
THE PETER-WEYL THEOREM

1. The Peter-Weyl Theorem

1.1. Representation Functions.

Definition 1. If ℎ is a continuous function on the group � , we say that
ℎ is a representation function if the right translates of ℎ by elements of
� lie in a finite dimensional vector space.

Suppose ℎ is a representation function and let � be the span of right
� translates of ℎ. By assumption, � is finite dimensional, and hence has
an orthonormal basis 41, · · · , 4= with respect to the !2-inner product on
� . Thus, for each 6 ∈ � , there exist scalars d8 9 (6) such that

48 (G6) =
∑
9

d8 9 (6)4 9 (G).

The orthonormality of the 4 9 shows that d8 9 (6) =
∫
�
3G48 (G6)4 9 (G);

hence d8 9 (6) is continuous and d : � → �!= (ℂ) is a representation.
Moreover, by taking G = 1 we see that each 48 (6) is a linear combina-
tion of the d8 9 (6).

Suppose d : � → �!= (ℂ) = �!(+ ) is a representation; with respect
to the standard basis Y1, · · · , Y= of ℂ=, and given G ∈ � , we have the
functions d8 9 (G). We compute, for a fixed 6 ∈ � , the translated function
d8 9 (G6). This is

d8 9 (G6) =
=∑
:=1

d8: (G)d: 9 (6),

and hence is a linear combination of the finite set of functions d8: for
1 ≤ : ≤ =. Therefore, G ↦→ d8 9 (G) is a representation function.

The last two paragraphs show that the space of representation func-
tions is the ℂ-span of the matrix coefficient functions d8 9 as d varies
over representations of � . The equation of the preceding paragraph
also shows that the span � of the functions d8 9 (G6) as 6 varies over � ,
is a representation of � , and is isomorphic to d.

If d, g : � → �!= (ℂ) are two equivalent representations, then there
exists � ∈ �!= (ℂ) such that g (G) = �d (G)�−1 for all G ∈ � . This shows
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that the function g8 9 (G) is a linear combination of the functions d:; (G),
and vice versa. Therefore the span �d =

∑
1≤8, 9≤= ℂd8 9 (G) depends only

on the equivalence class of d.

In particular, if (d,+ ) is an irreducible representation of � , then
the span of the matrix functions d8 9 depends only on the equivalence
class of d; we may therefore assume that d is unitary. Then the
orthogonality relations show that the representation �d is =2 dimen-
sional, where = is the dimension of d. We now get a homomorphism
Φ+ : + ∗ ⊗ + → �d given by _ ⊗ E ↦→ 5_,E where 5_,E (G) = _(d (G)E).
Let E1, · · · , E= be an orthonormal basis of + , and let _1, · · · , _= be the
dual basis of + ∗. The image of the vector _8 ⊗ E 9 is the function
_8 (d (G)E 9 ) = _8 (

∑=
:=1 d: 9 (G)E 9 ) = d8 9 (G) which shows that + ∗ ⊗ + → �d

is surjective. Since the dimensions of the two spaces are the same, it
follows that this map is an isomorphism.

Therefore, if d is an irreducible representation, then the span of d8 9
is isomorphic to + ∗ ⊗ + with � acting only on + . However, we may
also view + ∗ as a representation of � which under the isomorphism

Φ+ , converts the � action on + ∗ into left translations on '.

We then have : the space ' of representation functions on� is a direct
sum of the representations + ∗ ⊗ + where + runs through equivalence
classes of irreducible representations of � , and we write

' = ⊕++ ∗ ⊗ + .
This is a decomposition of � ×� modules.

Lemma 1. Let �̂ denote the set of equivalence classes of irreducible
(unitary) representations of the compact group �, and pick a represen-
tative from each equivalence class. By an abuse of notation, we denote
by �̂ the set of these representatives. Then we have the decomposition

' = ⊕
d∈�̂ ⊕8, 9≤38<(d) ℂd8 9 .

Note that the representation functions form a subring of the ring of
continuous functions on � .

