G$ be a closed subgroup of a compact group and let R, R_H be the representation rings of G and H respectively. Consider the restriction homomorphism res : $C(G) \rightarrow C(H)$. Then res $(R) = R_H$.

Proof. Since R is dense in C(G) by the Peter-Weyl Theorem, its restriction to H separates points, contains constant functions and is closed under complex conjugation; by the Weierstrass-Stone theorem, res(R) is dense in C(H). Clearly $res(R) \subset R_H$. Therefore, res(R) is dense in R_H as well.

We now claim that given an representation τ of H, there is a representation ρ of G whose restriction to H contains τ . It is enough prove this claim, because of the complete reducibility of representations of H, when τ is irreducible. Let R, R_H be the rings of representation functions on G and H respectively. If there is no representation ρ as in the claim, then by the orthogonality relations, the restriction of the matrix coefficients of ρ to H are orthogonal to the matrix coefficients τ_{ij} of τ , in $L^2(H)$. Therefore, the restriction of R to H is orthogonal to τ_{ij} for all i, j. But by the preceding paragraph, we have res(R) is dense in R_H , contradicting the conclusion that res(R) is orthogonal to τ_{ij} .

Corollary 4. If G is a compact group all of whose irreducible representations are one dimensional, then G is abelian.

Proof. Suppose $x, y \in G$ and let $z = xyx^{-1}y^{-1}$. Then for any irreducible representation ρ of G, we have $\rho(z) = 1 = \rho(1)$ since ρ is one dimensional. Since representation functions are dense in the space of continuous functions on G, we have f(z) = f(1) for all continuous functions f. Therefore, z = 1 and hence G is abelian.