Start with a compact group � with the Haar measure ` on � . We
may form the space !2(�) = !2(�, `). This is a Hilbert space, consisting
of (equivalence classes of) measurable functions 5 on � such that the
integral ∫

�

3` (G) | 5 (G) |2



THE PETER-WEYL THEOREM 3

is finite. Given q,k ∈ !2(�) the integral
∫
�
3` (G)q (G)k (G) makes sense

(Cauchy-Schwarz inequality) and yields an inner product on !2(�). On
the space !2(�) the group� ×� operates by left and right translations
and preserves the foregoing inner product.

Suppose + is a finite dimensional complex vector space on which �
operates (we know from the preceding chapter that � preserves an in-
ner product on + ). The group � also operates on the dual + ∗. Hence
the group � × � operates on + ∗ ⊗ + . If + is irreducible for � , then
+ ∗ ⊗ + is irreducible for � ×� .

The goal of the present chapter is to prove the following
Theorem 2. (The Peter-Weyl Theorem) Let � be a compact topologi-
cal group.

(A) If + is an irreducible representation of �, then + ∗ ⊗ + embeds
in !2(�). Moreover, the subspace ' = ⊕++ ∗ ⊗ + is a � × �-invariant
dense subspace of !2(�) where + runs through equivalence classes of
irreducible (finite dimensional) representations of the group �.

(B) The subspace ' is dense in the space � (�) of continuous func-
tions as well.
1.2. When � is linear. First observe that in an important special
case, the Peter-Weyl Theorem is an easy consequence of theWeierstrass-
Stone theorem. If � ⊂ * (=) is a compact linear group, then take the
embedding representation d : � → * (=) ⊂ �!= (ℂ) . Clearly, the alge-
bra '′ generated by d8 9 and their complex conjugates separate points
and contains the constant function 1. By construction '′ is closed
under complex conjugation. Hence by the Weierstrass-Stone theorem,
'′(⊂ ') is dense in the space of continuous functions on � (and hence
in !2(�)). Therefore so is '.

Corollary 1. Suppose d : � ⊂ �!(+ ) is a faithful representation.
Then every irreducible representation g of � is a sub-representation of
,:,; = + ⊗: ⊗ (+ ∗)⊗; for some integers :, ; ≥ 0. The algebra ' is the
algebra '′.
Proof. Note that the matrix coefficients of the sum

∑
:,; +

⊗: ⊗ (+ ∗)⊗:
are (: × ;) products of the matrix coefficients of the form d8 9 (G) and
d∗8 9 (G). But since d may be assumed to be unitary, d∗8 9 (G) is the com-
plex conjugate d 98 (G). Since the algebra '′ generated by d8 9 and d8 9 (G)
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separates points (d is faithful), contains 1 , and is closed under com-
plex conjugation, it follows that this algebra is dense in the space of
continuous functions on � . It follows that if a continuous function is
orthogonal to '′ in !2(�), then it is zero.

If an irreducible representation g of � does not occur in any of the
representations ,:,; , then, by the orthogonality relations, the matrix
coefficients g8 9 are all orthogonal to those of ,:,; for all :, ; . This con-
tradicts the conclusion of the preceding paragraph and hence g occurs
in,:,; for some :, ; .

This implies that g8 9 is a matrix coefficient of ,:,; and therefore,
' = '′. �

We prove the general theorem after recalling some preliminaries on
compact operators.

1.3. Compact Operators. If � is a Hilbert space an ) : � → �

is a bounded operator, ) is said to be a compact operator if ) takes
bounded sets into compact sets (equivalently, takes the unit ball in �
into a compact set).
Example. If ) has finite dimensional range, then ) is compact.
Lemma 3. If )= is a sequence of compact operators converging in the
operator norm to an operator ) , then ) is also compact.
Corollary 2. If � = !2(- ) for a measure space (-,<) and  (G,~) ∈
!2(- × - ), one can form the operator ) (q) =

∫
-
q (~) (G,~)3<(~) on

� . The operator  is compact.
This  is called a kernel function.

Proof. If  is a finite linear combination of characteristic functions of
measurable rectangles, then the operator is compact since it has finite
dimensional range. Consequently, any  , being an !2(- × - ) limit of
such simple functions, is also a compact operator. �

Definition 2. If ) : � → � is a continuous linear map from a Hilbert
space � into itself, and F ∈ � , the map E ↦→ ()E,F) is a contin-
uous linear function on � ; hence there exists a vector F ′ such that
()E,F) = (E,F ′) for some F ′. The vector F ′ is uniquely defined and
( : F ↦→ F ′ is a linear map. We write F ′ = ( (F). The operator ( is
called the adjoint of ) , and denoted ( = ) ∗ = C) .

An continuous linear operator ) : � → � on a Hilbert space � is
said to be self adjoint of for all E,F ∈ � we have ()E,F) = (E,)F).
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1.4. Compact Self Adjoint Operators. We now state a fundamen-
tal theorem on a compact self adjoint operator ) . It says that the
orthogonal complement of the kernel of ) is a direct sum of finite di-
mensional non-zero eigen-spaces of ) .

Theorem 4. If ) is compact and self adjoint, then we have a direct
sum decomposition � = �0 ⊕_≠0�_ where �_ is the _ eigen-space of the
operator ) , and each �_ is finite dimensional for _ ≠ 0.

Note also that the direct sum � ′ = ⊕_≠0�_ is dense in the image
) (� ) of ) . This is because � ′ is stable under ) and the image of � ′ is
the same as ) (� ) since ) = 0 on �0.

In the sequel, we assume this result on compact self adjoint operators.
We will introduce some convolution operators which will be shown to
be compact operators. Before establishing properties of convolutions,
we will prove some preliminaries on continuous functions on compact
groups.

1.5. continuous functions on compact groups.

Definition 3. A function 5 : � → ℂ is said to be uniformly continuous
if, given Y > 0, there exists a neighbourhood * = *Y of identity in �
such that

| 5 (DG) − 5 (G) |< Y ∀D ∈ * , ∀G ∈ �.
Lemma 5. A continuous function 5 : � → ℂ is uniformly continuous.

Proof. Let Y > 0. Given G ∈ � , there exists an open set *G of � con-
taining the identity 1 ∈ � such that | 5 (DG) − 5 (G) |< Y. Since the
multiplication map < : � × � → � and the inverse map 8 : � → �

are continuous, there exists a neighbourhood +G = + −1G of 1 such that
+G .+G ⊂ *G (and, automatically, +G ⊂ *G).

Then � =
⋃
G∈� +GG is an open cover of � . Since � is compact, there

is a finite subset � ⊂ � such that � =
⋃
~∈� +~~. Write + =

⋂
~∈� +~;

this is an open neighbourhood of 1, with + = + −1.

Let G ∈ � . There exists ~ ∈ � such that G ∈ +~~. Then +G ⊂ ++~~ ⊂
*~~. We estimate, for E ∈ + , the difference 5 (EG) − 5 (G) as follows.
5 (EG) = 5 (D~) for some D ∈ *~, and 5 (G) = 5 (D′~) for some D′ ∈ *~.
Therefore,

| 5 (EG) − 5 (G) |≤| 5 (D~) − 5 (~) | + | 5 (~) − 5 (D′~) |< Y + Y.
This proves the uniform continuity of 5 . �
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Given a neighbourhood * of identity in � , there exists (by Urisohn’s
lemma), a continuous function 5 ≥ 0 on � whose support is contained
in * . We may assume, by replacing 5 by a positive scalar multiple,
that

∫
�
365 (6) = 1. Let {*=}= be a decreasing sequence of open neigh-

bourhoods of 1 decreasing to 1. Fix a continuous function 5= ≥ 0 whose
support is contained in *=, such that

∫
5= (G)3G = 1. We will call the

sequence {5=}=≥1 an approximate identity.

Lemma 6. The map � × !2(�) → !2(�) given by (6, q) ↦→ 6q (G) =
q (6−1G) is continuous.

Proof. Suppose that k ∈ � (�). Given Y > 0 there exists a neighbour-
hood * = *Y of 1 in � such that for D ∈ * , we have | k (6−1G)−k (G) |< Y
for all 6 ∈ * , by Lemma ??. Then it follows that | | 6k −k | |2< Y for all
6 ∈ * .

Suppose now that q ∈ !2(�) and fix Y > 0. We find a continuous
function k such that | | q − k | |2< Y. Then, we find a neighbourhood
* = *Y as in the preceding paragraph, such that | | 6k −k | |2< Y. It then
follows that for all 6 ∈ * and all , we have | | 6q − q | |2< 3Y, proving
the lemma. �

1.6. Convolution Operators.

Definition 4. Fix a continuous function 5 ∈ � (�). Define the operator

q ↦→ q ∗ 5 , q ∗ 5 (G) =
∫
�

36q (6−1G) 5 (6),

for q ∈ !2(�). The operator ) is called a convolution by 5 , and ) (q)
is called the convolution of q and 5 .

We verify that ) (q) is defined and that ) maps !2(�) into !2(�): let
" denote the supremum of the continuous function | 5 | on the com-
pact group � . Write 6′ = 6−1G . Then, q ∗ 5 (G) =

∫
�
36′q (6′) 5 (G6′−1)

is bounded by "
∫
�
36 | q (6) | which in turn is bounded by "

∫
�
36 |

q (6) |2 and the latter is finite since q ∈ !2(�).

Using the uniform continuity of 5 (Lemma ??) we will show that
q ∗ 5 is uniformly continuous: let Y > 0. We can find a neighbourhood
* = *Y such that | 5 (D~) − 5 (~) |< Y, ∀~ ∈ � and ∀D ∈ * . Now,
q ∗ 5 (DG) − q ∗ 5 (G) =

∫
�
36′q (6′) (5 (DG6′−1 − 5 (G6′−1). Therefore, we

get, for all D ∈ * , the estimate

| q ∗ 5 (DG) − q ∗ 5 (G) |≤ Y
∫
�

36′ | q (6′) |≤ Y | | q | |2 .
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This proves the uniform continuity of q ∗ 5 .

Lemma 7. The convolution map q → q ∗ 5 is (1) a continuous linear
map from !2(�) into itself, and (2) a continuous linear map from !2(�)
into � (�).

Proof. We first prove (1). By Cauchy-Schwarz,

| q ∗ 5 (G) |2≤ (
∫
�

36′ | q (6′) |2) (
∫
�

36′ | 5 (G6′−1 |2).

The last integral is bounded by "2, where " is the supremum of | 5 |
on � , and hence we see that

∫
�
3G | (q ∗ 5 ) (G) |2≤ "2

∫
�
36′ | q (6′) |2.

This shows | | q ∗ 5 ) | |2≤ " | | q | |2, proving the continuity of the con-
volution operator ∗5 : !2(�) → !2(�). This is part (1).

The same estimate shows that | | q ∗ 5 | |BD?≤ " | | q | |2, proving the
continuity of the convolution operator from !2(�) into � (�); this is
part (2).

�

Lemma 8. The adjoint of q ↦→ q ∗ 5 is a convolution operator of the
form of the form k ↦→ k ∗ 5 ∗ where 5 ∗(G) = 5 (G−1).

The operators q ↦→ q ∗ 5 = � (5 ) (q) where 5 ∈ � (�) is continuous,
has the property that

q ∗ 5 (G) =
∫

q (6−1G) 5 (6)3` (6) =
∫

q (6) 5 (G6−1)3` (6),

is just integrating q against the “kernel function “  (G,6) = 5 (G6−1)
for q ∈ !2(�). Consequently it is a compact operator. We may choose
the function 5 so that the kernel function becomes a self adjoint op-
erator: we replace the arbitrary function G ↦→ 5 (G) with the function
G ↦→ 5 (G) + 5 (G−1). Moreover, since the right action commutes with
the convolution operators, the eigenspaces � (5 )_ are all �-stable.

Lemma 9. For any 5 , the convolution ' ∗ 5 is contained in '.

Proof. Let d8 9 be a matrix coefficient of d : � → �!= (ℂ). Then
d8 9 ∗ 5 (G) =

∫
�
d8 9 (6−1G) 5 (6)36 =

∑
: d: 9 (G)

∫
�
36d8: (6−1) 5 (6), and is

therefore a finite linear combination of the matrix coefficient functions
G ↦→ d: 9 (G). This proves the lemma. �

Lemma 10. Suppose q ∈ !2(�) and {5=} is an approximate identity.
Then the sequence q ∗ 5= tends to q in !2(�).
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Proof. Fix G ∈ � . Then q ∗ 5= (G) − q (G) =
∫
�
(q (6−1G) − q (G)) 5= (6)36.

We can use Cauchy Schwarz for the measure 5= (6)36 on � to conclude
that | q ∗ 5= − q (G) |2≤

∫
�
| q (6−1G) − q (G) |2 5= (6)36. Integrating with

respect to G , we get

| | q∗5=−q | |22≤
∫
�

5= (6)36
∫
�

3G | q (6−1G)−q (G) |2=
∫
�

5= (6)36 | | 6q−q | |22 .

Fix Y > 0. Then for large =, | | 6q − q | |2< Y by Lemma ??, for all
6 ∈ *=. But since the support of 5= lies in *=, we may assume, in the
above integral over 6, that 6 ∈ *=.Therefore, we get | | q ∗ 5= − q | |22≤∫
*=
5= (6)36Y2 = Y2. This proves the lemma.

�

1.7. Proof of the Peter-Weyl Theorem.

Proof. By choosing {5 } to be an approximate identity, we can ensure
that every q is approximated by q ∗ 5 . It follows that the intersec-
tion of all the �0(5 ) as 5 varies is zero and hence � is the sum of the
nonzero eigen-spaces � (5 )_ as _ varies through non-zero eigenvalues of
the convolution operator ∗5 and 5 varies through all the continuous
functions in � . Moreover, all these �_ (5 ) are � stable and hence � is
a sum of finite dimensional � stable subspaces of � . This proves that
representation functions are dense in !2(�). This proves part (A) of
the Peter-Weyl Theorem.

Let q ∈ � (�) and let Y > 0. By choosing an approximate identity
{5:}: in � (�), we can find  =  (Y) large so that for : ≥  ,

| | q − q ∗ 5: | |= BD?G∈� | q (G) − q ∗ 5: (G) |< Y.
Fix : ≥  . Let q= be a sequence of representation functions tending to
q in !2(�). Such a sequence exists by part (A) of the theorem. Then
for large =, | | q= ∗ 5: −q ∗ 5: | |< Y, since q ↦→ q ∗ 5: is a continuous linear
map from !2(�) into � (�). Hence | | q= ∗ 5: −q | |< 2Y. Thus

∑
:≥1 ' ∗ 5:

is dense in � (�). But
∑
: ' ∗ 5: ⊂ ' by the above lemma; therefore, '

is dense in � (�) as well. This proves part (B).

This completes the proof of the Peter-Weyl Theorem. �

Some consequences: In the regular representation, each irreducible
representation d of � occurs 38<(d) times. The matrix coefficients of
inequivalent irreducible representations are orthogonal to each other.
The representation functions on � are dense in !2(�).
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Corollary 3. Let � ⊂ � be a closed subgroup of a compact group and
let ', '� be the representation rings of � and � respectively. Consider
the restriction homomorphism A4B : � (�) → � (� ). Then A4B (') = '� .
Proof. Since ' is dense in � (�) by the Peter-Weyl Theorem, its restric-
tion to � separates points, contains constant functions and is closed
under complex conjugation; by the Weierstrass-Stone theorem, A4B (')
is dense in � (� ). Clearly A4B (') ⊂ '� . Therefore, A4B (') is dense in
'� as well.

We now claim that given an representation g of � , there is a repre-
sentation d of � whose restriction to � contains g . It is enough prove
this claim, because of the complete reducibility of representations of
� , when g is irreducible. Let ', '� be the rings of representation func-
tions on � and � respectively. If there is no representation d as in the
claim, then by the orthogonality relations, the restriction of the matrix
coefficients of d to � are orthogonal to the matrix coefficients g8 9 of g ,
in !2(� ). Therefore, the restriction of ' to � is orthogonal to g8 9 for
all 8, 9 . But by the preceding paragraph, we have A4B (') is dense in '� ,
contradicting the conclusion that A4B (') is orthogonal to g8 9 . �

Corollary 4. If � is a compact group all of whose irreducible repre-
sentations are one dimensional, then � is abelian.

Proof. Suppose G,~ ∈ � and let I = G~G−1~−1. Then for any irreducible
representation d of � , we have d (I) = 1 = d (1) since d is one dimen-
sional. Since representation functions are dense in the space of contin-
uous functions on � , we have 5 (I) = 5 (1) for all continuous functions
5 . Therefore, I = 1 and hence � is abelian. �


